
Design and Analysis of Almost-Always-Sleeping
Schedulers for Embedded Systems

Biswajit Mazumder, Hao Jiang, and Jason O. Hallstrom
School of Computing
Clemson University

Clemson, SC 29634, USA
{bmazumd, hjiang, jasonoh}@cs.clemson.edu

Abstract—Limited energy resources dictate the design of many
embedded applications composed of small, modular tasks, sched-
uled periodically. In this model, the embedded device wakes,
executes a task-set, and returns to sleep. These systems spend
most of their time in a state of deep sleep to minimize power
consumption. We refer to these systems as almost-always-sleeping
(AAS) systems. In this paper, we describe a series of task
schedulers for AAS systems designed to maximize sleep time. We
consider four scheduler designs, model their performance, and
present detailed performance analysis results under varying load
conditions. This is the first systematic analysis of this important
class of schedulers.

Keywords—Wireless sensor networks; scheduling; power con-
sumption.

I. INTRODUCTION

A significant class of embedded applications are character-
ized by low duty-cycle operation and time-triggered, periodic
execution. These systems sleep for relatively long periods,
wake in response to a timer interrupt, perform a short com-
putation, and return to sleep. We refer to these systems as
almost-always-sleeping (AAS) systems. The wireless sensor
network domain is rife with representative examples. Envi-
ronmental monitoring networks [12], [17], [18], for instance,
comprise distributed sensors that periodically wake to collect
and transmit environmental stimuli before returning to sleep.
Indeed, nearly every sensing system adopts a variant of this
strategy, as do numerous other embedded applications.

The broad adoption of AAS designs is due to the energy ef-
ficiency they afford. Modern microcontrollers (MCUs) support
sleep states in which internal circuitry may be powered-down,
reducing energy consumption by several orders of magnitude.
As an example, common wireless sensor networking platforms
consume 10s of milliwatts in the active state, and only 10s of
microwatts when idle [13]. For devices that exhibit this two-
phase consumption profile, the best conservation strategy is to
sleep as often as possible.

The active period of an embedded device is partitioned into
two components: the time spent executing application code
(tasks), and the time spent executing scheduling code. Reduc-
ing the runtime of individual tasks can only be achieved on
an application-by-application basis. Reducing the scheduling
overhead, however, can be achieved through careful analysis
and design of the underlying scheduling system – our focus.

Contributions. In this paper, we detail the design and
implementation of four progressively more efficient scheduling
systems designed to support AAS embedded applications. The

designs are applicable to virtually any modern MCU. For
the sake of presentation, we focus on the popular ATmega
family of devices, which are used in a number of sensor
networking platforms [14]–[16]. For each scheduler imple-
mentation, we present a closed-form algebraic model that
captures the scheduling overhead as a function of task load and
other parameters. These models are used to characterize the
comparative performance among the designs. To supplement
this analysis, we also conduct physical power profiling studies
using an ATmega644-based sensor networking platform. The
results provide a clear picture of the power consumption
profile associated with each design, as well as the comparative
lifetime benefits they provide.

We emphasize that these designs are practically motivated.
They evolved over the course of 18 months while developing
a large-scale environmental monitoring network deployed in
the city of Aiken, South Carolina [8]. In 2011, the city’s
stormwater treatment system was redesigned to reduce the
environmental impacts associated with stormwater runoff. The
monitoring network was installed in targeted areas throughout
the city to monitor the modified treatment system. Our sub-
team was responsible for the design of the wireless sensor
platforms and the associated firmware used to construct the
network. The design process was guided by the need to
support continuous, uninterrupted data collection in the face of
unattended operation (since Aiken is relatively remote). Maxi-
mizing the lifetime of our almost-always-sleeping system was
a principal goal. In addition to yielding a successful network
deployment, the experience resulted in the first systematic
analysis of AAS schedulers, which we present here.

In Section II we provide a formal definition for the schedul-
ing problem in AAS systems and present the related work in
Section III. In Sections IV and V we present the designs and
the corresponding algebraic models for the schedulers, respec-
tively. The comparative analysis and experimental results are
presented in Section VI. Section VII concludes the paper.

II. PROBLEM STATEMENT

The smallest unit of work that may be scheduled in an AAS
system is a task, an action taken in response to a timer event.
When a scheduler wakes and has no tasks to execute, a small
amount of time is expended, referred to as the null activation
period, denoted by A1. The amount of time expended when
the scheduler wakes and there are tasks to execute, including

284Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

(a) Components of N

(b) ATASK Expanded
Fig. 1. A1, A2, ATASK , ωi, and N

task execution time, is referred to as the task activation period,
denoted by ATASK .

In a given time period N , a scheduler experiences A1 and
ATASK multiple times and sleeps the rest of the time. The
number of times the scheduler experiences A1 and ATASK

in a time period N is given by n1 and n2, respectively.
Each instance, i, of ATASK within N consists of time spent
executing the task functions, given by ωi, and the rest of the
time expended prior to, inbetween, and after task execution,
denoted by A2. The relationship between A1, A2, ATASK ,
ωi, and N is illustrated in Figure 1. The total time spent
executing the task functions in the time period N is given by
W , calculated as the sum of all ωi, where i = {1, 2, ..., n2}.
In the ith occurence of ATASK , ωi is calculated as the
sum of all ωi,j , where j = {1, 2, ..., nexecuted}; nexecuted
denotes the number of task functions executed in the ith

task activation period. Assuming all tasks are periodic, and
nexecuted is constant for all values of i, the total time taken to
execute all task functions, W , in time period N is calculated
as:

W =

n2∑
i=1

nexecuted∑
j=1

ωi,j (1)

The scheduler load α is the fraction of time the system is
either busy scheduling tasks or executing them within time
period N . The task load β is the fraction of time the system
is busy executing just the task functions, given by W , within
time period N . Assuming n1, n2, W , and N are fixed, and
n2ATASK = n2A2 +W , α can be expressed as:

α =
(n1A1 + n2ATASK)

N

=
(n1A1 + n2A2 + W)

N

=
n1A1 + n2A2

N
+ β (2)

Objective. In an ideal scheduler, with no scheduling overhead,
α = β. To minimize the value of α, both A1 and A2 need to
be minimized. Our objective is to design a scheduler with

the least possible A1 value; since n1 � n2 in AAS systems, a
lower A1 value, even at the expense of a higher A2 value, will
help in maximizing the efficiency and battery life expectancy
of a scheduler.

