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Abstract—In this paper, we present two environment-specific
models for predicting radio link quality in embedded wireless
systems as a function of radio transmission power and inter-
node distance. The models are empirically-based and developed
using regression analysis. The underlying data was collected from
over 1400 experiments conducted in open grass fields and dense
forest environments using Tmote Sky nodes. We focus on this
hardware platform due to its popularity in the domain of wireless
sensing. Our models predict radio link quality in typical outdoor
deployment environments, and achieve a goodness of fit of over
0.83.

Keywords-Radio link quality modeling; wireless sensor
networks; embedded network systems; radio link quality
prediction.

I. INTRODUCTION

Large-scale embedded network systems have moved from
imagination to reality. Applications of these systems vary from
social networking to saving lives in the battlefield [3, 7, 15],
and the domain is still evolving.

Although the community is growing, and interest in the field
is increasing, the domain is still in its infancy. Developing
embedded applications that behave as expected is a challenge.
The main issue is the lack of tools available at the design
stage of the application life cycle to help developers implement
sound applications. In particular, there are few tools to assist in
predicting radio link quality within an embedded network. This
in turn leads to designers implementing applications that suffer
from unpredictable and undesirable wireless performance [12].

We present two empirical models of radio link quality
based on experiments conducted in common deployment en-
vironments (i.e., an open grass field and a dense forest). We
use packet reception rate (PRR) as the link quality metric,
defined as the ratio of the number of messages received
to the number of message sent. Using regression analysis,
the resulting models predict the radio link quality within an
embedded network based on transmission distance and radio
power level. The models are based on data collected using
Tmote Sky motes, a widely adopted hardware platform in the
domain of wireless sensing.

Our models are different from existing empirical models
in two significant ways. First, existing models predict link
quality based on data collected from indoor testbeds [6].

Link quality in indoor deployments often varies significantly
from link quality in outdoor deployments [9]. Our models
rely on empirical data collected from open field and forest
environments to predict link quality in such environments.
These environments represent a large number of wireless
sensor deployments. Second, existing models require users to
perform their own empirical analyses (e.g., measuring signal
decay, noise fading), which limits ease-of-use [5, 6, 17]. Our
models are more straightforward. Users select the deployment
environment (i.e., open grass fields and dense forests), radio
power level, and inter-node distance. The models are then used
to predict link quality based on these parameters.

The remainder of the paper is organized as follows. Section
II discusses elements of related work. Section III presents
the process for collecting data for our models. Section IV
describes the process of filtering the data. Section V presents
the link quality models. Finally, Section VI concludes and
discusses future work.

II. RELATED WORK

Seada et al. [10] study various energy-efficient forwarding
strategies for routing in lossy wireless sensor networks. The
authors conclude that PRR is a good metric for evaluating
channel conditions. Accordingly, we use PRR as the link
quality metric in our models.

Liu and Cerpa [6] use a three-phase model for predicting
the estimated link quality between nodes. The authors collect
PRR data from two indoor testbeds. The data is used as input
for training a prediction model using machine learning. This
model is then used by the network to adjust message routing.
This approach suffers from two main drawbacks. First, the
authors rely on indoor data to train their model, which may
render the model inaccurate for outdoor deployments. Second,
the authors require users to provide their own models for
various network conditions.

Kamthe et al. [4] describe a statistical approach to modeling
link quality variation over time. The authors collect PRR
data from a testbed in an indoor lab. The data collected
is used as a training set for a learning algorithm used to
predict packet reception over time. The authors use two
statistical models simultaneously, one for modeling short-term
link quality dynamics, and another for long-term dynamics.
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This work is different from ours in that the authors provide a
statistical model to describe the correlation between successive
packet failures and receptions. Our work provides a model for
predicting radio link quality (i.e., the probability that a packet
sent on a link will be received).

Xu and Lee [16] present a regression-based algorithm for
on-line estimation of link quality using spatial correlation of
nodes. While the model can be used to dynamically adjust
routing protocols, it relies on the network being deployed
before estimating link quality. The drawback of this approach
is that a better network layout can be achieved given a priori
knowledge of link quality.

