
Dynamic Reconfiguration for Software and
Hardware Heterogeneous Real-time WSN

Fabien Mieyeville, Mihai Galos, David Navarro
Ecole Centrale Lyon, Institute of Nanotechnology of Lyon

INL-UMR5270, CNRS, Ecole Centrale de Lyon, Ecully, F-69134, France
fabien.mieyeville@ec-lyon.fr, mihai.galos@ec-lyon.fr, david.navarro@ec-lyon.fr

Abstract—Wireless Sensor Network (WSN) technology has im-
posed itself in civilian and industrial applications as a promising
technology for wireless monitoring due to its wireless connectivity,
removing many hardware constraints. Initially used in low-
frequency sampling applications, the increasing performances of
electronic circuits has driven WSNs to integrate more power-
ful computation units, paving the way for a new generation
of applications based on distributed computation. These new
applications (process control, active control, visual surveillance,
multimedia streaming) involving medium to heavy computation
present real-time requirements at node level where reactivity
becomes a primary concern as well as at the network level
where latency must be bounded. In this paper, we present the
implementation of a high-level language MinTax coupled with
an in-situ compilation solution for real time Operating Systems
enabling energy-aware dynamic reconfiguration while supporting
hardware heterogeneity in Wireless Sensor Networks.

Keywords-Wireless Sensor Network; dynamic reconfiguration;
MinTax; real time; in-situ compilation.

I. INTRODUCTION

Wireless Sensor Networks are highly distributed self-
organized systems. A wireless sensor network is made of
a large number of scattered tiny low-cost devices featuring
strong constraints in terms of energy, processing, communica-
tions and memory capabilities. Common applications of WSN
deployed on a given space are data collection from sensor node
measurements that are transmitted to a specific node called the
sink node. Typical deployment of wireless sensor network can
be seen Figure 1.

Fig. 1. Classical deployment of wireless sensor network.

First generation of Wireless Sensor Networks has been

deployed in applications to remove wired connections and
to offer new approaches in the physical deployment of dis-
tributed systems. Hardware node platforms of those WSNs
offer limited computation ability, small memory capacity and
energy constraints are so high that local demanding compu-
tations are alleviated (or sometimes optimized [1]) restraining
WSN node activities to the sensing and data transmitting
tasks. Yet with the advance of microelectronic technology,
the new generation of hardware WSN nodes offers improved
performances in power management domain as well as in
computation field. Consequently, local processing on WSN
node can be considered in a WSN design process flow.
Thus, WSNs are now disseminating into the fields of high
performance networked applications such as process control,
multimedia streaming [2] and active control [3]. In this last
domain, numerous successful implementations can be found,
particularly in Structural Health Monitoring (SHM) [4] where
realizations are numerous and distributed computation possi-
bilities offered by WSNs are beginning to be explored [5].
These performance-critical applications require bounded delay
latency and then can be referred to as real-time applications
that generate new design constraints in WSN compared with
conventional WSN applications.

In this paper, we will demonstrate the capability of a
reconfiguration solution based on a high-level language called
MinTax [6], [7] for current real-time applications. This so-
lution takes benefit from new hardware node architecture
to reduce reconfiguration consumption in WSN by in-situ
compilation at node level and can be easily deployed on
hardware and software heterogeneous nodes architecture in
a real-time context. This paper falls in four parts: after a
presentation of WSN reconfiguration state of the art, we will
develop the stakes in real-time WSN (RTWSN). Then, we will
develop MinTax and in-situ compilation and demonstrate by
experiment that it can be used in a RTWSNs.