III. RELATED WORK

Levis et al. present TinyOS [10], one of the most widely-
used sensor network operating systems. TinyOS includes a
task scheduler that executes non-preemptive tasks posted for
later execution. TinyOS uses a fixed-length, FIFO scheduler
by default. To reduce energy consumption, the scheduler puts
the processor to sleep whenever the task queue is empty. Its
successor, TinyOS2 [11], uses a similar FIFO scheduler; an
earliest-deadline-first implementation is also available. Com-
pared to TinyOS, TinyOS2 introduces more overhead when
posting and executing a task, but less overhead when the task
queue is empty.

Han et al. present SOS [9], another event-driven operating
system. Software modules communicate using direct calls and
message passing via a FIFO scheduler with two levels of
priority. High priority messages are reserved for time critical
events, such as hardware interrupts.

Dunkels et al. present Contiki [7], another event-based
operating system with support for event prioritization. A non-
preemptive event scheduler schedules asynchronous and syn-
chronous events. Asynchronous events are deferred procedure
calls enqueued in a FIFO handling queue. Synchronous events
are immediately scheduled at the front of the queue.

Bhatti et al. present MANTIS [2], a multi-threaded sensor
network operating system. In MANTIS, a fixed thread table
maintains all threads, which are executed using round-robin
scheduling within priority levels. The scheduler is driven by
a timer interrupt, which triggers context switching among
threads. MANTIS also allows users to specify the sleep period
of threads. The scheduler calculates the earliest wake-up time
and uses an idle background thread to put the CPU to sleep
when all other threads are blocked.

Chen et al. present Enix [6], a cooperative threading solu-
tion for sensor networks, which uses setjump and longjump
to implement low overhead context switching. It supports
priority-based and round-robin scheduling policies using linear
search and bitmap-based thread lookups. Other multi-threaded
sensor network operating systems, including LiteOS [3] and
RETOS [5], use similar schedulers. In particular, LiteOS
supports priority-based and round-robin scheduling policies,
and RETOS supports POSIX scheduling, which boosts the
priority of a thread when events need to be handled quickly.

While each has its advantages, none of these systems are
well matched for AAS scheduling. Event-based schedulers
using FIFO mechanisms or priorities are not designed to
account for the sleep requirements of AAS systems. Thread-
based schedulers are also inefficient in this context. POSIX-
like soutions introduce significant overhead, while the use
of small epochs in other multi-threaded solutions is energy-
inefficient. By contrast, our work focuses on the systematic
design and analysis of scheduling solutions suited specifically

285Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

to AAS systems.
Caracas et al. describe an energy efficient optimization strat-

egy based on variable sleep intervals [4]. They define a knap-
sack problem to compute the minimum number of (pre-spec-
ified) sleep intervals required to achieve a given sleep period,
but do not provide the solution details. We present the imple-
mentation details for a similar variable-sleep scheduling strat-
egy, where we use a greedy solution to the knapsack problem
and analyze its complexity and performance characteristics.

IV. AAS SCHEDULING

We focus on a canonical implementation of an AAS sched-
uler, where a task is composed of a function pointer, a task
type, a period, and a due date. The function pointer points to
the executable task body. The task type is either one shot

or periodic, corresponding to a task that expires after it
has been executed, and a task that is continually rescheduled,
respectively. The period specifies how often the task should
be activated. The due date records the time at which the task
should occur next.

The basic scheduling functions in our implementation
are scheduler init(), schedule task(), and
scheduler run(). scheduler init() handles scheduler
initialization during system start-up, and schedule task()
is used to schedule new tasks. The system spends much of
its lifetime in scheduler run(); it contains the core of the
scheduling logic and is invoked to start the scheduler.

The scheduler designs presented in the next sections depend
on the hardware system, particularly the timer mechanism.
The target MCU implements the system clock using an 8-bit
counter register, driven by an external oscillator oscillating at a
rate of 32.768KHz. A prescaler of 128 results in an overflow
interrupt being triggered once per second; this suspends the
executing instruction and begins the interrupt service routine
(ISR), where the system time is updated. If the processor is in
a sleep state, it wakes and enters the ISR. Upon completion,
the processor resumes execution following the call to sleep.

A. A Basic Scheduler
We present a basic AAS scheduler implementation that

parallels the design of existing embedded task schedulers [9]–
[11]. system task buffer, an N-element array, is ini-
tialized (with NULL entries) within scheduler init().
schedule task() finds the first empty slot and stores the
task passed as argument.
scheduler run(), shown in Listing 1, iterates indef-

initely in the outer while loop. In each iteration, re-
ferred to as an execution cycle, the scheduler steps through
system task buffer and executes each task with an expired
due date. When a one shot task completes, the task is
removed from system task buffer. When a periodic task
completes, its due date is updated based on its period. When
there are no tasks to execute, the scheduler enters its sleep
cycle.

