
A Survey of Modeling Techniques
for Wireless Sensor Networks

John Khalil Jacoub
University of Ontario

Institute of Technology
Oshawa, Ontario, Canada

john.khalil@uoit.ca

Ramiro Liscano
University of Ontario

Institute of Technology
Oshawa, Ontario, Canada

ramiro.liscano@uoit.ca

Jeremy S. Bradbury
University of Ontario

Institute of Technology
Oshawa, Ontario, Canada
jeremy.bradbury@uoit.ca

Abstract—Wireless Sensor Networks (WSNs) monitor envi-
ronment phenomena and in some cases react in response to the
observed phenomena. The distributed nature of WSNs and the
interaction between software and hardware components makes
it difficult to correctly design and develop WSN systems. One
solution to the WSN design challenges is system modeling. In
this paper we present a survey of 9 WSN modeling techniques
and show how each technique models different parts of the
system such as sensor behavior, sensor data and hardware.
Furthermore, we consider how each modeling technique rep-
resents the network behavior and network topology. We also
consider the available supporting tools for each of the modeling
techniques. Based on the survey, we classify the modeling
techniques and provide future directions to enhance the use
of modeling in the design of WSNs.

Keywords-Wireless Sensor Networks (WSN), Modeling, Code
Generation, Model Checking, Analysis.

I. INTRODUCTION

A WSN consists of small wireless units called motes,
which are attached to a specific type of sensors. The sen-
sors measure an environment phenomenon (e.g., humidity,
temperature, or soil moisture) [6] and the measured value
is expressed as an analog signal generated by the sensors.
The analog signal is converted to a digital signal within the
mote and transmitted wirelessly to a mote that has expressed
interest in that data [21]. This mote is generally called a
collector node. The collector mote could also be attached to
a gateway to facilitate the transfer of data between the WSN
and other devices on more conventional networks like IP.
Additionally, some WSN applications have been extended to
not only sense the phenomenon but also to react in response
to the sensed data. These networks are typically referred to
as Wireless Sensor Actor Networks (WSANs) [9].

WSN systems can be complex and many different chal-
lenges can arise during the design of a WSN. One chal-
lenge is the distribution of nodes and sensors in a physical
environment that may result in lost and delayed data. A
second challenge is the inclusion of real-time behavior
within a distributed WSAN. Many WSANs require real-time
communication and control when a specific phenomenon is
observed [9]. A third challenge is memory management

within the sensor nodes [6]. The small size of the nodes leads
to physical limitations that restrict the available memory and
therefore memory management is often required. A fourth
challenge is operational reliability. WSNs often consist of
self-powered nodes in environmentally challenging domains
imposing strong reliability requirements. For example, there
is a requirement to maximize the life-time of a network
because the nodes have a limited power source [20]. A fifth
challenge is improving the network performance, i.e. reduce
network delays, packet loss, while increasing throughput.
Network performance improvements may involve the use
of concurrency and event driven communication, which can
add additional complexity to the system.

The design of WSN systems usually occurs at the im-
plementation level and does not involve design at higher
levels of abstraction. This leads to a decrease in code
portability and to platform-specific implementations [15].
A WSN system produced using this approach is prone to
both design and implementation errors and very challenging
code debugging [16] (user interfaces to sensor nodes are very
limited so even simple text output is challenging.) If errors
are not detected during the implementation and verification
stages of development then they may appear once the system
is deployed and is operational. The nodes of an operational
WSN application are generally difficult to access once they
are deployed in their working locations [20].

The challenges of developing WSN systems often benefit
from higher level-design and analysis. The use of modeling
languages and techniques can drive the design through
different abstraction layers and analysis tools can help
refine the model [15]. In this paper we survey 9 modeling
techniques for WSNs. For each technique we examine how
it models the WSN at the node and system-level.

The rest of the paper is organized into six sections.
Section II gives an overview of the modeling technique
reviewed in this survey. Section III discusses the modeling
of WSN elements including sensors, nodes and hardware
while Section IV discusses modeling at the system level.
Section V discusses the supporting tools and the importance
of each tool for WSN design. Finally, Section VI provides

103

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

conclusions and future research directions.

II. BACKGROUND

In this section, we provide an overview of each of the
modeling techniques included in our survey (see Table I).
Some of those modeling techniques have been used in the
application development process, while others take WSNs
as a case study for their modeling approach. Some use an
appropriate notation to support the aim of the modeling,
such as UML,while others use their own notation, such as
the Insense technique [6]. The survey discusses the details of
each modeling techniques, but not the contribution of each
notation in the area of modeling.