Cerpa et al. [1] provide a probability density function
that characterizes the relationship between distance and link
quality. The authors use the absolute physical location of nodes
on a grid, as well as the relative physical proximity of nodes
and their neighbors to represent distance. One drawback of
the model is that the authors do not account for physical
obstructions, although the data was collected from experiments
run in environments that include physical obstructions.

Finally, Wahba et al. [14] provide a model for predicting
radio link quality as a function of inter-node distance and
radio transmission power. The model is limited to open grass
fields that are obstruction- and interference-free. With the
introduction of TinyOS 2.x, a new radio MAC protocol was
adopted, which renders the TinyOS 1.x-based model obsolete.
Consistent with the findings of Cerpa et al. [2], the authors
observe that link quality generally falls into three regions: low,
mid, and high. Low- and high-quality regions tend to be stable
over time; mid-quality regions tend to be unstable. In other
words, when PRR is in the high- or low-quality region, it tends
to be immune to temporal changes and minor equipment ad-
justments (e.g., distance and orientation). However, when PRR
is in the mid-quality region, it exhibits significant variability,
by as much as 100%.

III. DATA COLLECTION

Our work began with preliminary studies to control for
factors that are not included as independent variables in
our models. We conducted the first study to understand the
noise floor in the environments where the experiments were
conducted. This allowed us to select the radio channel with the
least noise variability. In the second study, we investigated the
effect of height differences between communicating devices
(because we place the motes on risers). In the third study, we
investigated the effect of device orientation on communication
quality. The last study involved investigating the transmission
rate used in our experiments to ensure that the chosen rate did
not lead to network saturation and packet loss. The results of
these studies appear in [13]. We use these results in the data
collection process to ensure data quality.

To collect the empirical data for our models, we developed
two nesC applications designed to run on three motes. The
first, DC_1, is designed to run on a sender, S, and a receiver,
R. The second application, DC_2, is designed to run on a
noise floor data collector, N, and samples the RSSI register

BS_1 (B) DC_2 (N) DC_1(S)BS_2 (B)BS_3 (B) DC_1 (R)
Start Measuring 
Noise Floor

Wait for 
30 sec.Send Noise 

Floor Data
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Floor Data

1

Send Control 
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Forward Control Message
Send Acknowledgment

2

 Measure 
Noise Floor

Send Packets

Store Readings

3

Send Round Complete

Send Acknowledgment

4

Wait for 
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Send Round Complete
Send Round
Complete

Record Round
Complete

Request Data

Send Data

Record Data

5

6

Fig. 1: Data Collection Sequence Diagram

during data collection. We measured noise floor during our
experiments to ensure that there was no significant interference
affecting the quality of our data.

We also developed three Java applications designed to run
on a basestation, B. The first, BS_1, controls noise floor data
collection. The second, BS_2, controls the main transmission
experiment. The third, BS_3, controls data collection after the
transmission experiment is complete.

To run an experiment, we first install DC_1 on S and R, and
DC_2 on N. S, R, and N wait for a control message from B to
start execution. (N and R are connected to the basestation via
serial.) Figure 1 shows a sequence diagram representing the
data collection process. The numbers in the figure highlight
operations that can be repeated, as explained later. (It is worth
mentioning that operations on the timeline are not to scale.) We
first run the BS_1 application, which sends a serial message
to N to start measuring the noise floor. Upon receiving the
message, N begins to continuously measure the noise floor on
the channel used by S and R, and sends the information to
B. Operation (1) repeats for the duration of the experiment.
N also marks the end of transmission for each experimental
configuration for S and R. (This is discussed later.)
BS_2 and BS_1 begin at the same time. BS_2 sends a

serial message to R with the parameters for the experiment,
and then terminates. This message includes the following
information: (i) initial radio power level, (ii) final radio power
level, (iii) transmission rate, and (iv) period duration (for
each power level). R, in turn, sends this control message
via radio to S. Operation (2) repeats until R receives an
acknowledgment. S then waits for 30 seconds before it starts
sending the desired messages for the first radio power level.
After the 30 seconds are over, operation (3) repeats. In this
operation, S sends radio messages at the specified transmission
rate for the specified duration. Throughout, R counts the
number of messages received. When S finishes sending its
messages for the first radio power level, it sends a message
to R indicating that it has finished that power level. Operation
(4) repeats until S receives an acknowledgment from R. R