This simple scheduler has a significant power consumption
footprint due to the time required to determine whether there
are tasks to execute. Even when there are no tasks to execute,

the scheduler wakes and cycles through the entire task buffer.
Since the time expended is bounded by N, an increase in task
capacity degrades system performance. A scheduler that could
perform a constant time lookup into the task array for available
tasks would be more desirable.
1 void s c h e d u l e r r u n () {
2 whi le (t r u e) {
3 boo l t a s k e x e c u t e d ;
4 do {
5 t a s k e x e c u t e d = f a l s e ;
6 u i n t 3 2 t c u r r e n t t i m e = c u r r e n t s y s t e m t i m e () ;
7 u i n t 8 t t a s k i n d e x ;
8 f o r (t a s k i n d e x = 0 ; t a s k i n d e x < TASK QUEUE CAPACITY ; t a s k i n d e x ++) {
9 / / i f t h e c u r r e n t (non−empty) t a s k i s due

10 i f ((s y s t e m t a s k b u f f e r [t a s k i n d e x] . t a s k != NULL) &&
11 (c u r r e n t t i m e >= s y s t e m t a s k b u f f e r [t a s k i n d e x] . d u e d a t e)) {
12 / / e x e c u t e t h e t a s k f u n c t i o n
13 (∗ s y s t e m t a s k b u f f e r [t a s k i n d e x] . t a s k) () ;
14 / / h an d l e r e s c h e d u l i n g / removal
15 i f (s y s t e m t a s k b u f f e r [t a s k i n d e x] . t y p e == ONE SHOT) {
16 s y s t e m t a s k b u f f e r [t a s k i n d e x] . t a s k = NULL;
17 } e l s e {
18 s y s t e m t a s k b u f f e r [t a s k i n d e x] . d u e d a t e +=
19 s y s t e m t a s k b u f f e r [t a s k i n d e x] . p e r i o d ;
20 }
21 t a s k e x e c u t e d = t r u e ;
22 }
23 }
24 } whi le (t a s k e x e c u t e d) ;
25 s e t s l e e p m o d e (SLEEP MODE PWR SAVE) ;
26 s leep mode () ;
27 }
28 }

Listing 1. scheduler run() (Basic Scheduler)

1 void s c h e d u l e r r u n () {
2 whi le (t r u e) {
3 boo l t a s k e x e c u t e d ;
4 do {
5 t a s k e x e c u t e d = f a l s e ;
6 u i n t 3 2 t c u r r e n t t i m e = c u r r e n t s y s t e m t i m e () ;
7 u i n t 8 t t a s k i n d e x = 0 ;
8 whi le ((t a s k i n d e x = 16 − f f s (t a s k b i t m a p a c t i v e)) < 16) {
9 i f (c u r r e n t t i m e >= s y s t e m t a s k b u f f e r [t a s k i n d e x] . d u e d a t e) {

10 t a s k e x e c u t e d = r u n t a s k (t a s k i n d e x , c u r r e n t t i m e) ;
11 } e l s e {
12 t a s k b i t m a p a c t i v e &= ˜ (1 << (15 ˆ t a s k i n d e x)) ;
13 t a s k b i t m a p i n a c t i v e |= (1 << (15 ˆ t a s k i n d e x)) ;
14 }
15 }
16 } whi le (t a s k e x e c u t e d) ;
17 t a s k b i t m a p a c t i v e = t a s k b i t m a p i n a c t i v e ;
18 t a s k b i t m a p i n a c t i v e = 0 ;
19 s e t s l e e p m o d e (SLEEP MODE PWR SAVE) ;
20 s leep mode () ;
21 }
22 }
23
24 s t a t i c i n l i n e boo l r u n t a s k (u i n t 8 t t a s k i n d e x , u i n t 3 2 t c u r r e n t t i m e) {
25 / / e x e c u t e t h e t a s k
26 (∗ s y s t e m t a s k b u f f e r [t a s k i n d e x] . t a s k) () ;
27 / / h an d l e r e s c h e d u l i n g / removal
28 i f (s y s t e m t a s k b u f f e r [t a s k i n d e x] . t y p e == ONE SHOT) {
29 t a s k b i t m a p a c t i v e &= ˜ (1 << (15 ˆ t a s k i n d e x)) ;
30 } e l s e {
31 s y s t e m t a s k b u f f e r [t a s k i n d e x] . d u e d a t e +=
32 s y s t e m t a s k b u f f e r [t a s k i n d e x] . p e r i o d ;
33 i f (s y s t e m t a s k b u f f e r [t a s k i n d e x] . d u e d a t e > c u r r e n t t i m e) {
34 t a s k b i t m a p a c t i v e &= ˜ (1 << (15 ˆ t a s k i n d e x)) ;
35 t a s k b i t m a p i n a c t i v e |= (1 << (15 ˆ t a s k i n d e x)) ;
36 }
37 }
38 re turn (t r u e) ;
39 }

Listing 2. scheduler run() and run task() (O(1) Scheduler)

B. The O(1) Scheduler
The O(1) scheduler is based loosely on the Linux 2.6.8.1

scheduler [1]. Adapted to our system, when there are no tasks
in the queue, the scheduler performs a constant-time lookup
and returns to sleep. This scheduler also uses system task

buffer to store scheduled tasks. Two supporting queues are
also introduced; the active task queue stores tasks which must
be executed in the current execution cycle, and the idle task
queue stores tasks that have been executed, but which must
be re-evaluated the next time the system wakes. To achieve
constant-time task lookup, the queues are implemented using
bitmaps; a 1 at bit position n indicates a task in the nth element

286Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

of system task buffer. At boot time, schedule task()
locates the first free index in the task buffer and the corre-
sponding location in the active and idle bitmaps are set and
cleared, respectively.