II. RECONFIGURATION: BRIEF OVERVIEW

A. A complex problem

Reprogramming a whole network can be addressed in
numerous ways. The taxonomy for programming model (cf.
Figure 2) established by R. Sugihara and R. Gupta [8] demon-
strates the different hierarchical levels at stake in programming
of WSN nodes. Our solution falls in the platform-centric
category of the node-level abstraction. We will then focus on
the reconfiguration of the node itself and the cost minimization

95Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

of this task while complying with WSN design constraints
(including real-time aspects) and not on the global process of
disseminating the reconfiguration through the whole network
[9] .
B. Challenges and stakes in WSN reconfiguration

The main challenges in WSN reconfiguration are [10]:
(1) the energy cost of reconfiguration should be as small
as possible, (2) minimization of the size of the code and
small necessary memory usage to perform the reconfiguration
because of the constrained hardware architectures used in
WSN and last (3) the size of the code to be updated or created
should be kept minimal. This last aspect has a huge impact on
reconfiguration in two ways. First, minimizing the size of the
code sent by RF to reconfigure node minimizes the consump-
tion of the node. Secondly, wireless communications being
unreliable due to possible signal collisions, interferences, and
packet contentions, a short reconfiguration code improves the
probability of being successfully received.

To those commonly recognized challenges we add the
support for heterogeneity of end systems. WSNs are deployed
for a long period of time: nodes can be replaced by new
architectures with different hardware and software specifi-
cations compared with the initial deployment. Hence any
reconfiguration solution for long-term deployed WSNs should
provide support for both hardware and software heterogeneity.

Now that challenges are clearly established, we will put
into context the common existing solutions for performing
reconfiguration at node level.
C. Current solutions for WSN reconfiguration at node level

Three main approaches for dynamic reconfiguration are
usually identified [7] as follows: use of machine code, use
of bytecode for a Virtual Machine and diff-based approaches.

The first category is either associated with Operating Sys-
tems (OS-es) that can dynamically load/unload modules (mod-
ular) or those that cannot (monolithic). Monolithic OS-es
are statically compiled and globally optimized into a single
executable image. Part of the code cannot be reprogrammed
independently and requires a complete rewriting of the entire
code resident on the node. Modular OS-es offer a partial
reprogramming paradigm that can take a part (module) of
the functionality and link it to existing functionalities already
running on the node. In general, operating systems do not
offer support for hardware heterogeneous WSN and offer at
best limited support for real-time [11]. The updates consist of
machine code for a particular instruction set.

The second category is associated with Virtual Machines,
which execute an intermediate form of information called byte-
code. This bytecode is decoded and the resulting instructions
are executed. If they offer a promise of hardware heterogeneity,
they are either tied to a particular OS or deployed as a stand-
alone solution. In the context of a software heterogeneous
WSN, they do not provide support for different Operating
Systems. Moreover, since the code is interpreted (decoded) on
every run, the execution of a functionality implies overhead
which means a greater energy expenditure.

The last category, the diff-based approach makes use of
a difference computing algorithm that runs on the PC and

generates a delta-file. This delta file contains the modifications
between two versions of the software, the one already present
on the node and the newer version. Then, this delta file is
sent to the node and is added by a resident program to the
targeted functions (improvement or creation). Functions being
committed to be increased in size, a slop region between them
can be provided so as to easily accommodate to those code size
modifications. The diff-based approaches offer the advantage
of extremely small updates, but do not offer either hardware
or software heterogeneity.
D. Performances metric

Current reconfiguration solutions are based on a code pro-
cessed by cross-compilation and then disseminated through
the network. Hence, size of the code to be transmitted is
critical since the RF transceiver is the most consuming part in
WSN node. The metrics that are commonly used to evaluate
performances of a reconfiguration solution are completion
time, energy consumption and memory usage [10]. First,
reprogramming a node is a non-trivial task which necessitates
a quick completion so as to keep disruption of embedded
software on the nodes to minimum, especially in case of partial
reprogramming of a network. Secondly, since energy is at the
heart of any WSN design process, reprogramming must ensure
that the node can keep on working after the reconfiguration has
been performed: this process must consume as little as possible
so as not to exhaust the node. Lastly, embedded architectures
in WSN nodes offer limited memory capacity: the program
and data memories used in the reprogramming process must
be kept to a minimum.

E. Specifications for an optimal reconfiguration solution

From our point of view, a good reconfiguration solution
must provide the high level approach of a Virtual-Machine
that can offer support for hardware heterogeneity and must
minimize the size of the code to be sent by radio-frequency
with the effectiveness of code-machine that reduces execution
consumption of the code. Furthermore, the energy cost of
reconfiguration must be minimal so any monolithic operating
system should be avoided. Our solution that will be developed
in the next sections mixes those three aspects. To those
classical WSN specifications, we will add the constraints
introduced by real-time applications that will be developed
in the following section.