then saves the information associated with that power level
in a corresponding array location and clears its counters. R
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also sends a message to N indicating that the messages for
the first power level are complete. N, in turn, sends a serial
message to BS_1, which records an end of round marker.
S then waits for 5 seconds before it starts sending the next
sequence of messages using the next radio power level. These
steps repeat until the final power level is reached. At this
time, N continues to measure the noise floor for another 30
seconds before it terminates. After noise floor data collection
is complete, BS_1 terminates. Accordingly, operations 1, 3, 4,
and 5 are repeated for each experimental setup (i.e., distance).
Operation 2 executes at the beginning of each trial.

To communicate the information stored on R to B, BS_3
executes. This program sends a serial message to R to instruct
it to send the information for each power level. R, in turn,
sends this information; the basestation saves it to a file and
terminates. Operation (6) represents the steps performed at the
end of each trial to collect all data points stored on R.

It is worth noting that each data point represents the PRR
for a certain radio power level and inter-node distance value
(within a specific deployment environment). For each data
point (PRR), S sends 30 messages per second for 30 seconds.

A. Experimental Parameters

Here, we summarize the experimental parameters consid-
ered in our data collection experiments.

Radio Power Level. We ran the experiments using all
available power levels (1 – 31), in increments of 1 unit. These
values correspond to non-linear changes in dBm, ranging from
less than -37 to 0 dBm, respectively [11].

Deployment Environment. We ran the experiments in
an open grass field at Clemson University, and in a forest
environment in the Clemson Experimental Forest. Figure 2
shows a typical deployment in the open grass field. Figure 3
shows a typical deployment in the forest. Note from the figures
that S, R, and N were placed on 4-foot wooden stakes to avoid
the effects of physical obstructions from the grass. Further, N

and R were placed 6 inches apart. All motes had the same
orientation. For the experiments conducted in the forest, we
ensured that the motes were placed within a clear line of sight.
We chose these two environments as they are typical outdoor
deployment environments. The open grass field represents
an outdoor environment that is free of physical obstructions,
while the forest represents an outdoor environment containing
physical obstructions (i.e., trees).

Inter-node Distance. The distance between nodes was
varied between 1 – 416 feet. Note that according to [11],
the radio range is 410 feet. The distance increment applied
in each step was based on the radio power level. For power
levels 1 – 3, the distance was varied in increments of 2 feet.
For power levels 4 – 16, the distance was varied in increments
of 8 feet. For power levels 17 – 31, the distance was varied
in increments of 16 feet. Without the increment variation, the
number of experiments would have been prohibitively large.

Figures 4 and 5 illustrate the distances covered for each
power level in the field and the forest, respectively. The
distances covered in the forest are relatively sparse. From

Fig. 2: Field Deployment for Data Collection

Fig. 3: Forest Deployment for Data Collection

the experiments, no messages were received beyond 256 feet,
as opposed to 416 feet in the open grass field. Accordingly,
the furthest distance covered was 280 feet. In the dense
forest, experiments were conducted over 20% of the distances
covered in the grass field.

IV. DATA PROCESSING

After all of the experimental data was collected, we applied
a filtering process to ensure data validity. The first step was
to eliminate outliers; the second was to eliminate data points
collected during noise spikes.