In the execution phase, a call to ffs() is performed on
the active task bitmap, as shown in Listing 2. The ffs()
function, provided by the Atmel AVR C library [19], returns
the position of the least significant bit set in a 16-bit word;
or 0, if none are set. If a task is identified in the active
task queue with a due date greater than the current system
time, its index position is cleared in the active task bitmap
and set in the idle task bitmap. If the identified task has an
expired due date, it is executed by run task(), followed by
its removal or rescheduling. Task removal entails removal of
the corresponding task bit from the active task bitmap. Task
rescheduling involves updating the two bitmaps and the due
date of the task in system task buffer.

During the execution cycle, if there are no tasks to execute,
the scheduler performs an O(1) lookup into the active task
queue and returns to sleep. While O(1) run-time is desirable,
a large constant results in increased power consumption. We
next consider a design that introduces increased overhead
when there are tasks to execute, but very little overhead when
there are no tasks to execute — our common case.

C. The O(n) Scheduler
The O(n) scheduler removes the call to the expensive ffs()

function; it requires constant time to identify a task to execute,
and linear time to reschedule the task post-execution.

Tasks are stored as nodes in a linked list instead of the
statically allocated task array. Slab allocation is implemented
using a static block of memory capable of holding N task
nodes, task free list, a pointer to the list of free memory
(within the static memory block), and task queue, a pointer
to the linked list of tasks. Task scheduling involves allocating
a node from task free list, populating the node, and
inserting the node in task queue based on due date.
1 void s c h e d u l e r r u n () {
2 u i n t 3 2 t s y s t e m s l e e p c y c l e c o u n t e r = 0 ;
3 whi le (t r u e) {
4 boo l t a s k e x e c u t e d ;
5 do {
6 t a s k e x e c u t e d = f a l s e ;
7 u i n t 3 2 t c u r r e n t t i m e = c u r r e n t s y s t e m t i m e () ;
8 whi le ((t a s k q u e u e != NULL) &&
9 (t a sk queue−>d u e d a t e <= c u r r e n t t i m e)) {
10 / / e x e c u t e t h e t a s k
11 t a s k n o d e p t r t t a s k p t r = t a s k q u e u e ;
12 (t a s k p t r−>t a s k) () ;
13 t a s k e x e c u t e d = t r u e ;
14 t a s k q u e u e = ta sk queue−>n e x t ;
15 / / ha nd l e r e s c h e d u l i n g / removal
16 i f (t a s k p t r−>t y p e == ONE SHOT) {
17 f r e e l i s t f r e e (& t a s k f r e e l i s t , (n o d e p t r t) t a s k p t r) ;
18 } e l s e {
19 t a s k p t r−>d u e d a t e += t a s k p t r−>p e r i o d ;
20 i n s e r t t a s k i n s c h e d u l i n g q u e u e (& ta s k que u e , t a s k p t r) ;
21 }
22 }
23 s y s t e m s l e e p c y c l e c o u n t e r = t a sk qu e u e−>d u e d a t e − c u r r e n t t i m e ;
24 } whi le (t a s k e x e c u t e d) ;
25 s e t s l e e p m o d e (SLEEP MODE PWR SAVE) ;
26 whi le (s y s t e m s l e e p c y c l e c o u n t e r−−) {
27 s leep mode () ;
28 }
29 }
30 }

Listing 3. scheduler run() (O(n) Scheduler)

scheduler run(), shown in Listing 3, traverses the list of
scheduled tasks and executes those that are due. The removal

of one shot tasks is handled by freeing the corresponding
task node and returning it to task free list. Rescheduling
of periodic tasks is handled by updating the corresponding
task’s due date and re-inserting the task at the correct position
in the priority queue.

Since tasks are ordered by due date, it is straightforward
to determine when the next task needs to be executed, just
prior to sleeping. When the system is done executing tasks, the
difference between the earliest task due date and the current
system time is recorded. After the system wakes up, a simple
check on this value allows the scheduler to decide if there are
any tasks to execute, and saves it from having to access the
node list. The scheduler therefore experiences shorter wake
cycles when there are no tasks to execute.

Since an AAS system typically wakes to find nothing to
execute, even a small amount of time expended during a wake
cycle can add performance penalties. With the given hardware
and interrupt design, where the processor has to wake every
second, this is the best performance that could be achieved.
However, a scheduler capable of altering the interrupt behavior
would yield even better performance.

D. The Intelligent Sleep Scheduler
The basis of the intelligent sleep scheduler (ISS) is the O(n)

scheduler, with multiple updates to the wake, sleep, and clock
logic. The central idea is that the rate at which the overflow
interrupt is generated can be changed by choosing a different
clock prescaler, thus making the duration of the processor
sleep period tunable; the clock prescaler can be set to 128,
256, or 1024, so that overflow interrupts are triggered at 1, 2,
and 8 second intervals, respectively.
1 void s c h e d u l e r r u n () {
2 u i n t 3 2 t s y s t e m s l e e p c y c l e c o u n t e r = 0 ;
3 whi le (t r u e) {
4 boo l t a s k e x e c u t e d ;
5 do {
6 t a s k e x e c u t e d = f a l s e ;
7 u i n t 3 2 t c u r r e n t t i m e = c u r r e n t s y s t e m t i m e () ;
8 whi le ((t a s k q u e u e != NULL) &&
9 (t a sk q ueue−>d u e d a t e <= c u r r e n t t i m e)) {