The techniques use different basic elements (e.g., chan-
nels, processes, modules, components) to express a WSN as
a model. A channel is used to represent the communication
between two elements of a WSN. For example, channels can
represent the characteristics of sensor-node communication,
node-node communication and node-gateway communica-
tion. Processes, modules, and components are used to rep-
resent the sensors and nodes of a WSN. We will describe
details of the modeling elements later when we discuss the
individual modeling techniques.

The modeling techniques surveyed also vary in terms of
the scope of modeling. For example, some techniques are
intended to model a single node or communication between
a pair of nodes while others are intended to model the entire
WSN.

A. High-Level SDL Models (HL-SDL)

HL-SDL is a modeling language that uses the Specifica-
tion and Description Language (SDL), which is normally
used to model and simulate communication protocols [12]
.SDL has been adapted by Dietterle, et al., to model TinyOS
components using SDL processes (i.e., extended finite state
machines) [10]. The system is modeled as a collection of
channels and processes. The model can be used to generate
nesC source code, which is commonly used in WSNs based
on the TinyOS environment. While generating nesC code,
each process (which is the smallest unit of the model)
represents a component in TinyOS [13]. In their work,
Dietterle et al. used manual optimization to enhance the
generate code [10].

B. Insense

Dearle et al. use the Insense modeling language to create
a component-based model for a WSN [6]. Components in
Insense are concurrent and they communicate synchronously
via directional channels that are used to abstract away from
low-level synchronization and communication issues [6].
Insense is built in the Contiki operating system(Contiki is a
popular operating system used for WSN) [11]. The Insense
model has a translator that produces C source code that
can be used to calculate important details such as worst

Approach Notation Modeling
Scope

Modeling
Elements

HL-SDL [10] SDL Node processes-
channels

Insense [6] Insense
Language

Node components,
channels

MathWorks
[16]

State Diagram
and C

Node-
Network

state-charts,
communication
medium

MDEA [15] UML Node-
Network

components
(wireless link as
a class)

PM [19] Promela Network processes, chan-
nel

SensorML [4] XML -
source code
(optional)

Node components-
processes model

SystemC-
AMS [21]

Block diagram
- C++

Node-Node
Communica-
tion

block diagram,
source code

UM-
RTCOM [9]

CORBA Node-
Network

components,
channels

XRM [8] eXtended
Reactive
Modules

Node-
Network

modules

Table I
OVERVIEW OF MODELING TECHNIQUES

case execution times (WCETs) and worst case space (WCS)
within a given WSN [6].

C. MathWorks Modeling Approach

The framework aims to design, simulate, and generate the
code for WSNs. The node behavior is modeled as a param-
eterized Stateflow block. Nodes in the MathWorks approach
also containing timing and random number generators that
are used for simulation. Additionally, the communication
medium, which is used to define the connectivity between
the nodes, is represented at a lower abstraction level and is
implemented in the C language. By leveraging MathWorks
tools such as animated state charts, chart displays, scopes,
and plots, analysis of the WSN can be performed. According
to the results the model can be refined. The final stage is to
generate the WSN code using the Target Language Complier
(TLC) which can generate C code for MANTIS [2] and nesC
code for TinyOS [13]. The Mathworks approach has been
used successfully to generate the code for Energy Efficient
and Reliable In-Network Aggregation (EERINA) [17] algo-
rithm for clustered sensor networks.

D. Model Driven Engineering Approach (MDEA)

Losilla, et al. use UML and a Model Driven Engineering
(MDE) approach that includes three modeling layers:

• WSN Domain Specific Modeling: a meta-model that is
created by a domain expert.

• Component-based Platform Independent Models
(PIMs): A UML-like language primarily composed of
activity diagrams and state-machine diagrams.

104

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

• NesC Platform Specific Model (PSM): used with the
UML PIMs to generate the NesC source code.

Transformation rules control moving from one modeling
layer to another. Moreover, refinement can occur after ev-
ery transformation to improve the generated model. This
MDE approach is supported by the Eclipse IDE as well
as a number of Eclipse plug-ins (e.g., MOFScript) that are
responsible for automating the transformation process. The
MDE approach has been used to generate the nesC code for
the MITRA WSN application which was designed for the
precision agriculture applications [15].

