
Towards the Design of a Component-based Context-Aware Framework for

Wireless Sensor Networks

Manik Gupta

School of Electronic Engineering and Computer

 Queen Mary University of London

London, UK

e-mail: manik.gupta@eecs.qmul.ac.uk

Eliane Bodanese

School of Electronic Engineering and Computer

 Queen Mary University of London

London, UK

e-mail: eliane.bodanese@eecs.qmul.ac.uk

Abstract—Context-awareness is one of the prerequisites in

order to design adaptable applications and services. As

Wireless Sensor Networks get more pervasive in nature and

cater to diverse application they need to incorporate context-

awareness. A lightweight sensor node level context processing

framework is desirable. A component software programming-

based approach has been proposed to design the context-aware

architecture. A reference implementation has been provided

and potential advantages in terms of low software

reconfiguration overhead have been highlighted.

Keywords-context-awareness; component-based software;

middleware;adaptive sampling.

I. INTRODUCTION

Context-awareness is important for Wireless Sensor

Networks (WSNs) since there are several WSN applications

that need to make decisions on the basis of the prevailing

contextual environment. For the current work, air pollution

monitoring for urban streets application is being worked

upon and the sensor nodes need to provide fine grained

resolution pollution measurements for variables like carbon

monoxide, etc. The sensor nodes can also provide support

for measuring variables like temperature, air pressure,

humidity, wind speed, location etc. These additional

variables can be used as contexts for adapting the sensor

application. An adaptive sampling application for changing

the sampling rate of the sensor nodes is an example of such

a context-aware application; wherein the sampling rate

needs to be adapted as and when sensor nodes undergo

certain environmental changes using an intelligent

algorithm.

Hence, as the WSNs get more pervasive in nature and

need to incorporate more intelligence in order to facilitate

node level decision making, a generic lightweight context-

aware framework design and implementation for the

wireless sensor nodes becomes an imperative need to design

smarter and adaptable applications. One of the challenges to

be addressed is to make the framework customizable,

allowing runtime reprogramming and dynamic

reconfiguration, in order to address the application and

environmental diversity, to which the WSNs generally cater.

Recently, component-based software development

[1][2][3] has been advocated for WSN programming.

Software componentization provides a high level

programming abstraction through interface-based

interactions between modules. A component represents a

single unit of functionality and deployment. Components

can be compiled separately and then composed into a

system. A component can communicate with its outside

through a well-defined interface and receptacle. An

interface defines a set of operations provided by a

component to others, while a receptacle specifies the set of

operations a component requires from others. The system

can be reconfigured by switching from an old component to

a new one implementing the same interfaces.

Dynamically deployable and reconfigurable software

components offer a lot of advantages for WSN since they

are typically large in scale and operate for long periods of

time in the face of dynamic environmental conditions and

changing application requirements. Software development

becomes easier since during the development cycle, changes

to only one part of the system (single algorithm or function)

are done at a time, so the rest of the software remains

unaffected. Software updates become very convenient since

only the updated components need to be transmitted through

the network. It is possible to implement dynamic and

reconfigurable applications since the functionality can be

altered by reprogramming only parts of the system.

Hence, the main contribution of the paper is to propose a

component-based context-aware architecture for sensor

nodes. This framework bridges the gap between component-

based software and context-awareness for WSNs by

enabling a lightweight solution for context management.

Though the use of component-based software development

in the WSN field is not new at all, but the majority of the

sensor nodes today are not capable of managing the contexts

(other than merely acting as a context collector). This sensor

node-based framework will aid not only in collection, but

also in processing and use of the contexts for decision

making. In a traditional context-aware application where all

the contexts are collected and processed in a single

monolithic application, a change or modification related to

one of the contexts will lead to the complete application

101Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

change. On the contrary, in case of the component-based

context-aware application design, only the context which

needs to be changed can be updated by means of

incorporating changes to that particular component. The

specific requirement to make sensor nodes smarter and more

practical by means of managing multiple contexts in an

online manner is the main driver behind the proposed

architecture.

Rest of the paper is structured as follows. Section II gives

details about various context-aware frameworks and

component-based middleware and software systems

available for WSNs. Section III gives details about

architectural design of the component-based context-aware

framework. Section IV gives the reference implementation

details and Section V draws a conclusion on the paper.

II. RELATED WORK

Context-awareness has been acknowledged as a very

important step in ubiquitous computing and there are a lot of

context-aware systems which exist in the literature [4][5][6].

Most of these context-aware systems typically cater to the

needs of pervasive computing, but are not suitable for

sensor node level context processing in WSN. Most of these

systems are heavyweight and need back end processing.