10 . . . same as O(n) s c h e d u l e r . . .
11 }
12 s y s t e m s l e e p c y c l e c o u n t e r = t a sk que ue−>d u e d a t e − c u r r e n t t i m e ;
13 } whi le (t a s k e x e c u t e d) ;
14 i n t e l l i g e n t s l e e p (s y s t e m s l e e p c y c l e c o u n t e r) ;
15 }
16 }
17
18 i n l i n e void i n t e l l i g e n t s l e e p (u i n t 3 2 t i n t s y s t e m s l e e p c o u n t e r) {
19 i n t s y s t e m s l e e p c o u n t e r = i n t s y s t e m s l e e p c o u n t e r − 1 ;
20 / / d e t e r m i n e t h e number o f 1 , 2 , and 8 second s l e e p c y c l e s .
21 / / 1 second s l e e p r e q u i r e d ?
22 s l e e p c y c l e [0] = (i n t s y s t e m s l e e p c o u n t e r & 0x1) ;
23 / / 2 second s l e e p r e q u i r e d ?
24 i n t s y s t e m s l e e p c o u n t e r >>= 1 ;
25 s l e e p c y c l e [1] = (i n t s y s t e m s l e e p c o u n t e r & 0x1) ;
26 i n t s y s t e m s l e e p c o u n t e r >>= 1 ;
27 s l e e p c y c l e [1] += ((i n t s y s t e m s l e e p c o u n t e r & 0x1) << 1)) ;
28 / / 8 second s l e e p r e q u i r e d ?
29 i n t s y s t e m s l e e p c o u n t e r >>= 1 ;
30 s l e e p c y c l e [2] = i n t s y s t e m s l e e p c o u n t e r ;
31
32 / / compute t o t a l number o f s l e e p c y c l e s and b e g i n s l e e p i n g
33 i n t s y s t e m s l e e p c o u n t e r = s l e e p c y c l e [0]
34 + s l e e p c y c l e [1] + s l e e p c y c l e [2] ;
35 s e t s l e e p m o d e (SLEEP MODE PWR SAVE) ;
36 do {
37 s leep mode () ;
38 } whi le (i n t s y s t e m s l e e p c o u n t e r −−);
39 }

Listing 4. scheduler run() and intelligent sleep()
(Intelligent Sleep Scheduler)

Listing 4 presents the scheduler run() implementation.
The difference between the earliest task due date and the
current system time is recorded at the end of an execution

287Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

cycle. The system then invokes intelligent sleep(), which
partitions this value into multiple divisors, so as to calculate
the least number of sleep cycles that can be created from 1,
2, and 8-second intervals.

The current rate at which the interrupt is triggered is called
an epoch. Changing the clock prescaler (and the epoch) at any
arbitrary instant causes the 8-bit counter register to contain
a value less than 256, accounting for the partial second of
elapsed time since the last overflow interrupt. Since epoch
values vary over time, the semantics of this partial time change
in a complex way. Let the epoch be e1 at time t1 when the
overflow interrupt is triggered. Let the epoch assume the value
e2 at t2. Partial time is defined as (t2 − t1), calculated as a
function of e1 and the value in the 8-bit counter register when
the epoch was changed to e2. Partial times for each epoch (i.e.
1, 2, 8) are stored in an array.
1 # d e f i n e PARTIAL TIME UPDATE () \
2 / / u pd a t e s y s t e m t i m e based on p a r t i a l t i m e a c c u m u l a t i o n \
3 s y s t e m c l o c k c y c l e s += s y s t e m t i m e f r a c t i o n∗t emp sys tem t ime epoch ; \
4 i f (s y s t e m c l o c k c y c l e s & ˜ (0 xFF)) { \
5 s y s t e m t i m e += s y s t e m c l o c k c y c l e s >>8; \
6 s y s t e m c l o c k c y c l e s &= 0xFF ; \
7 }
8
9 / / t i m e r 2 o v e r f l o w h a n d l e r
10 ISR (SIG OVERFLOW2, ISR BLOCK) {
11 / / i n c r e m e n t s y s t e m t i m e by c u r r e n t epoch
12 s y s t e m t i m e += s ys t em t ime ep och ;
13 i f (s l e e p c y c l e [0]) {
14 / / 1−second s l e e p r e q u i r e d ; c u r r e n t epoch 1−second
15 s l e e p c y c l e [0] = 0 ;
16 } e l s e i f (s l e e p c y c l e [1]) {
17 / / 2−second s l e e p r e q u i r e d ; decremen t c n t r , change p r e s c a l e r i f r e q u i r e d
18 s l e e p c y c l e [1]−−;
19 i f (sy s t e m t im e e poc h != 2) {
20 t emp sys tem t ime epoch = sy s t e m t im e epoc h ;
21 sys t em t ime ep och = 2 ;
22 TCCR2B = (1 << CS22) | (1 << CS21) ;
23 whi le (ASSR & 0x1F) ;
24 s y s t e m t i m e f r a c t i o n = TCNT2 ;
25 TCNT2 = 0x0 ;
26 whi le (ASSR & 0x1F) ;
27 PARTIAL TIME UPDATE () ;
28 }
29 } e l s e i f (s l e e p c y c l e [2]) {
30 / / 8−second s l e e p r e q u i r e d ; decremen t c n t r , change p r e s c a l e r i f r e q u i r e d
31 s l e e p c y c l e [2]−−;
32 i f (sy s t e m t im e e poc h != 8) {
33 . . . a n a l o g o u s t o above case . . .
34 }
35 } e l s e i f (s y s t em t i me ep och != 1) {
36 / / a l l c o u n t e r s are 0 ; p r e s c a l e r r e s e t f o r mandatory 1−second s l e e p
37 . . . a n a l o g o u s t o above case . . .
38 }
39 }

Listing 5. Overflow ISR (Intelligent Sleep Scheduler)

To obtain the least accumulated partial epoch, the overflow
ISR is identified as the optimal place to change the prescaler.
Thus, after an execution cycle, the processor enters a 1-
second sleep period, waits for the ISR to be triggered, and
then changes the prescaler. Listing 5 contains the code for
the updated overflow ISR. The overflow ISR ensures that the
prescaler is set to the 1-second interval for the mandatory sleep
cycle after the 2 and 8-second sleep cycles have been executed.