E. Promela Model (PM)

Modeling an Ad-Hoc Sensor Network in Promela is an
example of using the input language of a model checker
to specify a WSN. The model checker used is Spin and
the input language is Promela. The Promela model includes
the physical location of all the dynamic nodes and supports
adding and removing nodes as well as changing their phys-
ical location. The Spin model checker is used to perform
a network connectivity check. Specifically, the physical
location data of the nodes is analyzed in conjunction with
the data about the coverage range of the sensors [19].

F. SensorML

SensorML is an XML based language that supports mod-
eling each sensor by specifying the sensor’s meta-data (e.g.,
sensor Id, sensor type). The model includes representations
of the physical elements (e.g., the sensor and actuators)
and the non-physical element (e.g., mathematical operation
within the sensor). All of the elements are modeled as
processes that are linked together explicitly through inputs
and outputs. Linked sequences of processes form process
chains that correspond to the behavior inside a single
node [4]. Sensor Web Language (SWL) is a simple version
of SensorML and is used in the WSNs deployments to
achieve the interfaces between the network elements base
station, sensors, and web browser. Additionally, the language
can be used to achieve the interface between two or more
different WSNs [18].

G. SystemC-AMS

SystemC-AMS combines C++ with block diagrams to
model the WSN and simulate the system. For each node,
SystemC-AMS models the Analog to Digital Converter
(ADC), the microprocessor, and the channel. The goal of
SystemC-AMS, is to calculate the Signal to Noise Ratio
(SNR) for the ADC and Bit Error Rate (BER) for the
communication channel between two nodes [21].

H. UM-RTCOM Model

UM-RTCOM is a real-time component based modeling
framework written in CORBA that is composed of sensors,
actors and a coordinator (the coordinator in located on a base

station). Actors gather data from groups of sensors based
on their physical locality and respond to a phenomenon
identified by the coordinator [9]. Sensors communicate with
actors and actors communicate with the coordinator using
channels. Communication via a channel is modeled as a
tuple. ”A tuple is a sequence of fields with the form: (t1, t2,
..., tn) where each field ti can be: a TC identifier (or) a value
of any established data type of the host language where the
model is integrated” [9]. A UM-RTCOM model can also be
used for several kinds of analysis WCET, deadlock freedom,
and verification of liveness properties. The communication
channel protocol modeled in UM-RTCOM has been tested in
an actual sensor network deployment by Barbaran et al. [1].
The deployment shows the improvement of the middleware
overhead compared to another deployment where the motes
send the sensed data periodically to the actors.

I. eXtended Reactive Modules (XRM)

XRM is an extension language of Reactive Modules
(RMs). Demaille, et al. used WSNs as a case study to
evaluate the XRM modeling language [8]. The case study
successfully used XRM to model multiple nodes as modules
and was able to support several network issues such as com-
munication capability, memory, and energy consumption.
Model checking of XRM is possible via a transformation
to the original RM language. RM modules can be used with
the model checking tools PRISM and APMC [7].

III. MODELING AT THE NODE AND SENSOR LEVEL

In this section, we consider how the different modeling
techniques represent WSN elements, including nodes, sen-
sors, and hardware. In particular, we consider the modeling
of node/sensor behavior, sensor data, and hardware compo-
nents (see Table II).

The node behavior column tries to capture which partic-
ular characteristics that an approach focused on modeling.
The sensor and hardware modeling column considers if the
actual WSN hardware, such as the ADC, microprocessor,
and the wireless channel are included in a model. Hardware
modeling also considers the types of sensors that a modeling
technique can represent.

A. Node Behaviors

Most of the modeling techniques use a form of
component-based modeling to represent a sensor node. The
WSN behavior is modeled by specifying the component’s
internal behavior, component to component interactions,
and the communication channel’s characteristics. It should
be noted that the approaches could be divided into two
distinct types. Those that focused on the augmentation of
the models to capture particular features such as concur-
rency, event-driven behavior, and real-time behavior and
those that leveraged standard models like state space and
procedural coding that were later used for code generation

105

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

or performance analysis. This seperation also lets us clearly
see those approaches that have included concurrency, event-
driven behavior, and real-time behavior, since these three
features are crucial for WSN design.

The only technique that we felt did not model node behav-
ior was the paper using the Promela Model Checker [19].
The authors of this work decided to simply focus on the
modeling of network connectivity as opposed to including
any significant modeling of the node behaviors. Promela
though can be used to model and analyze node bahaviors.

