
Simulation Issues in Wireless Sensor Networks: A Survey

Abdelrahman Abuarqoub, Fayez Al-Fayez, Tariq Alsboui, Mohammad Hammoudeh, Andrew Nisbet

School of Computing, Mathematics and Digital Technology

Manchester Metropolitan University

Manchester, UK

f.a.alfayez@gmail.com{A.Abuarqoub, M.Hammoudeh, T.Alsboui, A.Nisbet}@mmu.ac.uk

Abstract—This paper presents a survey of simulation tools

and systems for wireless sensor networks. Wireless sensor

network modelling and simulation methodologies are

presented for each system alongside judgments concerning

their relative ease of use and accuracy. Finally, we propose

a mixed-mode simulation methodology that integrates a

simulated environment with real wireless sensor network

testbed hardware in order to improve both the accuracy and

scalability of results when evaluating different prototype

designs and systems.

Keywords-Wireless Sensor Networks; Simulation tools;

Survey; Testbeds; Mix-mode simulation.

I. INTRODUCTION

A successful large-scale Wireless Sensor Network

(WSN) deployment necessitates that the design concepts

are checked before they are optimised for a specific

hardware platform. Developing, testing, and evaluating

network protocols and supporting architectures and

services for WSNs can be undertaken through test-beds or

simulation. Whilst test-beds are extremely valuable,

implementing such test-beds is not always viable because

it is difficult to adapt a large number of nodes in order to

study the different factors of concern. The substantial cost

of deploying and maintaining large-scale WSNs and the

time needed for setting up the network for experimental

goals makes simulation invaluable in developing reliable

and portable WSNs applications.

In WSNs, simulation provides a cost effective method

of assessing the appropriateness of systems before

deployment. It can, for example, help assess the scalability

of algorithms free of the constraints of a hardware

platform. Furthermore, simulators can be used to simplify

the software development process for a particular WSN

application. For instance, TOSSIM [1] utilises the

component based architecture of TinyOS [2] and provides

a hardware resource abstraction layer that enables the

simulation of TinyOS applications which can then be

ported directly to a hardware platform without further

modifications.

Simulation is hence the research tool of choice for the

majority of the mobile ad hoc network community. An

examination of research papers published in

SENSORCOMM 2011 [3] reveals a significant increase in

using real testbeds compared to the study published by

Kurkowski et al. [4]. Yet, 53% of the authors used

simulation in their research. Apart from the self-developed

simulators, there are a few widely used network simulators

including NS-2 [5] , OPNET [6], MATLAB [7], IFAS [8],

and OMNet++ [9]. Figure 1 shows the simulator usage

following a survey of simulation based papers in

SENSORCOMM 2011 conference. Simulation of ad hoc

wireless capabilities for WSNs have been addressed by

extending existing simulators, or specifically building new

ones, such as NS-3 [10]. The latter class of simulators

mostly focus on protocols and algorithms for layers of the

network stack, but they do not directly support WSNs.

Figure 1. Simulator usage results from a survey of simulation based

papers in SENSORCOMM 2011.

Recently, several simulation tools have appeared to

specifically address WSNs, varying from extensions of

existing tools to application specific simulators. Although

these tools have some collective objectives, they obviously

differ in design goals, architecture, and applications

abstraction level. In the next section, we review some of

the important WSNs simulation tools and explore their

characteristics.

The rest of the paper is organised as follows: In

Section II, the most popular WSNs simulators are outlined

and their strengths and weaknesses are discussed.

Section III, presents our views about the future of WSNs

testing and evaluation methods. Section IV concludes the

paper.

II. WSNS NETWORK SIMULATION TOOLS

A. SensorSim

SensorSim [11] builds on the NS-2 simulator providing

additional capabilities for modelling WSNs. The main

features of this platform are: power and communication

protocol models; sensing channel and sensor models;

scenario generation; and support for hybrid simulations.

222Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

The public release of the SensorSim suite of tools was

withdrawn due to its unfinished nature and the inability of

authors to provide the needed level of support.