At the start of the ISR, the system time is updated using
the value of the current epoch. Next, the change of prescaler
(and epoch) is performed, if needed. If the clock prescaler is
updated, the corresponding partial time is recorded, and the
value of accumulated partial time is calculated as the sum of
its previous value and the product of the current partial time
and the last epoch value. Since every 256 fractions represents
1 second of time, if accumulated partial time is greater than
or equal to 255, the system time is incremented and the
accumulated partial time is appropriately updated.

V. ALGEBRAIC MODELS

The schedulers were implemented for the MoteStack, a
state-of-the-art in-situ sensing platform, which uses an AT-
Mega644 Atmel 8-bit AVR RISC-based MCU operating at
10 MHz at 3.3V (gcc -0s). A line-by-line code analysis was
performed with the assistance of AVR Studio, a cycle accurate
simulator, to derive the closed-form algebraic models.

A. The Basic Scheduler
In the basic scheduler, the null activation period, A1, is

given (in µs) by:

A1 = 8.9 + 1.5 ∗ nqueue capacity + 1.3 ∗ nin queue (3)
where nqueue capacity denotes the capacity of the task queue,
and nin queue denotes the number of tasks in the queue.

A2 (in µs) is given by the following formula:

A2 = 8.9+ 3.1 ∗ nexecuted + 2.6 ∗ niter
+(1.5 ∗ nqueue capacity + 1.3 ∗ nin queue) ∗ niter (4)

Recall that nexecuted denotes the number of task functions
executed in the current task activation period; niter denotes
the number of times the main scheduler loop executes (Listing
1, lines 4-24). Assuming that ∀i, (ωi +A2) ≤ 1 second, the
value of niter is calculated as follows:

niter = 1+ d 1

task periodmin
e (5)

where task periodmin is the smallest period value present
in the task queue associated with a task that has a due date
earlier than the current system time.

B. The O(1) Scheduler
In the O(1) scheduler, A1 is given by:

A1 = 14.5+ 24 ∗ nin queue

+(2.8 ∗ (d
nqueue capacity

16
e − 1)) ∗ nin queue (6)

A2 for the O(1) scheduler is given as follows:

A2 = 19.9+ 6.5 ∗ nexecuted + 24 ∗ nin queue ∗ (niter − 1)

+ 2.8 ∗ (d
nqueue capacity

16
e − 1) ∗ nin queue) ∗ (niter − 1)

(7)

C. The O(n) Scheduler
The O(n) scheduler has a constant null activation period of

7 µs (A1).
A2 is given by the following formula:

A2 = 14.4+ (13.7+ tins) ∗ nexecuted
+ 5.6 ∗ (niter − 1) (8)

tins denotes the time spent within the insertion sort during
rescheduling, post task execution. The value of tins is given
by the following formula:

tins =

{
0.2, if nin queue = 0;
3.7 ∗ [1, nin queue) if nin queue > 0;

(9)

where [1, nin queue) denotes any value between 1 and
(nin queue - 1).

288Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

Fig. 2. ISR Execution Profile (tISR) (Intelligent Sleep Scheduler)

D. The Intelligent Sleep Scheduler
The null activation period (A1) for the ISS is the hardest

to analyze due to its complex ISR control flow paths. A flow
chart indicating the different paths is shown in Figure 2. The
value A1 assumes in a given null activation period depends
on the values of the various system variables in that specific
period and is given by:

A1 = 0.6+ tISR (10)

tISR denotes the amount of time elapsed between the start
of the overflow ISR (line 10, Listing 5) and the start of
the scheduling loop of scheduler run() (line 6, Listing 4),
shown in Figure 2.

The accumulation of partial time fractions in the clock
update logic requires 51.4 µs. However, this value is ignored
for modeling purposes. The latest possible invocation of the
partial update logic (lines 35-38, Listing 5) is approximately
31.5 µs after the start of the ISR. Thus, the maximum partial
time accumulated is approximately 31.5 µs, close to a single
oscillation of the external oscillator. Even in the 1-second
interval case, the prescalar is set to 128, and the probability of
partial time accumulation is small. Even if it does accumulate,
for these 31.5 µs intervals to total 1 second, approximately
31,746 occurences of A1 or A2 are required. Hence, the time
is assumed to be negligible.
A2 for the ISS is given by:

A2 = tISR + 13.4+ 5.6 ∗ (niter − 1)

+ (13.7+ tins) ∗ nexecuted (11)

where niter, nexecuted, tins, and tISR are defined as before.

VI. RESULTS
We first consider the performance of the schedulers based

on the algebraic models of their behavior. We then measure
the scheduler power consumption for a given set of tasks on
physical hardware.