B. Modeling Sensors and Hardware

Most of the modeling techniques surveyed can be used
to create a platform independent model. However, even in a
platform independent model there is a necessity to include
some of the hardware details.

One of the reasons for including the hardware details is
that the software in the nodes of a WSN is tightly coupled to
the hardware elements of the node. Therefore the binding of
software and hardware components should be represented in
the model. An example of a hardware-software binding is the
interaction between the sensor (e.g., humidity, temperature
or moisture) and the software component that handles the
readings. The sensor type is modeled as a component
that uses a communication channel to transfer data to the
software components [6].

Another reason that hardware information may need to
be represented is to be able to generate source code from
the model. Generated source code is interacting with the
node hardware (timers, ports, sensor types) and therefore
the model has to be aware of the hardware components in
order to generate the correct code [15], [10].

Finally, hardware representation also helps in the analysis
stage. For instance the ADC circuit has to be modeled to
calculate the SNR, the communication channel has to be
model to calculate the BER value [21].

Approach Node Behaviors Sensors & Hardware
Modeling

HL-SDL [10] concurrency, event-
driven

-

Insense [6] concurrency, real-time sensor types
MathWorks
[16]

procedural, state space -

MDEA [15] procedural, state space timers, ports, wireless
channel

PM [19] - -
SensorML [4] event-driven sensor types
SystemC-
AMS [21]

procedural ADC, microprocessor,
wireless channel

UM-
RTCOM [9]

concurrency, real-time,
event-driven

-

XRM [8] procedural, state space -

Table II
MODELING OF WSN ELEMENTS

IV. MODELING AT THE SYSTEM LEVEL

This part of the paper focuses on modeling contributions
to the distributed nature of sensor networks. The modeling
techniques deal with various distribution issues, such as
network behavior and topology modeling. The modeling
techniques that deal with the network system are shown in
Table III.

A. Network Behavior

Modeling network behavior in a WSN is crucial because
many important performance values are based on the net-
work. For example, the trade-off between packet loss and
power. Due to the fact that the node has limited power re-
sources, it is common to use a power management algorithm
that controls the wake up state of a node from active to
sleeping and vice versa. Packages can be lost if this is not
done properly. XRM for example, calculates the package
delivery probability. This can be helpful for applications
in which the package deliverance is an important factor.
Also related to power management, modeling the power
consumed in the wireless communication process between
the nodes is an important factor in increasing the life-time
of the WSN. XRM models the power consumed by each
wireless communication channel. Every time the node model
is provoked to send or receive a signal, a specific amount is
subtracted from the energy level [8].

Another example where modeling at the network behavior
is important is in capturing the deployment and interaction of
the software components across the network. For example,
MDEA divides the software elements into two groups, those
residing on the nodes and those residing on the gateway. The
generated code should guarantee the interaction between the
node and the gateway [15].

In a similar fashion UM-RTCOM models the network
elements (sensors, actors, and the gateway) as three virtual
machines (VMs), where each VM models a single element.
The system behavior is modeled by the interaction between
the three VMs [9].

B. Topology Modeling

This section focuses on how the topology is modeled,
in the other words how the physical locations of the nodes
have been modeled. The topology of WSN systems can be
dynamic or static. The static topology represents the nodes
in a fixed location while the dynamic topology represents
the nodes while they are in a moving state. Ad-Hoc SNMC
captures the dynamic topology by recording the physical
location of the nodes in a Location Manager (LM). While the
nodes change their physical location, they send the updated
location to the LM. Through the use of model checking, the
nodes connectivity can be checked [19]. Additionally, based
on the modeling target, the technique models the number
of hops in the network design. For instance, SystemC-AMS
analyzes the communication channel between two nodes,

106

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

Approach Network Behavior Topology Modeling
HL-SDL [10] - -
Insense [6] - -
MathWorks
[16]

Node/base station inter-
action

Single hop, static topol-
ogy

MDEA [15] Node/base station inter-
action

-

PM [19] Nodes connectivity Multi hop, dynamic
topology

SensorML [4] - -
SystemC-
AMS [21]

- Single hop, static topol-
ogy

UM-
RTCOM [9]

Nodes/actors/base
station interaction

Single hop, static topol-
ogy

XRM [8] Power management-
wake up states

Single hop, static topol-
ogy

Table III
MODELLING AT THE SYSTEM LEVEL

such that the model deals with single hop communication
issues between two nodes.