III. RECONFIGURATION FOR REAL-TIME WSN

A. Real-time WSN

Defining the real-time capacity of a wireless network re-
quires a two-fold approach: if a quantitative notion of real-time
capacity is often related to the amount of real-time data that
the network is able to route in their deadlines, reactivity of
the nodes themselves makes the real-time aspect fundamental
in the node hardware platform itself (particularly in active
control applications [5]). Most works in the field of RTWSNs
focus on the quality of service with strong emphasis on the
protocols [9], [12]: that is the reason why characterizing real-
time ability of WSNs and evaluating performances is often
linked to metrics related to network wireless communication

96Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

Fig. 2. A taxonomy of programming for WSN [8].

performances [13]. If such an approach is sufficient in tra-
ditional WSN applications based on low-frequency sampling
rate, more demanding applications such as active control [5]
or multimedia sensors [2], requiring local computation, ne-
cessitate real-time management at node level implemented in
operating systems features [14], [15].

Very scarcely used in conventional WSN application, real-
time is being increasingly used in new WSN applications and
is very application-dependent. Then, implemented solutions
will differ, both on the protocol aspect [16], [17] and at
node level. Real time constraints support of software can be
achieved by implementing adequate scheduling policies [12].
B. Real-time operating systems

Among existing operating systems for WSN, very few offer
support for real-time [11], [18]. So as to establish the adequacy
of our solution with real-time WSN, we have selected the
following operating systems including energy-aware Real-
Time Operating System (RTOS) kernels offering preemptive
multithreading based on a traditional programming paradigm:
FreeRTOS [19]. While Nano-RK (not presented in this work
but currently being implemented) is the only RTOS dedicated
to WSN and offering energy-awareness, FreeRTOS offers a
small footprint and targets limited computation architecture:
they can easily be deployed for WSN and are commonly used
in WSN community [20].
FreeRTOS is a portable, open source, mini Real Time Kernel.
FreeRTOS code base is small (classical kernel size from
4kBytes to 9kBytes) and is mostly written in standard C.
Each task is assigned a priority and tasks with the same
priority share the CPU time in a round-robin fashion. The
FreeRTOS scheduler is preemptive so as to meet real-time
behaviour required by the system. FreeRTOS is often used
in WSN applications [20] and offers an extensive hardware
heterogeneity support.

C. Reconfiguration specifications for real-time WSN

A real-time system must perform a set of actions within a
certain time interval. In RTOS, tasks are executed periodically
and must be completed within their deadlines. The way a
RTOS manages the concurrent programming of these tasks
is set by its scheduling policy that may be based on priority
assignments. Reconfiguration of a real-time WSN node is crit-
ical since the new tasks to be embedded must comply by the
existing deadlines. In this paper, we made the assumption that

the application to be programmed is validated on a node so as
to ensure the real-time integrity of the resulting programming.
In particular, latencies of the system after reprogramming
node must be verified on a test node before reconfiguration
deployment. The resulting constraints that must be respected
are the following: the RF communication must be shortened so
as to ensure a viable transmission of code to be implemented
and the duration of the reconfiguration of the node must be
kept as small as possible.

IV. MINTAX FOR REAL-TIME WSNS

MinTax [6], [7] is a high-level programming language
designed and tailored precisely for energy-aware software
updates in Wireless Sensor Networks. It is compiled dynami-
cally on the node (in-situ) after its deployment. The resulting
machine code is then written to the microcontroller memory
and is available as a new functionality.