We explain the process of eliminating outliers with example
data shown in Figure 6. If a data point was different from
the two “surrounding” data points by more than 20%, the
experiment was repeated. For example, in Figure 6a, the PRR
data point at a distance of 4 feet differs from the preceding
distance (2 feet) and the succeeding distance (6 feet) by
more than 20% (surrounding distances were within 20% of
one another). Hence, the experiment at distance 4 feet was
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Fig. 4: Distances Covered in the Field
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Fig. 5: Distances Covered in the Forest

repeated. If the new data was consistent with the surrounding
data, the old data was replaced with the new data, as shown in
Figure 6b. However, if the new data was still inconsistent with
the surrounding data points, two more experiments mid-way
between the outlier data point and the surrounding distances
were run (i.e., at distances of 3 and 5 feet), respectively. If the
data points were within 20% of distances 2 and 6, we discard
the data at distance 4, but keep the data from distances 3 and
5. This is the case in Figure 6c. However, if the data was still
inconsistent, all three data points were kept (e.g., distances 3,
4, 5 feet), as these data points were not outliers. This is the
case in Figure 6d. This approach resulted in 67 reruns and 21
outliers in the field, and 17 reruns and 2 outliers in the forest.

When examining the noise floor data, we noticed that some
experiments were associated with noise spikes, suggesting ex-
ternal interference in the environment. When examining some
of the corresponding PRR data, we noticed that they were
inconsistent with the PRR data collected from the surrounding
distances. At these instances, the noise spikes were more than
twice the standard deviation of the noise samples.

From the noise floor data and the associated PRR data
collected, it was not feasible to determine whether the spikes
in the noise floor occurred at the same time a transmission was
sent/received, hence affecting the collected PRR data. In other
words, we could not adjust PRR to account for noise spikes.
Accordingly, we discarded the PRR data collected when spikes
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Fig. 7: Example of the Noise Filtering Process
in the noise floor occurred.

To eliminate the data associated with spikes in the noise
floor, we implemented a Java application that processed all
noise samples collected during our experiments. If we found
a noise spike above a certain threshold (i.e., twice the standard
deviation above the series), we discarded the PRR associated
with the experiment during which the noise spike occurred.

To determine a noise spike, we consider all the noise floor
measurements collected during a single experimental setup
(i.e., one inter-node distance and radio power level). We
describe the process of determining a noise spike through an
example. Figure 7 represents an example of 100 noise floor
samples. The X-axis represents the sample number. The Y-axis
represents the noise floor measurement in dBm. The data is
divided into segments of 10 noise floor samples each, resulting
in a total of 10 segments. For the sake of exposition, we
refer to these segments as segments 1 to 10. The cumulative
average and standard deviation are maintained, from the start
of the series through the end of the last processed segment. For
example, when processing the noise floor samples in segment
4, the average and standard deviation for all data points from
segments 1 – 3 are maintained. After reading the noise floor
samples associated with segment 4, the average of the noise
floor samples in that segment is calculated (i.e., the average
across noise floor samples 31 – 40). If the average of the
noise floor samples in segment 4 is greater than the cumulative
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Fig. 9: Data Collected from the Experimental Forest

average plus twice the cumulative standard deviation, a noise
spike is identified. When processing segment 4 in Figure 7,
the cumulative average (i.e., the average for segments 1 – 3) is
-98.33 dBm, and the cumulative standard deviation is 0.479.
(The minimum value the RSSI register can store is ≈-100
dBm [11].) The average of the noise floor samples in segment
4 is -97.4 dBm, which is greater than the cumulative average
plus twice the cumulative standard deviation. Accordingly, a
noise spike is detected. This is consistent with the noise floor
samples in the figure, since the noise floor at sample 35 is -90
dBm, which is indeed a spike in the noise floor. At this point,
when a noise spike is identified, the PRR data associated with
the experimental setup is discarded. This process resulted in
56 data points being discarded from the field experiments and
4 data points being discarded from the forest experiments.

After filtering the data using both procedures, we were left
with a total of 1,211 and 213 data points for the field and
forest, respectively.

V. LINK QUALITY MODELS

We used the processed data to design two environment-
specific empirical models that predict link quality as a function
of radio power level and inter-node distance. Figures 8 and
9 summarize the processed data collected from the field
and forest, respectively. Consistent with our findings from
[14], the link quality falls into three regions – high-, mid-,
and low-quality. We characterize the high-, mid-, and low-
quality regions as the regions where PRR is between 90%
– 100% inclusive, 90% – 10% exclusive, and 10% – 0%
inclusive, respectively. Figure 10 shows a comparison of the
data collected from the field versus the data collected from the
forest. Notice that the data is consistent in the high- and low-
quality regions. However, in the mid-quality region, some data
points in the forest have a higher PRR than their counterparts
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Fig. 10: Field vs. Forest Data

in the field and vice-versa. We suspect the mid-quality region
as the cause.