A. Comparative Analysis
We compare the scheduling overhead of each scheduler

under varying load conditions; results are shown in Figures 3
and 4. Due to the number of variables in the equations for A1

and A2, we make some assumptions to limit the evaluation

(a) Basic Scheduler (b) O(1) Scheduler

(c) O(n) Scheduler (d) Intelligent Sleep Scheduler

Fig. 3. X = n2
n1+n2

, Y = ntask executed

nin queue
, Z = n1A1 + n2A2

(a) Basic and O(1) Scheduler

(b) O(n) and Intelligent Sleep Scheduler

Fig. 4. Null Activation Period Contributions (X = n2
n1+n2

, Y = n1A1

µs)

space. We fix both nqueue capacity and nin queue to 128, and
niter to 2 (limiting task periodmin to greater than or equal
to 1 second – Eq. (5)). We generate the values of tins using
a pseudo random number generator and fix the values for
all subsequent calculations across the schedulers. For each
scheduler, we measure the scheduling overhead, given by
n1A1 + n2A2, in seconds, on the Z-axis, when N is set to
500 seconds. N is composed of (n1 + n2) 1-second counts.
We plot the fraction of tasks executed on the X-axis, given
by ntask executed over nin queue, and the load factor (given by
n2 over (n1 + n2)) on the Y-axis. The system load factor is
helpful in understanding the interplay between A1 and A2.

Figures 3(a) and 3(b) show the results for the basic and O(1)
schedulers, respectively. The planar slopes for both graphs are
similar, owing to the fact that both schedulers yield A2 values
that depend primarily on similar nqueue capacity and nin queue

coefficients. At higher load factors, where n2 >> n1, the

289Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

-1
 0
 1
 2
 3
 4
 5
 6
 7

 0 5 10 15 20 25 30 35 40

Cu
rre

nt
 D

ra
w

(m
A)

Time (seconds)

mA

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Cu
rre

nt
 D

ra
w

(m
A)

mA

(a) The Basic Scheduler

-1
 0
 1
 2
 3
 4
 5
 6
 7

 0 5 10 15 20 25 30 35 40

Cu
rre

nt
 D

ra
w

(m
A)

Time (seconds)

mA

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Cu
rre

nt
 D

ra
w

(m
A)

mA

(b) The O(1) Scheduler

-1
 0
 1
 2
 3
 4
 5
 6
 7

 0 5 10 15 20 25 30 35 40

Cu
rre

nt
 D

ra
w

(m
A)

Time (seconds)

mA

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Cu
rre

nt
 D

ra
w

(m
A)

mA

(c) The O(n) Scheduler

-1
 0
 1
 2
 3
 4
 5
 6
 7

 0 5 10 15 20 25 30 35 40

Cu
rre

nt
 D

ra
w

(m
A)

Time (seconds)

mA

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Cu
rre

nt
 D

ra
w

(m
A)

mA

(d) The Intelligent Sleep Scheduler

Fig. 5. Scheduler Power Consumption Profiles

O(1) scheduler performs worse than the basic scheduler, but at
lower load factors, the differences are negligible. Figures 3(c)
and 3(d) show the results for the O(n) scheduler and ISS,
respectively; again the curves are similar. The O(n) scheduler
and ISS incur less overhead than the basic and O(1) schedulers
at load factors below 0.8, as they are not dependent on
nqueue capacity. We also observe that at higher load factors,
the value of ntask executed affects all schedulers significantly.
At lower load factors, both the O(n) and intelligent schedulers
exhibit very low overhead (<2% for load factors of 0.3).
To further differentiate the two schedulers, we consider their
performance at very low load factors, on the order of 0.001,
typical in AAS systems. Since the overhead contribution of
A1 is significantly larger than A2 at very low load factors,
we focus on the impact of A1 in isolation. In Figures 4(a)
and 4(b), we measure, for each scheduler, the contribution of
A1, given by n1A1, on the Y-axis, against the load factor,
given by n2 over n1 + n2, on the X-axis. With a side-by-side
comparison, we see that the basic and O(1) schedulers have a
much higher null activation period contribution than the other
two schedulers — approximately three orders of magnitude
larger and are relatively inefficient at lower load factors. We
also observe that the ISS performs the best among all the
schedulers presented. Its ability to sleep for longer periods of
time gives the ISS an edge over schedulers which need to
wake every second.

B. Power Consumption Profile
We now characterize the power consumption profiles of

the four schedulers. For this purpose, we installed a test
application on the MoteStack device, using each scheduler.

The application schedules a periodic null task with a duration
of 750ms, executed every 10s. We connected a 10Ω resistor in
series with the power supply of the MoteStack and measured
the voltage difference across the resistor, using an oscilloscope.
The voltage change is directly proportional to the current
draw (and power consumption, when voltage is constant) by
Ohm’s Law. Figures 5(a) – 5(d) summarize the consumption
profiles for the four schedulers. In each graph, the horizontal
axis represents time, and the vertical axis represents current
draw. The bottom halves of the figures show the complete
consumption profile; the task activation periods are visible.
The top halves show a magnified view of the profile, such
that the null activation periods can be seen. The peaks for
the null activation periods can be observed at the end of each
second in Figures 5(a), 5(b), and 5(c), while fewer such peaks
can be noticed in Figure 5(d), indicating longer sleep periods.

We sample data over a 10-second window, which captures
current draw values for a single task activation period, multiple
null activation periods, and the associated sleep periods. We
calculate the average overall and ATASK current draws – the
ATASK values vary due to the inherent scheduler designs. The
average current draw for the basic scheduler (Figure 5(a)) over
the window is 0.613 mA (average ATASK current draw is 5.52
mA), while the average current draw for the O(1) scheduler
(Figure 5(b)) is 0.605 mA (average ATASK current draw is
5.28 mA). The average current consumption for the O(n)
(Figure 5(c)) and the intelligent sleep (Figure 5(d)) schedulers
is 0.616 mA (average ATASK current draw is 5.56 mA)
and 0.603 mA (average ATASK contribution is 5.49 mA),
respectively.