XRM is an example of modeling for static topologies. The
topology is modeled as a grid location. Each node location
is modeled as an X-Y variable [8].

In MathWorks, the framework is able to model the static
topology by modeling the nodes with state chart and the
communication medium which is implemented in C, models
the connectivity between the network node [16]. In the UM-
TRCOM model, single hop communication is used between
the network nodes because of the application requirements
and nature of the problem. behavior is modeled by the
interaction between the three VMs [9].

V. SUPPORTING TOOLS

Almost all of the modeling techniques surveyed offers
some tools to support the design of WSNs. In this section we
discuss support tools that include code generation, execution
and analysis, and model checkers (see Table IV).

A. Code Generation

Code generation is the process of generating source code
from a model or another source code representation. Tools
for generating source code from WSN models are beneficial
with respect to design for two main reasons:

1) Implementing the source code for the nodes is tedious,
time consuming and requires a lot of time and effort
from the developers.

2) Debugging the design at the source code level is also
a very challenging and time consuming process.

Modeling can help to solve these problems by designing
the system at higher abstraction layers and generating the
target code from that layer [15]. The simplicity of the
code generation process depends on the degree of similarity
between the modeling notation and the generated code
notation. The Mathwork technique generates nesC code and
C code from ANSI C modeling notation. Generation of C

Approach Code
Generation

Model
Checking

Execution &
Analysis

HL-SDL [10] NesC - WCET
Insense [6] C Spin

(Channel
protocol)

WCS

MathWorks
[16]

NesC, C - functional
analysis

MDEA [15] NesC - -
PM [19] - Spin (Con-

nectivity)
-

SensorML [4] JavaBeans [14] - -
SystemC-
AMS [21]

- - BER, SNR

UM-
RTCOM [9]

- - Deadlock,
WCET

XRM [8] - Prism, APMC execution, de-
bugging

Table IV
SUPPORTING TOOLS

code is developed through minor changes in the modeling
notation versus the generation for nesC needs a lot of the
changes for ANSI C to generate the proper code [16].

One criticism of code generation tools is that the code
produced is not as efficient as hand-written source code.
Manual optimization by the user is one solution to achieving
better performance from generated source code [16]. An
example of manual optimization of WSN source code is
modifying the communication between the components from
asynchronous in the model to synchronous in the target
platform. In addition to manual optimization of the generated
source code, simulation can be used at the model level to
refine the model (with respect to performance) prior to code
generation [10].

Our survey reviewed four modeling techniques which
are capable of generating source code: MDEA, HL-SDL,
Insense and MathWorks. MDEA and HL-SDL can generate
nesC code for WSNs [15]. MathWorks generates nesC as
well as C code that executes under the MANTIS operating
system [16] while Insense generates C code [6].

B. Model Checking

Model checking is a formal methods technique for soft-
ware engineering [5]. A model checker takes as input a
model of a system and a property specification. The model
is converted into a finite state model and the model checker
uses an exhaustive state space search to verify the specifica-
tion. The model checker will determine if the model satisfies
the specification. If it does not, than a counter example (error
trace) may be provided.

Applying model checking to WSN models allows the
designer to verify that the design is correctness as well as
detect potential errors. In response to errors, the model can
be modified and the design improved prior to implementa-
tion. Model checking for WSNs can be classified as direct
and indirect model checking. Direct model checker occurs

107

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

when a model checker exists that can take the WSN model as
input. An example of direct model checking is in PM where
the modeling language, Promela, is also the input language
for the model checker Spin [19].

Indirect model checking occurs when no model checker
exists for the WSN modeling language and model transfor-
mation is required in order to transform the WSN model to a
language that can be input to a model checker. For example,
XRM models need to be transformed into RM in order to
be used with the model checkers PRISM and APMC [8].
A drawback of indirect model checking approaches such as
the one used in XRM is that the model checking results
are given with respect to the RM model and need to be
transformed back into an XRM form. The challenge of
transforming between the WSN modeling language and the
model checker input language is know as the semantic
gap problem. Another example of indirect model checking
is in IM where the authors manually created a Promela
model of the component communication channel in order to
verify the correctness of the communication protocol. Their
verification identified an error that lead to a modification to
the original Insense model [20].

Model checking has also been used to check the network
topology of WSNs [3]. However, we have excluded this
work from our survey since our primary focus is on software
design.