Its high-level semantics mean that the code is not dependent
on the underlying node hardware, as is machine code. As a
consequence, when an update on a hardware heterogeneous
WSN is performed, a single update for all present architectures
is broadcast once. MinTax can also be considered as a generic
reconfiguration method for WSN from a hardware point of
view. Furthermore, the MinTax compiler residing on the node
does not interact with the Operating System that may be
present on the node, and the update written in MinTax does
not contain any information pertaining to the OS, software
heterogeneity is thus supported. What is more, because the
updates need to take a short amount of time, they take the
form of modules that a modular OS links to its kernel and
makes them coexist with functionalities already present on the
node. The MinTax compiler supports modular compilation and
software heterogeneity.

A. Features of MinTax

MinTax was inspired from C, and offers a subset of the
C language. Function calls, with up to 4 bytes as formal
parameters, as well as returns are present. Iteration clauses
such as “while” and “for”, as well as branching (“if” and
“switch-case”) clauses are also supported. Other features in-
clude analog/digital port read/write (analog read and PWN
output) and arithmetic clauses. Future versions of MinTax
will probably support matrix manipulation, which would sig-
nificantly improve the scope of the applications that can be
deployed using it.

97Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

B. The MinTax compiler

A classical compiler is composed of an Analysis and
Synthesis part, presented in Figure 3. The Analysis part is
responsible for reading the input file, divide it into atoms
(or indivisible parts) and constructing a parse tree. This tree
contains information on the order the instructions are to be
interpreted. The splitting into atoms is called lexical analysis
and the construction of the parse tree is done by the syntactical
and semantical analysis. Next, the Synthesis part is the part
that does the actual machine code generation. In the case of

Fig. 3. Classical compiler structure

the MinTax compiler, the lexical analyser is generated using a
program called Re2C [21] (regular expression to C). Lexical
rules are given in the form of regular expressions, and a C
file is generated with the language’s corresponding lexical
analyser. In what concerns the Semantical and Syntactical part,
the parser is generated with a parser generator called Lemon
[22]. Lemon takes semantic rules in the form of an input
file in which the grammar of the MinTax language has been
implemented. During the parsing process, a Symbol Table
with the all the symbols present in the MinTax file (functions,
variables) is created. It will be used to generate the code in
the generation phase.

For the Synthesis part, the instruction set for every sup-
ported architecture (AVR and MSP430) has been implemented
as function primitives. These primitives take formal parameters
as arguments and generate the instructions they model.

The process described above is described in Figure 4.

Lexical

 rules

Sintactical

 Rules

syntax.c grammar.c

 MinTax

compiler

for AVR

 MinTax

compiler

for MSP430

Fig. 4. The process required to compile the MinTax compiler

For a more detailed presentation of MinTax features, the
reader may refer to previous works [6], [7].

C. Supported hardware architectures

One of the key feature of MinTax is its support of het-
erogeneity: the major microcontroller families of WSNs are

then supported: the AVR ATMEGA128 family and MSP430
and MSP430x architectures. A cross-compilation feature is
also provided so as to enable development and debugging on
computer before deployment. Some platforms supported by
the MinTax compiler are presented in Table I.

TABLE I
MINTAX COMPILER SUPPORT FOR COMMERCIAL WSN PLATFORMS

WSN Node Flash usage RAM usage RF Transceiver
Mica2 26kB 150bytes CC1000, 433Mhz

AVRRaven 26kB 150bytes AT86RF230, 2.4Ghz
Zolertia Z1 22kB 168bytes CC2420, 2.4Ghz

V. EXPERIMENTAL VALIDATION

We have validated our approach on a point-to-point commu-
nication between two different hardware platforms implement-
ing two different real-time OSes (funkOS and FreeRTOS).

A. Hardware and software configuration

A Zolertia Z1 node under funkOS [7] sends a functionality
written in MinTax to an AVR Raven node from ATMEL
running the FreeRTOS kernel. This node receives the func-
tionality, compiles the function and links it to its existing
functions. In the same time it resends the received data to
another node so as to emulate a dissemination. Measurements
are processed through the use of a home-made current-sense
amplification circuit, which enables us to correlate measure-
ments with the different phases of microcontroller activity.
This RTOS offering no support for RF communication, we
have implemented an IEEE 802.15.4 RF packet format since
it is the common protocol used in real-time WSN [9].