Figure 6 presents the life expectancy of a 1000mAh battery,

290Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

 4800

 5000

 5200

 5400

 5600

 5800

 6000

 6200

 6400

5 10 15 30 45 60

B
at

te
ry

 L
on

ge
vi

ty
 (

ho
ur

s)

Sampling Rate (minutes)

Basic Scheduler
O(1) Scheduler
O(n) Scheduler

Intelligent Sleep Scheduler

Fig. 6. Battery Life Expectancy

when it is supplying power to a MoteStack, running the four
schedulers under different almost-always-sleeping scenarios.
Data for Figure 6 was obtained by extrapolating the average
current draw and average ATASK current draw values from
Figures 5(a) – 5(d), and applying them to applications which
sleep for 5, 10, 15, 30 45, and 60 minutes between task
executions. We observe that the intelligent sleep scheduler con-
sistently yields higher battery longevity for all the applications.

Specifically, consider the application which sleeps for 15
minutes between tasks, a typical sampling period for environ-
mental monitoring networks of the type deployed in Aiken,
SC. A MoteStack running this application and drawing its
power from a 1000mAh battery would last approximately
5,375 hours using the basic scheduler. The same MoteStack
would last for 5,380 hours using the O(1) scheduler. A MoteS-
tack using the O(n) scheduler would last for 5,374 hours,
while the ISS offers the longest runtime, of approximately
5,980 hours – 10% longer than any of the other schedulers.
This is a significant increase in longevity in the context of
large sensor network deployments. Though all the scheduler
designs dictate a linear decrease in power consumption with
an increase in the time period between task activation periods,
not surprisingly, the rate of the decrease for the ISS is higher
compared to the others, due to its ability to sleep for longer
periods, thus enabling a longer battery life.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented the design, implementation,
and analysis of four progressively more efficient schedulers
designed to support almost-always-sleeping embedded ap-
plications. This is the first systematic consideration of this
increasingly relevant class of schedulers. We presented a basic
scheduler which uses a rudimentary array to store tasks. We
next presented the O(1) scheduler based on the Linux 2.6.8.1
scheduler. This design incurs performance penalties due to
an expensive call to ffs(). Next, we presented the O(n)
scheduler, which uses a priority queue to store tasks and

improves its tracking of sleep cycles, performing significantly
better than the previous schedulers. Finally, we presented the
intelligent sleep scheduler, in which we make use of hardware
features to extend physical sleep cycles, design a variable-sleep
scheduling strategy, and further reduce scheduling overhead.
On analyzing the scheduler runtimes, we observed that the
O(n) and the intelligent sleep schedulers work well below
a certain load factor. However, under lower load cycles, the
intelligent sleep scheduler design performs markedly better
than all other designs due to its variable-sleep strategy, even
at the expense of added code complexity.

VIII. ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation (awards CNS-0745846, CNS-1126344).

REFERENCES

[1] Josh Aas. Understanding the linux 2.6.8.1 cpu scheduler. Silicon
Graphics International, 2005. http://joshaas.net/linux/ [retrieved: June,
2012].

[2] Shah Bhatti et al. MANTIS OS: An embedded multithreaded operating
system for wireless micro sensor platforms. Mob. Netw. Appl., 10:563–
579, 2005.

[3] Qing Cao, Tarek Abdelzaher, John Stankovic, and Tian He. The LITEOS
operating system: Towards UNIX-like abstractions for wireless sensor
networks. IPSN ’08, pages 233–244. IEEE, 2008.

[4] Alexandru Caracas et al. Energy-efficiency through micro-managing
communication and optimizing sleep. In SECON, pages 55–63, 2011.

[5] Hojung Cha et al. RETOS: Resilient, expandable, and threaded operating
system for wireless sensor networks. IPSN ’07, pages 148–157. ACM,
2007.

[6] Yu-Ting Chen, Ting-Chou Chien, and Pai H. Chou. ENIX: A lightweight
dynamic operating system for tightly constrained wireless sensor plat-
forms. SenSys ’10, pages 183–196. ACM, 2010.

[7] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. CONTIKI - a
lightweight and flexible operating system for tiny networked sensors.
Annual IEEE Conference on Local Computer Networks, pages 455–462,
2004.

[8] Gene W. Eidson et al. The South Carolina digital watershed: End-to-
end support for real-time management of water resources. International
Journal of Distributed Sensor Networks, 2010.

[9] Chih-Chieh Han, Ram Kumar, Roy Shea, Eddie Kohler, and Mani
Srivastava. A dynamic operating system for sensor nodes. MobiSys
’05, pages 163–176. ACM, 2005.

[10] Philip Levis et al. TINYOS: An operating system for sensor networks.
In Ambient Intelligence, pages 115–148. Springer, 2005.

[11] Philip Levis et al. T2: A 2nd generation OS for embedded sensor
networks. 2005.

[12] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and
John Anderson. Wireless sensor networks for habitat monitoring. In
WSNA ’02, pages 88–97. ACM Press, 2002.

[13] Joseph Polastre, Robert Szewczyk, and David Culler. TELOS: Enabling
ultra-low power wireless research. In IPSN ’05, pages 364–369. IEEE
Press, 2005.

[14] Crossbow Technologies. Iris datasheet. http://bullseye.xbow.com:81/.
[retrieved: June, 2012]

[15] Crossbow Technologies. Mica2 datasheet. http://bullseye.xbow.com:81/.
[retrieved: June, 2012]

[16] Crossbow Technologies. MicaZ datasheet. http://bullseye.xbow.com:81/.
[retrieved: June, 2012]

[17] Andreas Terzis et al. Wireless sensor networks for soil science.
International Journal of Sensor Networks, 7:53–70, 2010.

[18] Gilman Tolle et al. A macroscope in the redwoods. In SenSys ’05, pages
51–63. ACM Press, 2005.

[19] Joerg Wunsch et al. AVR Libc. http://www.nongnu.org/avr-libc/.
[retrieved: June, 2012]

291Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