Georgia Tech SensorSimII [12] is written in a modular

style, where sensor nodes are organised into three

components: application, network, and link. The work in

SensorSimII may be divided into two areas: the simulator

core and the visualisation tools. The simulator core

essentially manages an array of independent sensor nodes

throughout time. The visualisation tools provide views of

both individual node state and communication traffic

between nodes.
Both SensorSim projects are open source and free to

use. However, the simulators are limited in their realism
because (apart from SensorSim's power modules) neither
simulator considers the limited resources of sensor nodes
such as memory, and real-time computational capability.
Moreover, it is not always required by the WSN to validate
the functional correctness and/or, to provide performance
guarantees. SensorSim simulates the complete WSN
protocol stack, although this can be regarded as overkill
and adding unnecessary complexity as this is not required
in order to simulate the expected behaviour. This makes
the SensorSim platform complex and difficult to use.

B. TOSSIM

There are platforms specifically designed to simulate
WSNs, such as TOSSIM [1] which is a part of the TinyOS
development efforts [2]. TOSSIM is a discrete-event
simulator for TinyOS applications [13]. It aims to assist
TinyOS application development and debugging by
compiling applications into the TOSSIM framework,
which runs on a PC instead of compiling them for a mote.
Using the TOSSIM framework, programs can be directly
targeted to motes without modification. This gives users a
bigger margin to debug, test, and analyse algorithms in a
controlled and repeatable environment. In TOSSIM, all
nodes share the exact same code image, simulated at bit
granularity, and assuming static node connectivity is
known in advance. Therefore, TOSSIM is more of a
TinyOS emulator than a general WSN simulator. It
focuses on simulating TinyOS rather than simulating the
real world. This has the advantage that the developed
algorithms can be tested on a target platform. However,
this may place some restrictions of the target platform on
the simulation. TOSSIM is not always the right simulation
solution; like any simulation, it makes several assumptions
about the target hardware platform, focusing on making
some behaviour accurate while simplifying others [1].
TOSSIM can be used as a tool for absolute evaluation of
some causes of the behaviour observed in real-world
network deployments.

C. TOSSF

TOSSF [14] is a simulation framework that compiles a
TinyOS application into the SWAN [15] simulation
framework. It can be viewed as an improvement over
TOSSIM with a primary focus on scalability. It allows

simulation of a heterogeneous collection of sensor nodes
and a dynamic network topology. TOSSF suffers from
potentially long test-debug cycles because it does not
provide a scripting framework for experimentation.
Although it enables development of custom environmental
models, the absence of a scripting framework requires
those models to be compiled into the simulation
framework. Given that both of these simulators are tightly
coupled with TinyOS, they may be unsuitable for early
prototyping, or developing portable WSN applications.

D. GloMoSim

GloMoSim [16] is a scalable simulation environment

for wireless and wired network systems. Its parallel

discrete-event design distinguishes it from most other

sensor network simulators. Though it is a general network

simulator, GloMoSim currently supports protocols

designed purely for wireless networks. GloMoSim is built

using a layered approach similar to the seven layer

network architecture of the OSI model. It uses standard

APIs between different simulation layers to allow rapid

integration of models developed at different layers,

possibly by different users.
As in NS-2, GloMoSim uses an object-oriented

approach, however for scalability purposes; each object is
responsible for running one layer in the protocol stack of
every node. This design strategy helps to divide the
overhead management of a large-scale network.
GloMoSim has been found to be effective for simulating
IP networks, but it is not capable of simulating sensor
networks accurately [17]. Moreover, GloMoSim does not
support phenomena occurring outside of the simulation
environment, all events must be gathered from
neighbouring nodes in the network. Finally, GloMoSim
stopped releasing updates in 2000 and released a
commercial product called QualNet.

E. Qualnet

Qualnet is a commercial network simulator tool
released by Scalable Network Technologies [18] that is
derived from GloMoSim. Qualnet significantly extends the
set of models and protocols supported by GloMoSim. It
also provides a comprehensive set of advanced wireless
modules and user-friendly tools for building scenarios and
analysing simulation results. Qualnet is a discrete-event
simulator, as such, it is event driven and time aware. It
uses a layered architecture that is run by each node. When
a protocol resides in a particular layer at one node, the
packets are passed down crossing the remaining layers at
the sending node, across the network, and then up to the
protocol stack at the receiving node. Qualnet has a
modular design and an intuitive GUI that make it easy to
use to learn and modify.