B. Code example

The code implemented is a loop corresponding to the
following pseudo-code: count to led until 11, send RF, delay.
This example uses a great number of functionalities of MinTax
(calculation, jump, use of hardware feature of microcontroller,
etc.) and illustrates the robustness of this high-level language
solution. The MinTax translation of this pseudo-code is the
following (code is commented as pseudo-code to help the
understanding of MinTax syntax):
inputMinTax[]={

"bCa{" // function b, char parameter a
"Ea<11;" //if a>11
"s@a;" // call send a
"#" //end if
"};" //end function b

"aa{" //function aa
"Wa<11;" //while a<11
"a+;" // increment a
"#" //end while
"};" //end function aa

"a{" //function a
"WT" //while true
"b=$a;" //read port a
"b@a;" // send
"b+;" // increment
"$a=b;" // while porta
"aa@;" // delay
"#" //end while true
"};" //end function a

};

The function realized by this code has a compiled sized
(machine code obtained by cross-compilation) of 96 bytes.
The MinTax formulation of this code occupies 60 bytes. On
this quite simple solution, the MinTax abstraction enables a
gain of 33% on the size, which should result in reduced RF
transceiver consumption.

98Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

TABLE II
DETAILED OF DURATION AND ENERGY CONSUMPTION OF

REPROGRAMMING PROCESS.

State Duration Power (mJ) Total (mJ)
RX 40,8 127,15 4,986

17,547
Compile 111,28 83,33 9,273

Flash 23,3 80,66 1,879
TX 9,28 130,01 1,207

C. Experimental results

Figure 5 shows the activity on the microcontroller of the
AVR Raven node and durations and energy consumption of
each state are summarized in the Table II. Beyond the success
of reprogrammation of the function that is seamless merged
with other existing functionalities, a thorough analysis of these
results enables us to evaluate the performances of our solution.
Four successive phases are to be observed:

1) the receiving of the data whose shortness enables to
solicit at minimal the consuming RF transceiver,

2) the code is compiled by the in-situ compiler and linked
to the FreeRTOS kernel,

3) the generated machine code is written in the flash
memory,

4) broadcast of the MinTax code to the other nodes so
as to reconfigure the whole network. This step is ac-
complished at the end of the process so as to validate
the integrity of the received file. Hence, no corrupted
data, and then no useless configuration file, is emitted
through the network at the cost of a slight latency in
the global reconfiguration process. This implementation
offers a supplementary robustness to the reconfiguration
process.

At the end of the RF-broadcasting, the experimental traces
show the execution of the new functionality.

Fig. 5. Physical measurement of the reconfiguration process.

D. MinTax and in-situ compiler performances analysis

MinTax used with in-situ compilation enables the fast
reconfiguration of node in approximately 184.66 ms with less
than 18 mJ. The transmission duration and energy budget is
from far inferior to the receive phase: indeed, if we use an

IEEE 802.15.4 protocol for initial sending of data from Zol-
ertia Z1 to AVR Raven node, the resending of data is accom-
plished without any protocol layer.This choice was made to
evaluate the cost of the protocol overhead on our solution. As
a result, the strong overhead necessary for an IEEE 802.15.4
protocol-based communication stands for 75% of the energy
necessary to the RF transmission of the reconfiguration data.
This cost has obviously a strong impact on the reconfiguration
process. Hence, if MinTax enables a gain of 33% on the size
of the transmitted code, it represents only a gain of 5ms on
the 40.8ms of the global RF communication. MinTax should
then be used with a lightweight RF protocol such as the RF
layer used for Contiki [23]. Moreover, it is important to notice
that the presented example is quite simple and the advantages
of our solution grow with the size of the application code
to reconfigure. If for small applications, compilation could
remain consuming, for big applications, compilation energy
will be smaller compared with transceiver energy expenditure
since offering a power consumption reduced by one third.

Otherwise, the global performances of MinTax present an
improvement for reconfiguration compared with the literature.
For example, the reconfiguration of a blink application using
run-time linking of ELF files in the Contiki operating sys-
tem [24] takes 972ms for a total consumption of 19.92mJ.