Given the nature of WSNs, a context-aware framework for

WSNs cannot be heavyweight and processing/memory

intensive. Therefore, new designs are required which are

lightweight and are suitable for the needs of WSN

applications.

Hence an investigation into component-based software

paradigm for wireless sensor networks was carried out.

Both component-based middleware solutions for WSN as

well as component-based software reconfiguration and

operating system exist for WSNs in the literature. RUNES

[7], GridKit [8] and LooCI [9] are examples of component-

based middleware’s for WSN, but they do not address

context-awareness specifically. RUNES and GridKit are

more suitable for network level reconfiguration, while Java-

based implementation of LooCI limits its usage. On the

contrary, in this research work, the aim is to develop a

context-aware framework built using a lightweight

component middleware which can work on resource

constrained nodes. Wisekit [10] is the only node level

component-based middleware solution for WSNs found in

literature that addresses context-awareness by providing

application adaptation. It is a distributed component-based

middleware solution which addresses context-awareness by

making the adaptation and reconfiguration of WSN

applications possible, but actual implementation details are

not mentioned in the paper. Figaro [11] for fine grained

software reconfiguration and Lorien [12], dynamic

component-based operating system are examples of use of

component software paradigm in WSNs, but again, they do

not address context-awareness specifically.

Based on the literature survey on both the context-aware

framework and component-based software for WSNs, it was

found from the survey that a gap exists in these two

domains in terms of integration by means of developing a

component-based context-aware framework. Hence, in the

current work, it has been proposed to adopt the component-

based software programming paradigm for the development

of a lightweight and reconfigurable context-aware

framework. The architecture design has been explained in

the following section.

III. DESIGN OF THE COMPONENT-BASED CONTEXT-

AWARE FRAMEWORK

In this section, the design architecture for a component-

based context-aware framework has been proposed. The

context-aware framework needs to be built using the

services of a component-based middleware. A component-

based middleware called MIREA [13], developed at UCL,

and has been used in this research work to build the context-

aware framework. MIREA is specifically targeted at real-

time embedded systems. MIREA is light-weight,

component-based, and supports flexible reusability of

software components. The aim of building the context-

aware framework on top of the component-based

middleware in this research work has been to lend

adaptability at the middleware level that in turn will lead to

adaptation at the application level.

A component can specify functionality that it requires

and/or provides using a well-defined interface. The model as

shown in Fig. 1 consists of ComponentTypes, Components,

Interfaces, Receptacles, and Connectors. A Component is a

runtime instance of a ComponentType. A ComponentType

can export one or more Interfaces, through which a given

component provides a set of functionalities to other

components (i.e., in the form of a set of C/C++ functions in

the middleware). A Component can have any number of

Receptacles, through which a set of required functionalities

are specified. A component can also have an associated

component wide state that is only accessible from within the

containing component. Connectors are a specialized form of

component that performs intermediary actions if required,

for instance, in order to monitor, log or encrypt data for

security reasons.

Figure 1. Elements of a component-based system.

MIREA provides the following categories of core

services:

1. Loading and unloading of ComponentTypes

2. Instantiation and destruction of Components

102Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

3. Registration and acquisition of Interfaces and

Receptacles

4. Connection between Interfaces and Receptacles

5. Registration and acquisition of Components’ States

6. Destruction of Connectors

All of the services above are runtime activities whereas

the process of defining a new ComponentType, Interface,

Receptacle, Connector and State are static in nature -

defined at an application design stage. Connections between

components can be reset and reconfigured by first

destroying an existing connector instance and then

reconnecting them to a new type of interface and receptacle.

After this, any invocations made on the given Receptacle

will be redirected to the newly connected Interface instance,

hence a new/different Component instance. More details

about MIREA can be found in [13].

Most of the context-aware systems have a generic

architecture consisting of context collector, context reasoner

and a context database. In the component-based

architecture, each of these tasks is going to be performed by

an individual standalone component that will have a well-

defined interface for interaction with the other components.

These reusable components can be loaded and unloaded

during runtime. Also, once loaded, the components can be

instantiated at run time and their respective interfaces and

receptacles can be registered and connected to each other

using the MIREA API’s. The architecture of the component-

based context-aware framework has been shown in the Fig.

2.

The various components and their respective

functionality in this architecture are explained as follows:

 Sensor Manager will be responsible for interacting with

the physical sensors and will hide the hardware specific

details from the application. The context collector will

invoke the sensor manager for data from a particular

sensor depending on a particular application and the

sensor manager will provide the data to the context

collector.

 Context Collector will be the main component

responsible for collecting the application specific

contexts and use interfaces provided by other

components to gather data from sensors and map it into

contextual information, store data in buffers and

provide contextual data to the context reasoner.