F. OPNET

OPNET [19] is a further discrete event, object

oriented, general purpose network simulator. The engine

of OPNET is a finite state machine model in combination

223Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

with an analytical model. It uses a hierarchical model to

define each characteristic of the system. The top hierarchy

level contains the network model, where the topology is

designed. The second level defines the data flow models.

The third level is the process editor, which handles

control flow models defined in the second level. Finally, a

parameter editor is included to support the three higher

levels. The hierarchical models result in event queues for

a discrete event simulation engine and a set of entities that

handle the events. Each entity represents a node which

consists of a finite state machine which processes the

events during simulation.

Unlike NS-2 and GloMoSim, OPNET supports

modelling sensor-specific hardware, such as physical-link

transceivers and antennas. It also enables users to define

custom packet formats. An attractive feature of OPNET is

its capability of recording a large set of user defined

results. Furthermore, the GUI (Graphical User Interface),

along with the considerable amount of documentation and

study cases that come along with the license are another

attractive feature of the simulator. This GUI interface can

also be used to model, graph, and animate the resulting

output. The network operator is provided with editors that

are required to simplify the different levels of modelling.

Though model parameters can be changed, the simulation

accuracy is influenced because OPNET is not open source

software. Similar to NS-2, the object-oriented design of

OPNET causes scalability problems. It does not have a

high number of protocols publicly available possibly

because of source code licensing constraints. Finally,

OPNET is only available in commercial form.
The second class of simulators are application-oriented

simulators, including EmStar [20], SENS [21], J-Sim [22],
Shawn [23], and Dingo [24].

G. EmStar

EmStar [20] is a component based, discrete-event

framework that offers a range of run-time environments,

from pure simulation, distributed deployment on

iPAQs [25], to a hybrid simulation mode similar to

SensorSim. Emstar supports the use of simulation in the

early stages of design and development by providing a

range of simulated sensor network components, including

radios, which provide the same interfaces as actual

components. It supports hybrid mode with some actual

components and some simulated components, and full

native mode with no simulated components. As in

TOSSIM, EmStar uses the same source code that runs at

each of these levels to run on actual sensors. Amongst

other simulators, such as TOSSIM, EmStar provides an

option to interface with actual hardware while running a

simulation. EmStar is compatible with two different types

of node hardware. It can be used to develop software for

Mica2 motes [26] and it also offers support for

developing software for iPAQ based microservers. The

development cycle is the same for both hardware

platforms. The next step in the development cycle

following the simulation is data replay. In this model,

EmStar uses data collected from actual sensors in order to

run its simulation. Leading directly from this, Emstar uses

the half-simulation methodology similar to SensorSim's,

where the software is running on a host machine and

interfacing with a real physical communication channels.

The final step in the development cycle is deployment.

EmStar combines many of the features of other WSNs

simulators. Its component based design allows for fair

scalability. Moreover, each aspect of the network can be

logically fine-tuned due to its development cycle design.

Because it targets a particular platform, many protocols

are already available to be used. At the deployment step

in the development cycle, only the configuration files

have to be designed. This potentially adds constraints on

the user as they must either ensure that the hardware

configuration being used matches the existing

configuration file, or they must write their own files.
The main goal of Emstar is to reduce design

complexity, enabling work to be shared and reused, and to
simplify and accelerate the design of new sensor network
applications. While not as efficient and fast as other
frameworks like TOSSIM, Emstar provides a simple
environmental model and network medium in which to
design, develop and deploy heterogeneous sensor network
applications. When used as a migration platform from
code to real sensor environment, the environment model
may be sufficient for most developers. Another drawback
of Emstar is that the simulator supports only the code for
the types of nodes that it is designed to work with.