Using one algebraic model to predict link quality is not
feasible given the variation among regions. Accordingly, for
each deployment environment, we provide a model for the
low-quality region, and another for the high-quality region.
(Designers usually try to avoid the mid-quality region due
to its increased variability [2].) To determine the data points
needed for each model, the data was processed as follows.
For each distance, we identified the value a, corresponding to
the highest power level that resulted in a low PRR. Similarly,
we identified the value b, corresponding to the lowest power
level that resulted in a high PRR. For the field data, this
resulted in 60 and 63 samples for a and b, respectively. The
number of a and b data points was different because at shorter
distances, some b values did not have corresponding a values.
In some cases, PRR was in the high-quality region from the
lowest radio power level. For the forest data, this resulted in
11 samples for both a and b.

For each deployment environment, we used the a values
and linear regression analysis to determine the appropriate
formula for the low-quality region. The process resulted in
the following formulae:

Field : power = 2.213 + 0.0289 ∗ distance (1)
Forest : power = −0.1674 + 0.0514 ∗ distance (2)

These formulae predict the highest radio power level resulting
in a PRR belonging to the low-quality region for a given
distance. The R2 values were 0.85 and 0.892 for the field
and forest, respectively.

Similarly, we used the b values and linear regression anal-
ysis to determine the appropriate formula for the high-quality
region. This process resulted in the following formulae:

Field : power = 3.307 + 0.0341 ∗ distance (3)
Forest : power = 1.4278 + 0.06155 ∗ distance (4)

These formulae predict the lowest radio power level result-
ing in a PRR belonging to the high-quality region for a given
distance. The R2 values were 0.848 and 0.762 for the field
and forest, respectively.

In these models, radio power level is measured in discrete
units, from 1 – 31, and distance is measured in feet. From
the R2 values, the models achieve a good fit to the actual
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Fig. 12: Link Quality Model Compared to Forest Data

data. Figure 11 shows the plots for a and b values, along
with the corresponding models for the field experiments.
Similarly, Figure 12 shows the plots for a and b along with
the corresponding models for the forest experiments.

Limitations. Three limitations of the current models should
be noted. First, the results are specific to a single hardware
platform. We do not expect the models to provide high accu-
racy for network deployments that employ different hardware
platforms, such as those operating outside the Zigbee band
(i.e., 2.4Ghz). Second, our models are limited to interference-
free environments. Given the effect of interference on network
link quality [2, 8], these models are not likely to provide high
accuracy in the presence of significant interference. Third, we
note that the models assume only a single transmitting process.
In scheduled transmission networks (e.g., using TDMA or
FDMA) and networks with few concurrent transmitters, the
models are directly applicable. However, in the presence of
many concurrent transmitters, the accuracy of the models is
expected to degrade.

VI. CONCLUSION AND FUTURE WORK

The behavior of embedded network systems depends largely
on radio link quality. Without a priori knowledge of link
quality, reliable system behavior is difficult to achieve. As a
result, designers often develop applications characterized by
unpredictable wireless behavior.

We have developed environment-specific empirical models
for predicting radio link quality as a function of inter-node

distance and radio transmission power. The models help de-
velopers understand the behavior of radio links in open grass
fields and dense forests, which correspond to a large number of
network deployments. Hence, designers should be better able
to develop applications that yield predictable performance. For
example, designers will be able to use the models to determine
which node layout and radio transmission power yield high
performance for a given deployment site. Additionally, by
adjusting radio transmission power, designers will be able
to prolong application lifetimes by saving energy without
sacrificing performance.

We have two elements of future work to extend our models.
First, we plan to measure the degradation in the accuracy of
the models when used in the presence of interference. Second,
we plan to measure the accuracy of the models in the presence
of common occurrences of noise spikes. In other words, we
plan to measure the sensitivity of the models to the frequency
of noise spikes as opposed to noise threshold – our current
approach.
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