 Context Database provides storage service for the

various contexts and depending on the application

requirement, the data can either be offloaded to the base

station or be stored in external storage available on the

sensor node.

 Context Reasoner is the component responsible for

carrying out the reasoning over the various collected

contexts and make adaptive decisions according to the

application requirements. This component will also be

responsible for performing data processing tasks like

prediction or clustering analysis of the gathered

contexts in order to facilitate the decision making

process.

Figure 2. Architecture of component-based context-aware framework.

IV. REFERENCE IMPLEMENTATION

The reference implementation for an adaptive sampling

based data collection application is shown in the Fig. 3,

which defines the various interfaces/receptacles between the

various components. The adaptive sampling technique used

in the reference implementation has been proposed as a part

of on-going research work and more details can be found in

[14]. The adaptive sampling technique based upon time

series forecasting can adapt the sampling rate of a sensor

node according to the prevailing contextual environment.

The implementation has been done using the Contiki [15]

operating system on the T-mote sky platform. Contiki was

chosen as the operating system of choice because of its

support for dynamic loading and linking of loadable

software modules [16]. Each loadable module in Contiki is

in Compact Executable and Linkable format (CELF) format

which is a modification of the common object code format ,

Executable and Linkable format (ELF). The dynamic

loader/linker (elfloader) in Contiki parses the ELF format

and is able to perform dynamic loading, linking and

relocation of ELF object code files. Initially the components

can be stored in the external EEPROM by programming

either using the serial interface or over the air programming.

The various steps involved in implementing the context-

aware framework on the T-mote Sky are as follows:

 The MIREA middleware was ported onto Contiki.

 The components were implemented and built using the

platform specific compiler.

103Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

 The components are loaded on the external flash of the

T-mote sky using the serial interface.

 The MIREA application driver program loads, connects

and unloads the components using the MIREA API’s.

Figure 3. Interface/receptacle definition for an adaptive sampling

application.

The memory footprints for each of the components (w.r.t.

both program and data memory) for T-mote sky are shown

in Table I. The memory footprints have been evaluated by

looking at the size of binary images after compilation. The

text section represents the code size, data section is the size

of initialized memory, and bss section is the size of

uninitialized memory.

TABLE I. MEMORY FOOTPRINTS FOR VARIOUS COMPONENTS

Component Name
Memory Footprints

Text(bytes) Data(bytes) BSS(bytes)

sensorManager 554 10 12

contextCollector 632 10 0

contextDatabase 256 10 0

contextReasoner 984 22 14

Another experiment was carried out to compare the Contiki

image size with context-aware framework implementation

as a single software module (monolithic context-aware

framework) vs. Contiki image with MIREA implementation

and the results are shown in Table II In case of monolithic

implementation, once the context-aware framework is

programmed on the node, it is difficult to reconfigure and

update the software program. Any software reconfiguration

would require communicating full application image of

~23K bytes to the node. On the contrary, in case of the

component-based implementation, once the node is

programmed with MIREA middleware that occupies ~33K

bytes, less than ~1K bytes (refer to Table I) need to be

transmitted to the node to enable component runtime

reconfiguration or reprogramming.

TABLE II. COMPARISON OF MEMORY FOOTPRINTS FOR DIFFERENT

IMPLEMENTATIONS

Different Implementations
Memory Footprints

Text(bytes) Data(bytes) BSS(bytes)

Contiki image with monolithic

context-aware framework
23054 178 5164

Contiki image with MIREA
middleware

32936 170 7658

V. CONCLUSIONS

In this paper, a design of a component-based context-

aware framework has been proposed for WSN. This

framework provides integration between the component

software and context-awareness technologies for the WSNs.

This design architecture has several advantages in terms of

ease of programming, software updates and reconfiguration,

dynamic application development etc. This architecture is

lightweight in nature and suitable for sensor node level

context-aware processing. Most of the context-aware

systems existing in the literature do not cater to the needs of

sensor nodes and are architecturally and functionally more

sophisticated and heavyweight in nature. The component-

based software technology is suitable for programming

context-aware WSN applications and a proof of concept

reference implementation using the Contiki OS that enables

dynamic linking/loading of software components has been

carried out.

ACKNOWLEDGMENT

The authors would specially like to thank our partners, Prof. Steve

Hailes and Dr. Jagun Kwon from University College London for

providing their full support and help on the MIREA middleware.

This project was funded by India-UK Advanced Technology

Centre (IUATC).

REFERENCES

[1] Karl H. Johnasson, John Lygeros, Anthony Tzes, Karl-Erik

Arzen, Antonio Bicchi, Gianluca Dini, Stephen Hailes, A

component-based approach to the design of networked control

systems. Proceedings of the 33rd Midwest Symposium on

Circuits and Systems.