H. SENS

SENS [21] is a customisable component-based

simulator for WSN applications. It consists of

interchangeable and extensible components for

applications, network communication, and the physical

environment. In SENS, each node is partitioned into four

main components: application, simulates the software

application of the sensor node; network, handles incoming

and outgoing packets; physical, reads sensed information;

and environment, network propagation characteristics.

Multiple different component implementations offer

varying degrees of realism. For example, users can choose

between various application-specific environments with

different signal propagation characteristics. As in

TOSSIM, SENS source code can be ported directly into

actual sensor nodes, enabling application portability.

Moreover, it provides a power module for development of

dependable applications.

SENS defines three network models that can be used.

The first successfully forwards packets to all neighbours,

the second delivers with a chance of loss based on a fixed

probability, and the third considers the chance of collision

at each node. The physical component includes the non-

network hardware for the sensor such as the power,

sensors, and actuators. At a lower level, the environment

224Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

component models the physical phenomena and the

layout. The layout model includes different types of

surfaces, each affecting radio and sound propagation in a

different way.

SENS is less customisable than many other

simulators, providing no chance to alter the MAC

protocol, along with other low level network protocols.

SENS uses one of the most sophisticated environmental

models and implements the use of sensors well. However,

the only measurable phenomenon is sound.

I. J-Sim

J-Sim [22] is a component-based discrete event

simulator built in Java and modelled after NS-2. The

design of this simulator aims at solving many of the

shortcomings of comparable object-oriented simulators

like NS-2. J-Sim uses the concept of components instead

of the concept of having an object for each individual

node. J-Sim uses three top level components: the target

node which produces stimuli, the sensor node that reacts

to the stimuli, and the sink node which is the ultimate

destination for stimuli reporting. Each component is

broken into parts and modelled differently within the

simulator; this eases the use of different protocols in

different simulation runs.

J-Sim claim has several advantages over NS-2 and

other simulators. First its component based architecture

scales better than the object oriented model used by NS-2

and other simulators. Second, J-Sim has an improved

energy model and the ability to simulate the use of

sensors for phenomena detection. Like SensorSim, there

is support for using the simulation code for real hardware

sensors. However, J-Sim is comparatively complicated to

use. While no more complicated than NS-2, the latter

simulator is more popular and accepted in the sensor

network research community and more community

support is available, therefore, more people are keen to

spend the time to learn how to use it.
Though it is scalable, J-Sim has a set of inefficiencies.

First, there is unnecessary overhead in the
intercommunication model. The second problem is
inherited by most sensor networks simulators that are built
on top of general purpose simulators, 802.11 is the only
MAC protocol that can be used in J-Sim. Finally, Java is
possibly less efficient than many other languages.

J. Dingo

Dingo [27] provides a workbench for prototyping
algorithms for WSNs taking a top-down design
methodology. Having no target platform means the full
functionality of a programming language can be used. This
eases the design process as prototype algorithms can be
tested before optimisation for the target platform. Dingo
consists of a fixed API, with customisable internals. It has
a simple graphical user interface and a set of base classes,
which are extended by the user to create simulation. Each
simulated sensor node runs in its own thread and

communicates using the same protocols that would be
deployed on a physical node. Sensors are modelled using a
pool of concurrent, communicating threads. Individual
sensors are able to: (1) Gather and process data from a
model environment; (2) Locate and communicate with
their nearest neighbours; (3) Determine whether they are
operating correctly and act accordingly to alter the
network topology in case of faulty nodes being detected.
Nodes may be configured differently to simulate a
heterogeneous sensor network. Dingo comes with a set of
application level routing packages including simple multi-
hop flooding, MuMHR [28] and LEACH [29].

Dingo features a significant improvement in the

simulation performance by giving the option to split the

visualisation from the simulation. It provides tools for the

simulation and deployment of high-level, Python code on

real sensor networks. For example, Dingo-boom provides

a two-way interface between MoteIV's Boomerang class

motes and Dingo. Dingo-top is another tool which is used

to dump network topology data to a text file and generate

a graphical representation of that topology. Furthermore,

Dingo has several features in the form of plugins. These

can be activated/deactivated on the plugin menu.