E. Compression implementation for improved performances

To improve latency performances of MinTax in a real-time
applications context, we have implemented the support for
compression. After the generation of the MinTax code, we
proceed to a compression using a Huffman-based compression
algorithm.

This approach has been used with the example previously
described. From a size of code of 60 bytes for MinTax,
we obtain a size of 49 bytes, i.e., a gain of 12%. From
the previous conclusion, it is obvious that this gain will not
have a huge impact on the reconfiguration cost in a classical
WSN configuration using a IEEE 802.15.4 algorithm. We,
nevertheless, performed the experimentation so as to evaluate
the cost of the decompression on the reconfiguration process.
The experiment results are to be seen on Figure 6.

Fig. 6. Physical measurement of the reconfiguration process using compres-
sion.

The decompression phase is added to the previous be-
haviour, resulting in five successive phases to be observed: (1)

99Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

TABLE III
DETAILED OF DURATION AND ENERGY CONSUMPTION OF

REPROGRAMMING PROCESS USING COMPRESSION.

State Duration (ms) Power (mW) Energy (mJ) Total (mJ)
RX 39,44 126,43 4,986

18,129
Decompress 25,84 52,46 1,356

Compile 108,24 82,03 8,879
Flash 23,44 78,91 1,850
TX 7,84 134,96 1,058

receiving of the compressed MinTax code, (2) decompression
of the archive by a resident algorithm on the node, (3)
compilation of the code, (4) writing of the generated machine
code in the flash memory and (5) broadcast of the MinTax code
to the other nodes so as to reconfigure the whole network.

Durations and energy consumption of each state are sum-
marized in the Table III.

From a global point of view, the overall performance of
the reconfiguration is very similar to the precedent section
where no compression was applied. The decompression cost
is not really high in term of energy consumption (only 7.4%
of the global energy consumption) but is more impacting
on the latency with 25.84ms, the same duration of the flash
writing, that is to say about 12.6% of the total duration of the
reconfiguration (204.76 ms).

The loss of performances compared with the case where no
compression is implemented is about 15% as well on energy
consumption as on duration of reconfiguration. Yet the slightly
reduced duration time for receiving and transmitting of the
reconfiguration code could justify the use of compression.
Furthermore, the application case is here quite simple. If
we consider more complex applications such as distributed
computation on node requiring reconfiguration, the over-cost
of compression should be absorbed by the gain in code size
and in duration of dissemination.

VI. CONCLUSION AND PERSPECTIVE

We have here successfully demonstrated the use of MinTax
for real-time operating systems with hardware heterogeneous
support. Furthermore, the energy cost of reconfiguration is
kept minimal and the duration of the reconfiguration is small
compared with the current reprogramming solutions, making
it particularly suitable for real-time systems. The latencies
introduced by reconfiguration (key parameter in real-time
systems) are currently being explored so as to establish the
upper-bounds: more complex functions such as distributed
computation algorithms being used in active control applica-
tions are under test since MinTax support high complexity [6]
code involving loop, conditional evaluations, nesting, etc.. This
work will validate the quality of services offered by MinTax
as well as the validity of compression approach that will take
benefit from the increased size code. MinTax is also currently
being developed for Nano-RK [14] a popular reservation-based
real-time operating. The support of this RTOS should offer to
MinTax and its compiling solution an extended coverage of
RTOS for WSN.

REFERENCES

[1] L. Gu et al., “Lightweight detection and classification for wireless
sensor networks in realistic environments,” in Proceedings of the 3rd

international conference on Embedded networked sensor systems, ser.
SenSys ’05. New York, NY, USA: ACM, 2005, pp. 205–217.

[2] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “A survey on wireless
multimedia sensor networks,” Computer Networks, vol. 51, pp. 921–960,
2007.

[3] I. Akyildiz and M. Vuran, Wireless sensor networks. John Wiley &
Sons Inc, 2010.

[4] J. Lynch and K. Loh, “A summary review of wireless sensors and sensor
networks for structural health monitoring,” Shock and Vibration Digest,
vol. 38, no. 2, pp. 91–130, 2006.