C. Model Execution and Analysis

In addition to code generation and model checking we
also consider other tool support including tools that execute
and analyze the WSN models. Model execution refers to
the execution or interpretation of the WSN design at the
model level. XRM is the only techniques in our survey
supports model execution. The XRM compiler, a domain
specific compiler, allows for model execution and debugging
as well as model optimizations (e.g., dead code removal) [8].
Model analysis includes a variety of static and dynamic
techniques and a number of the approaches in our survey
include some kind of analysis tool. We will not discuss some
of the analysis provided by these tools.

Real-time behavior is an important system requirement for
WSANs and real-time design often includes schedulability
analysis. Schedulability analysis includes WCET (the maxi-
mum time length taken to execute a process), WCS (the sum
of the space requirements of each component’s parameters),
and deadlock analysis [6] [9]. HL-SDL, Insense and UM-
RTCOM provide some form of schedulability analysis (see
Table IV).

Other modeling techniques to include analysis tools are
MathWorks and SystemC-AMS. MathWorks includes func-
tional analysis of the WSN algorithms. SystemC-AMS cal-
cules factors to judge the electronic system of the nodes
by simulation. The first factor is SNR for the ADC process

inside the node. The second factor is BER for the wireless
communication channel [21].

VI. CONCLUSIONS AND FUTURE DIRECTIONS

Modeling helps to resolve some of the WSN software
implementation challenges before deployment.

As depicted in Table I, several approaches have focused
only on the modeling of software elements in a sensor node
while others also model the sensor network. Both of these
are important to be modeled from a sensor network perspec-
tive. Also many of the modeling languages support compo-
nents as one of its basic modeling elements. Component
based modeling is a fundamental way to partition software
entities because it can be used to support multi-threading
design and analysis. Most of the approaches reviewed can
also model the communication channel. A few like PM
and SensorML can model a process. Process modeling is
important in capturing a systems behavior.

As depicted in Table II, the modeling techniques are
targeted to analyze specific software challenges like concur-
rency, real-time, and event modeling. We also see that they
may be focused on simply modeling the sensory information
or hardware to facilitate code design as is the case with MDE
and SystemC-AMS.

Modeling at the system level is also another feature
that some modelers support. As seen in Table III, several
modeling techniques like UM-RTCOM, XRM, PM, MDEA,
and MathWorks can all model the sensor network but there
is a focus for each on what behavior they model. They all
model node activity and take into account node to node
communication but not all can explicitly model the network
topology as is the case with MDEA.

Support for analysis and code generation tools is vital
for a modeling technique. Table IV reflects, the fact that
certain modeling technique can do code generation while
others cannot. This depends primarily on the focus of the
developers of the modeling technique and the maturity of the
approach. It should be noted that very few of the techniques
support model checking. We speculate that this is largely
due to the gap between the designing process and the model
checking. This gap exists because the design takes place in
domains such as CORBA and UML. In order to check the
model with model checking methods, the design has to be
re-modeled again in the model checking domain.

As a future direction for WSN modeling, enhancements
for code generation tool are required. Such enhancements
can improve the quality of the generated code in terms of
the code size and avoidance of manual optimization for the
generated code. Additionally, the modeling domain should
be selected such that model checking can be done without
redoing the model in the model checking domain. Moreover,
the modeling domain should support analysis at the design
stage, which helps the software system developer detect and
correct software system problems at an earlier stage of the

108

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

sensor system design. Some of the reviewed papers have
performed analysis for WCET, WCS, deadlock, SNR for
sensor interfaces, and BER for the communication channel.
To the best of our knowledge, package delay and data losses
have not been considered in the analysis but these factors
are important for sensor networks.

REFERENCES

[1] J. Barbaran, M. Diaz, I. Esteve, D. Garrido, L. Llopis,
B. Rubio, and J. Troya. Tc-wsans: A tuple channel based
coordination model for wireless sensor and actor networks.
In Computers and Communications, 2007. ISCC 2007. 12th
IEEE Symposium on, pages 173 –178, 2007.

[2] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth,
B. Shucker, C. Gruenwald, A. Torgerson, and R. Han.
MANTIS OS: An embedded multithreaded operating system
for wireless micro sensor platforms. Mobile Networks and
Applications, 10:563–579, 2005.