As with SensorSimII, Dingo provides an extensible

visualisation framework that aims at easing the life for

sensor network debugging, assessment, and understanding

of the software by visualising the sensor network

topology, the individual node state, and the transmission

of the sensed data. Dingo comes with an interface

between the simulation environment and different

hardware platforms, for example the Gumstix [30]

platform. Also, Dingo allows mixed-mode simulation

using a combination of real and simulated nodes. In

Dingo, nodes have the ability to obtain their sensed data

from a database or graphical objects like maps; this

improves the fidelity of simulations as it makes it possible

to check the simulation results against the real data.

Dingo focuses on the protocols and algorithms for

higher layers of network state but it does not directly

support sensor networks at the physical layer. It has major

drawbacks which limit its functionality. Most of these

drawbacks are due to the incomplete nature of the tool.

These drawbacks are: (1) The lack for Media Access

Control or MAC layer, communications to be handled by

point-to-point systems. (2) No collision management

procedure, partly due to the absence of the MAC layer.

K. NS-3

NS-2 [31] is an object-oriented discrete event

simulator targeted at networking research. It is an open

source network simulator originally designed for wired,

IP networks. The NS-2 simulation environment offered

great flexibility in studying the characteristics of WSNs

because it includes flexible extensions for WSNs. NS-2

has a number of limitations: (1) It puts some restrictions

on the customisation of packet formats, energy models,

MAC protocols, and the sensing hardware models, which

225Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

limits its flexibility; (2), the lack of an application model

makes it ineffective in environments that require

interaction between applications and the network

protocols. (3) It does not run real hardware code; (4) It

has been built by many developers and contains several

inherent known and unknown bugs. (5) It does not scale

well for WSNs due to its object-oriented design; (6) Using

C++ code and oTcl scripts makes it difficult to use.

To overcome the above drawbacks the improved NS-3

simulator [10] was developed. NS-3 supports simulation

and emulation. It is totally written in C++, while users

can use python scripts to define simulations. Hence,

transferring NS-2 implementation to NS-3 require manual

intervention. Besides the scalability and performance

improvements, simulation nodes have the ability to

support multiple radio interfaces and multiple channels.

Furthermore, NS-3 supports a real-time schedule that

makes it possible to interact with a real systems [10]. For

example, a real network device can emit and receive NS-3

generated packets.

L. Shawn

Shawn is an open source discrete event simulator for
WSNs. It is written in C++ and can be run in Linux/Unix
and Windows environments. Shawn aims to simulate
large- scale WSNs, where physically accurate simulations
fail. The idea behind Shawn is to use abstract models to
simulate the affects of a phenomenon rather than the
phenomenon itself [23]. Users of Shawn can adapt the
simulation to their needs by selecting the application
preferred behaviour. The authors claim that Shawn
provides a high abstraction level that hides a lot of the
simulation details. Users are given full access to the
communication graph, which allows them to
observe nodes and their data [23]. However, there are
some limitation in Shawn, for instance: Visualization
output is not supported, MAC module is not extent, and
also users need to do much programming [32].

III. DISCUSSION

Generally, real WSNs testbeds provide a more

accurate, realistic, and replicable validation mechanism

for algorithms and protocols. However, the cost of

deployment and maintenance of large-scale testbeds limits

their applicability. Moreover, the wide variety of

available sensor hardware can make it rather difficult to

replicate any results produced by real testbeds. Besides,

in some applications, where dangerous conditions are

being studied, e.g. chemical pollution, a real testbed is an

unwanted choice. Out of these restrictions came the need

for simulation as a tool for validating and testing

algorithms/protocols. As shown in Section II, simulation

tools are widely available and used by WSNs researchers.

However, most of the existing simulators are incomplete

and follow different approaches to investigate different

problems. The variety of existing simulation tools has led

to accuracy and authenticity issues that concern even the

best simulators available today. Such issues also make it

even more difficult to replicate and compare evaluation

results from competing simulation systems. Simulation

drawbacks also include the lack of visualisation tools,

GUI's, poor documentation, absence of examples,

amongst others.