[5] Y. Wang et al., “Decentralized civil structural control using real-
time wireless sensing and embedded computing,” Smart Structures and
Systems, vol. 3, no. 3, pp. 321–340, 2007.

[6] M. Galos et al., “Energy-aware software updates in heterogeneous wire-
less sensor networks,” in 9th IEEE International NEWCAS Conference,
June 2011.

[7] M. Galos et al., “Reprogramming hardware-software heterogeneous
wireless sensor networks,” in The 14th International Symposium on
Wireless Personal Multimedia Communications (WPMC’11), Brest,
France, Oct. 2011.

[8] R. Sugihara and R. K. Gupta, “Programming models for sensor
networks: A survey,” ACM Trans. Sen. Netw., vol. 4, pp. 8:1–8:29,
April 2008.

[9] X. Feng et al., “A survey of adaptive and real-time protocols based on
IEEE 802.15. 4,” International Journal of Distributed Sensor Networks,
vol. 2011, 2011.

[10] Q. Wang, Y. Zhu, and L. Cheng, “Reprogramming wireless sensor
networks: challenges and approaches,” IEEE Network, vol. 20, no. 3,
pp. 48–55, 2006.

[11] M. O. Farooq and T. Kunz, “Operating Systems for Wireless Sensor
Networks: A Survey,” Sensors, vol. 11, no. 6, pp. 5900–5930, May
2011.

[12] O. Chipara, C. Lu, and G. Roman, “Real-time query scheduling for
wireless sensor networks,” in Real-Time Systems Symposium, 2007.
RTSS 2007. 28th IEEE International. Ieee, 2007, pp. 389–399.

[13] P. Pagano et al., “Simulating real-time aspects of wireless sensor
networks,” EURASIP Journal on Wireless Communications and Net-
working, vol. 2010, p. 2, 2010.

[14] A. Eswaran, A. Rowe, and R. Rajkumar, “Nano-rk: An energy-aware
resource-centric rtos for sensor networks,” 26th IEEE International
RealTime Systems Symposium RTSS05, vol. 0, pp. 256–265, 2005.

[15] X. L. K. Z. R. C. W. Dong, C. Chen and J. Bu, “Fit: A flexible,
lightweight, and real-time scheduling system for wireless sensor plat-
forms,” IEEE Trans. Parallel Distributed Syst. (TPDS), vol. 21, no. 1,
pp. 126–138, 2010.

[16] S. Bansal, D. Juneja, and S. Mukherjee, “An analysis of real time
routing protocols for wireless sensor networks,” International Journal
of Engineering Science, vol. 3, 2011.

[17] Z. Teng and K. Kim, “A survey on real-time mac protocols in wireless
sensor networks,” Communications and Network, vol. 2, no. 2, pp. 104–
112, 2010.

[18] A. M. V. Reddy et al., “Wireless sensor network operating systems; a
survey,” Int. J. Sen. Netw., vol. 5, pp. 236–255, August 2009.

[19] R. Barry, FreeRTOS Reference Manual — API Functions and. Configu-
ration Options. Bristol, UK: Real Time Engineers Ltd., 2010.

[20] A. Schoofs et al., “A framework for time-controlled and portable wsn
applications,” Sensor Applications, Experimentation, and Logistics, pp.
126–144, 2010.

[21] P. Bumbulis and D. D. Cowan, “Re2c: a more versatile scanner gen-
erator,” ACM Lett. Program. Lang. Syst., vol. 2, no. 1-4, pp. 70–84,
1993.

[22] “The Lemon Parser-Generator,” in http://www.hwaci.com/sw/lemon/ (ac-
cessed August 11, 2012)..

[23] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in LCN ’04:
Proceedings of the 29th Annual IEEE International Conference on
Local Computer Networks, vol. 0. Los Alamitos, CA, USA: IEEE
Computer Society, 2004, pp. 455–462.

[24] A. Dunkels et al., “Run-time dynamic linking for reprogramming
wireless sensor networks,” in Proceedings of the 4th international
conference on Embedded networked sensor systems, ser. SenSys ’06.
New York, NY, USA: ACM, 2006, pp. 15–28.

100Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