[3] S. Bhatti, J. Xu, and M. Memon. Model checking of a
target tracking protocol for wireless sensor networks. In
Proc. of IEEE 10th Int. Conf. on Computer and Information
Technology (CIT’10), pages 2867–2872, Jul. 2010.

[4] M. Botts and A. Robin. OpenGIS sensor model language
(SensorML) implementation specification. Technical report,
OGC, Jul. 2007.

[5] E. M. Clarke Jr., O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, 1999.

[6] A. Dearle, D. Balasubramaniam, J. Lewis, and R. Morrison.
A component-based model and language for wireless sensor
network applications. In Proc. of 32nd Annual IEEE Int.
Conf. on Computer Software and Applications (COMPSAC
’08), pages 1303–1308, Aug. 2008.

[7] A. Demaille. Probabilistic verification of sensor networks.
In Proc. of 4th IEEE Int. Conf. on Comp. Sci., Research,
Innovation and Vision for the Future (RIVF’06), pages 45–
54, 2006.

[8] A. Demaille, S. Peyronnet, and B. Sigoure. Modeling of
sensor networks using XRM. In Proc. of 2nd Int. Symp. on
Leveraging Applications of Formal Methods, Verification and
Validation (ISoLA 2006), pages 271–276, Nov. 2006.

[9] M. Diaz, D. Garrido, L. Llopis, B. Rubio, and J. Troya. A
component framework for wireless sensor and actor networks.
In Proc. of IEEE Conf. on Emerging Technologies and Fac-
tory Automation (ETFA ’06), pages 300–307, Sept. 2006.

[10] D. Dietterle, J. Ryman, K. Dombrowski, and R. Kraemer.
Mapping of high-level SDL models to efficient implemen-
tations for TinyOS. In Proc. of Euromicro Symp. on Digital
System Design (DSD 2004), pages 402–406, Aug.-Sept. 2004.

[11] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight
and flexible operating system for tiny networked sensors. In
Proc. of 29th Annual IEEE Int. Conf. on Local Computer
Networks, pages 455–462, Nov. 2004.

[12] ITU-T. Specification and description language (SDL), z.100
(11/99) edition, 1999.

[13] P. Levis. TinyOS Programming. Cambridge University Press,
2009.

[14] R. Liscano and K. Kazemi. Integration of component-based
frameworks with sensor modelling languages for the sensor
web. In Proc. of IEEE GLOBECOM Workshops (GC Wkshps),
pages 235–240, Dec. 2010.

[15] F. Losilla, C. Vicente-Chicote, B. lvarez, A. Iborra, and
P. Snchez. Wireless sensor network application development:
An architecture-centric mde approach. In Software Architec-
ture, volume 4758 of Lecture Notes in Computer Science,
pages 179–194. 2007.

[16] M. Mozumdar, F. Gregoretti, L. Lavagno, L. Vanzago, and
S. Olivieri. A framework for modeling, simulation and
automatic code generation of sensor network application. In
Proc. of 5th IEEE Comm. Soc. Conf. on Sensor, Mesh and
Ad Hoc Communications and Networks (SECON’08), pages
515–522, Jun. 2008.

[17] L. Necchi, A. Bonivento, L. Lavagno, A. Sangiovanni-
Vincentelli, and L. Vanzago. E2rina: an energy efficient and
reliable in-network aggregation for clustered wireless sensor
networks. In Wireless Communications and Networking
Conference, pages 3364 –3369, 2007.

[18] B. Nickerson and J. Lu. A language for wireless sensor webs.
In Communication Networks and Services Research, 2004.
Proceedings. Second Annual Conference on, pages 293 – 300,
May 2004.

[19] V. Oleshchuk. Ad-hoc sensor networks: modeling, specifi-
cation and verification. In Proc. of 2nd IEEE Int. Work.
on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications, pages 76–79, Sept.
2003.

[20] O. Sharma, J. Lewis, A. Miller, A. Dearle, D. Balasubra-
maniam, R. Morrison, and J. Sventek. Towards verifying
correctness of wireless sensor network applications using
Insense and Spin. In Model Checking Software, volume 5578
of Lecture Notes in Computer Science, pages 223–240. 2009.

[21] M. Vasilevski, N. Beilleau, H. Aboushady, and F. Pecheux.
Efficient and refined modeling of wireless sensor network
nodes using SystemC-AMS. In Conf. on Ph.D. Research in
Microelectronics and Electronics (PRIME 2008), pages 81–
84, Apr. 2008.

109

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