To solve the dilemma of having an accurate but

scalable and low-cost prototyping solution, we suggest the

use of mixed-mode simulation as an effective midrange

solution. Mixed-mode simulation is the integration of a

simulated environment and a real testbed to improve both

the accuracy and scalability of testing results. In other

words, the mixed-mode simulation enables the simulation

of algorithms partially in software and partially in a real

hardware WSN testbed. A small number of simulation

tools like NS-3 and Dingo already support this mode of

simulation. This simulation mode allows researchers to

compare the results of running the same algorithm in both

simulation and on physical sensor hardware; the

comparison allows the inclusion or the modelling of more

realistic conditions in the simulation environment. A

flexible mixed-mode simulator should support integration

of heterogeneous sensor devices. Also, the simulation-

testbed interaction remains a challenging task that needs

to be addressed. For instance, the authors of Dingo

describe in [33] a new Python library that implements

synchronous message-passing concurrency to improve

coordination between many hosts.

Yet, the choice of a suitable simulator is a difficult

decision. There is no 'best' simulator; each simulator has

specific features that work well in certain circumstances.

The selection of a simulator depends mostly on the

algorithmic feature to be evaluated. High level simulators

like NS-2 gives an estimation about the applications and

some middleware behaviour. Mid-level simulators, e.g.

OMNET, provides more information about the physical

layer components that are simulated without giving too

much details. Low-level simulators provide accurate bit

level estimations of the hardware as well as software

performance. Regardless of the simulator, any

simulations will always have weaknesses either due to

non-realistic assumptions or modelling errors that may be

present in the algorithm itself. Therefore, developing

formal methods, e.g. using graph theory [34], to verify the

correctness of new algorithms and protocols is also part of

the testing or evaluation research.
Table 1 summarise and compares the reviewed

simulation tools.

226Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

TABLE 1. SUMMARY ABOUT REVIEWED SIMULATION TOOLS

Simulators
Programming

Language
GUI

General or

Specific

Simulator

Open

Source
Main Features Limitations

SensorSim C++ No

Specifically

designed
for WSNs

Yes

-Power and communication protocol

models Sensing channel and sensor

models

-Scenario generation

-Support for hybrid simulations

-Limited in SensorSim project realism

-Consider limited resources of sensor
nodes.

-Simulates the complete WSN protocol

stack

TOSSIM C++ Yes

Specifically

designed

for WSNs

Yes

-Can be targeted to motes without

modification

-Nodes share the exact same code image

-The developed algorithms can be tested

on a target platform

-Makes several assumptions about the

target hardware platform

-Focusing on making some behaviour

accurate while simplifying others

TOSSF C++ Yes

Specifically

designed

for WSNs

Yes

-Primary focus on scalability

-Support heterogeneous nodes and

dynamic topology

-Long test-debug cycles

GloMoSim C/Parsec Yes General Yes

-Supports protocols designed purely for

wireless networks

-Built using a layered approach.

-Uses standard APIs between different

simulation layers.

-Not scapable of simulating sensor

networks accurately

-does not support phenomena occurring

outside of the simulation environmen

Qualnet C/C++ Yes General
Comm-

ercial

-Comprehensive set of advanced wireless

modules and user-friendly tools
- The annual license is expensive

OPNET C/C++ Yes General
Comm-

ercial

-Uses a hierarchical model to define each

characteristic of the system

-Capability of recording a large set of user

defined results

- scalability problems

EmStar C Yes

Specifically

designed

for WSNs

Yes

-Supports hybrid mode

-Provides an option to interface with

actual hardware while running a

simulation

-Compatible with two different types of

node hardware

-Supports only the code for the types of

nodes that it is designed to work with

SENS C++ No

Specifically

designed

for WSNs

Yes
-Multiple different component

implementations

-Less customisable

-Only measurable phenomenon is sound

J-Sim Java Yes

Specifically

designed

for WSNs

Yes

-Ability to simulate the use of sensors for

phenomena detection

-Support for using the simulation code for

real hardware sensors

-Comparatively complicated to use

-Unnecessary overhead in the

intercommunication model

Dingo Python Yes

Specifically

designed

for WSNs

Yes

-Full functionality of a programming

language can be used

-Option to split the visualisation from the

simulation

-Does not directly support sensor

networks at the physical layer

-Incomplete nature of the tool

NS-3 C++ No General Yes

-Supports simulation and emulation

-Supports a real-time schedule

-Ability to support multiple radio

interfaces and multiple channels

- Some restrictions on the

customisation.