[2] Barry Porter, Utz Roedig, Francois Taiani, Geoff Coulson, A

comparison of static and dynamic component models for

Wireless Sensor Networks. Computing, 224460.

[3] Geoff Coulson, Gordon Blair, Paul Grace, Francois Taiani,

Ackbar Joolia, Kevin Lee, Jo Ueyama, Thirunavukkarasu

Sivaharan, A generic component model for building systems

software. ACM Trans. Comput. Syst. 26, 1, Article 1 (March

2008), 42 pages.

[4] Daniel Salber, Anind K. Dey, Gregory D. Abowd, The

context toolkit: aiding the development of context-enabled

applications. In Proceedings of the SIGCHI conference on

Human factors in computing systems: the CHI is the limit

(CHI '99). ACM, New York, NY, USA, 434-441.

[5] Manuel Román, Christopher Hess, Renato Cerqueira, Anand

Ranganathan, Roy H. Campbell, Klara Nahrstedt, A

Middleware Infrastructure for Active Spaces. IEEE Pervasive

Computing 1, 4 (October 2002), 74-83.

104Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

[6] Tao Gu, Hung Keng Pung, Da Qing Zhang, A service-

oriented middleware for building context-aware services. J.

Netw. Comput. Appl. 28, 1 (January 2005), 1-18.

[7] Paolo Costa, Geoff Coulson, Cecilia Mascolo, Gian Pietro

Picco, Stefano Zachariadis, The RUNES middleware: a

reconfigurable component-based approach to networked

embedded systems, In Proceedings of the 16th Annual IEEE

International Symposium Personal, Indoor and Mobile Radio

Communications, 2005.

[8] Paul Grace, Geoff Coulson, Gordon Blair, Barry Porter,

Danny Hughes, Dynamic reconfiguration in sensor

middleware. In Proceedings of the international workshop on

Middleware for sensor networks (MidSens '06). ACM, New

York, NY, USA, 1-6.

[9] Danny Hughes, Klaas Thoelen, Wouter Horr, Nelson

Matthys, Javier Del Cid, Sam Michiels, Christophe Huygens,

Wouter Joosen, LooCI: a loosely-coupled component

infrastructure for networked embedded systems. In

Proceedings of the 7th International Conference on Advances

in Mobile Computing and Multimedia (MoMM '09). ACM,

New York, NY, USA, 195-203.

[10] Amirhosein Taherkordi, Quan Le-Trung, Romain Rouvoy,

Frank Eliassen, WiSeKit: A Distributed Middleware to

Support Application-Level Adaptation in Sensor Networks. In

Proceedings of the 9th IFIP WG 6.1 International Conference

on Distributed Applications and Interoperable Systems (DAIS

'09), Twittie Senivongse and Rui Oliveira (Eds.). Springer-

Verlag, Berlin, Heidelberg, 44-58.

[11] Luca Mottola, Gian Pietro Picco, and Adil Amjad Sheikh.

2008. FiGaRo: fine-grained software reconfiguration for

wireless sensor networks. In Proceedings of the 5th European

conference on Wireless sensor networks (EWSN'08), Roberto

Verdone (Ed.). Springer-Verlag, Berlin, Heidelberg, 286-304.

[12] Barry Porter, Geoff Coulson, Lorien: a pure dynamic

component-based operating system for wireless sensor

networks. In Proceedings of the 4th International Workshop

on Middleware Tools, Services and Run-Time Support for

Sensor Networks (MidSens '09). ACM, New York, NY, USA,

7-12.

[13] Jagun Kwon, Stephen Hailes, MIREA: Component-based

middleware for reconfigurable, embedded control

applications, In Proceedings of the IEEE International

Symposium on Intelligent Control (ISIC,2010),

[14] Manik Gupta, Lamling Venus Shum, Eliane Bodanese,

Stephen Hailes, Design and evaluation of an adaptive

sampling strategy for a wireless air pollution sensor network,

In Proceedings of the IEEE 36th Conference on Local

Computer Networks, (LCN, 2011).

[15] Adam Dunkels, Bjorn Gronvall, Thiemo Voigt, Contiki - A

Lightweight and Flexible Operating System for Tiny

Networked Sensors. In Proceedings of the 29th Annual IEEE

International Conference on Local Computer Networks (LCN

'04). IEEE Computer Society, Washington, DC, USA, 455-

462.

[16] Adam Dunkels, Niclas Finne, Joakim Eriksson, and Thiemo

Voigt. 2006. Run-time dynamic linking for reprogramming

wireless sensor networks. In Proceedings of the 4th

international conference on Embedded networked sensor

systems (SenSys '06). ACM, New York, NY, USA, 15-28.

105Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