-Lack of an application model

-Does not run real hardware code

-Does not scale well for WSNs

Shawn C++ No

Specifically

designed

for WSNs

Yes

-Able to simulate large- scale WSNs

-Ability of selecting the application

preferred behaviour

-Full access to the communication graph

-Does not support visualization output

-MAC module is not extent

-Lots of programing is required

227Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

IV. CONCLUSION

This paper provides a comprehensive review of

simulation tools that are widely used in the field of

WSNs. The aim is to help researchers choosing the most

appropriate simulation tools to evaluate their work.

There are a variety of simulation tools with different

capabilities. However, the authors believe that they are

insufficient for testing and evaluating WSNs algorithms.

This is because the simulation results can be unrealistic

due to the incomplete or inaccurate simulation models.

An immediate measure is to develop unified models, e.g.

energy, for different simulators. This allows realistic

comparisons between results produced by different

simulators to be made. To improve authenticity and

accuracy of simulation results, it is important that

researchers make their simulation code available for

download by other researchers. Moreover, researchers

should dedicate more space in their papers to clearly

describe their simulation setup. On the other hand, large-

scale real testbeds are still infeasible due to their cost and

complexity. It can be easily observed that the trend in the

WSNs field is to use mixed-mode simulation as an

interim solution. Finally, we believe that theoretical

validation of algorithms can serve as a good means for

evaluating many WSNs algorithms.

REFERENCES

[1] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: accurate

and scalable simulation of entire TinyOS applications,” SenSys

'03: Proc. of the 1st int.conference on Embedded networked

sensor systems, 2003, pp. 126-137.

[2] P. Levis, et al., “TinyOS: An Operating System for Sensor

Networks,” In Ambient Intelligence, 2005.

[3] IARIA, “The Fifth International Conference on Sensor

Technologies and Applications, SENSORCOMM 2011,”

2006-2011; http://www.iaria.org/conferences2011/SENSO

RCOMM11.html.

[4] S. Kurkowski, T. Camp, and M. Colagrosso, MANET

Simulation Studies: The Current State and New Simulation

Tools, The Colorado School of Mines, 2005.

[5] E. Larsen, et al., “iOLSR: OLSR for WSNs Using

Dynamically Adaptive Intervals,” The Fifth Int.l Conference

on Sensor Technologies and Applications, 2011, pp. 18 to 23.

[6] K. Shi, Z. Deng, and X. Qin, “TinyMQ: A Content-based

Publish/Subscribe Middleware for Wireless Sensor Networks,”

Proc. SENSORCOMM 2011, The Fifth Int. Conference on

Sensor Tech. and Applications, 2011, pp. 12 to 17.

[7] R. Behnke, J. Salzmann, P. Gorski, and D. Timmermann,

“HDLS: Improved Localization via Algorithm Fusion,” The

Fifth Int. Conference on Sensor Tech. and Applications, 2011.

[8] S. Feldman and M. Feldman, “Tree-Based Organization for

Very Large Scale Sensor Networks,” The Fifth Int. Conference

on Sensor Technologies and Applications 2011, pp. 45 to 50.

[9] F. Derogarian, J. Ferreira, and V. Tavares, “A Routing

Protocol for WSN Based on the Implementation of Source

Routing for Minimum Cost Forwarding Method,” Proc.

SENSORCOMM 2011, The Fifth International Conference on

Sensor Technologies and Applications, 2011, pp. 85 to 90.

[10] nsnam, “NS-3,” 2011; from http://www.nsnam.org/.

[11] S. Park, A. Savvides, and M.B. Srivastava, “SensorSim: a

simulation framework for sensor networks,” MSWIM '00:

Proceedings of the 3rd ACM int. workshop on Modeling,

analysis and simulation of wireless and mobile systems, 2000.

[12] C. Ulmer, “Wireless Sensor Probe Networks-SensorSimII,”

2007.

[13] xbow, “Mica Mote,” 2007.

[14] L.F. Perrone and D.M. Nicol, “A Scalable Simulator For

TinyOS Applications,” Simulation Conference, 2002.

Proceedings of the Winter, vol. 1, 2002, pp. 679 - 687.

[15] A. Gahng-Seop, T.C. Andrew, V. Andras, and S. Li-Hsiang,

“Supporting Service Differentiation for Real-Time and Best-

Effort Traffic in Stateless Wireless Ad Hoc Networks

(SWAN),” IEEE Transactions on Mobile Computing, vol. 1,

no. 3, 2002, pp. 192-207; DOI 10.1109/tmc.2002.1081755.

[16] X. Zeng, R. Bagrodia, and M. Gerla, “GloMoSim: a library for

parallel simulation of large-scale wireless networks,” PADS

'98: Proceedings of the twelfth workshop on Parallel and

distributed simulation, 1998, pp. 154-161.

[17] D. Curren, “A survey of simulation in sensor networks,” 2005.

[18] S.N. Technologies, “QualNet Simulator,” from

http://www.scalable-networks.com/products/qualnet/.

[19] X. Chang, “Network simulations with OPNET,” WSC '99:

Proceedings of the 31st conference on Winter simulation,

1999, pp. 307-314.

[20] L. Girod, et al., “Emstar: A software environment for

developing and deploying heterogeneous sensor-actuator

networks,” ACM Trans. Sen. Netw., vol. 3, 2007, pp. 13.

[21] S. Sundresh, W. Kim, and G. Agha, “SENS: A Sensor,

Environment and Network Simulator,” The 37th Annual

Simulation Symposium (ANSS37), 2004.

[22] A. Sobeih, et al., “J-Sim: A Simulation Environment for

Wireless Sensor Networks,” ANSS '05: Proceedings of the

38th annual Symposium on Simulation, 2005, pp. 175-187.

[23] S.P. Fekete, A. Kroller, S. Fischer, and D. Pfisterer, “Shawn:

The fast, highly customizable sensor network simulator,” Proc.

Networked Sensing Systems, 2007. INSS '07. Fourth Int.

Conference on, 2007, pp. 299-299.

[24] S. Mount, R.M. Newman, E. Gaura, and J. Kemp, “SenSor: an

Algorithmic Simulator for Wireless Sensor Networks,” In

Proceedings of Eurosensors 20, vol. II, 2006, pp. 400-411.

[25] hp, “iPAQs,” 2000.

[26] xbow, “Mica Mote,” 2012.

[27] S. Mount, “Dingo Wireless Sensor Networks Simulator,”

2008.

[28] H. Mohammad, K. Alexander, and G. Elena, “MuMHR: Multi-

path, Multi-hop Hierarchical Routing,” SENSORCOMM '07:

Proceedings of the 2007 International Conference on Sensor

Technologies and Applications, 2007, pp. 140-145.

[29] W. Heinzelman, et al., “Energy-Efficient Communication

Protocol for Wireless Microsensor Networks,” Proceedings of

the 33rd Int. Conference on System Sciences, 2000.

[30] Gumstix.com, “Gumstix way small computing,” 2007.

[31] NS-2, “The Network Simulator,” 2007.

[32] E. Kolega, V. Vescoukis, and D. Voutos, “Assessment of

network simulators for real world WSNs in forest

environments,” Proc. Networking, Sensing and Control

(ICNSC), 2011 IEEE Int. Conference on, pp. 427-432.

[33] M. Hammoudeh, “Modelling Clustering of Sensor Networks

with Synchronised Hyperedge Replacement,” ICGT '08:

Proceedings of the 4th international conference on Graph

Transformations, 2008, pp. 490-492.

[34] S. Mount, M. Hammoudeh, S. Wilson, and R. Newman, “CSP

as a Domain-Specific Language Embedded in Python and

Jython,” Proc. Comm. Process Architectures IOS Press, 2009.

228Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

