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Abstract— Position estimation is one of the major challenges of 

sensor nodes in wireless sensor networks. By utilizing the 

information of messages of some pre-deployed location aware 

nodes, called beacons, and signal strength based distance 

estimation, a location unaware node is able to estimate its 

position. In the recent years, several localization methodologies 

have been developed. Due to imprecise distance estimations via 

received signal strength utilization, the localization accuracies 

of these algorithms differ, depending on the scenario 

conditions. In the proposed work, we developed an algorithmic 

approach to improve the localization accuracy of a least 

squares approach via two strategies. On the one hand, we 

tackle the imprecise distance measurements with a preceding 

plausibility check. On the other hand, we evaluate the achieved 

accuracy and improve the result by weaving the result of 

adaptive weighted centroid localization into a hybrid 

localization. The achieved localization accuracy beats the 

performance of the preceding approaches in all investigated 

scenarios, particularly for low beacon densities. 

Keywords- Wireless Sensor Networks, Localization, Log-

normal Fading. 

I.  INTRODUCTION 

The ongoing miniaturization of technical devices allows 
to combine microcontroller, sensors and radio technology to 
a single tiny and battery driven device, called sensor node. 
Due to their radio technology, numbers of the nodes can 
compose themselves together to a wireless sensor network 
(WSN), which ranges from few nodes in one-hop distance to 
each other up to large networks with hundreds of nodes and 
multi-hop dimension. Such WSNs can be deployed in an 
area to observe, using their sensor abilities to detect 
phenomena in various scenarios. Examples for the operation 
of sensor networks are disaster control, environmental 
observation, tracking of moving objects [1]. In most of the 
scenarios, e.g. object tracking, the location of a detected 
phenomenon is as important as the properties of the 
phenomenon itself. As result, the detecting nodes have to be 
aware of their position within a reference system. Due to the 
WSN operation in inaccessible or indoor scenarios and the 
large amount of nodes, neither a specific deployment of all 
nodes nor a global localization system, e.g. GPS, are always 
feasible for the localization of sensor nodes. A feasible 
solution is that a fraction of nodes is location aware and used 
as reference nodes, called beacons [2-6]. These beacon nodes 
get their position either due to a specific deployment, e.g. 
deployed by a robot or are additionally equipped with a 
GPS-receiver. All remaining nodes, called unknowns may be 

deployed randomly in the monitored area and estimate their 
position with the help of the beacon nodes. Each beacon 
broadcasts a message, and each receiving node stores the 
contained information about the beacons’ position as well as 
the received signal strength or the derived distance. 

The algorithms, which utilize the collected information 
from all nearby beacon nodes to estimate the position of an 
unknown node, differ in complexity and achieved estimation 
accuracy. Interestingly, a high complexity is not mandatory 
for a competitive accuracy, especially if the distance 
estimations are inaccurate due to shadowing effects. 

The contribution of the paper improves the localization 
accuracy in two ways. On the one hand, a plausibility check 
avoids applying impossible distance estimations, on the other 
hand the uncorrelated localization accuracy of a different 
algorithm family is utilized. The result is described as an 
algorithm called HyPAERLoc (Hybrid Plausible Approach 
for Error Reduced Localization). We compared HyPAERLoc 
with its preceding localization approaches in different 
scenarios with a log-normal fading radio channel model. 
With HyPAERLoc, the localization accuracy increases 
significantly compared to the preceding algorithms. 
Additionally, the algorithm avoids outliers.  

The remainder of the paper is structured as follows: 
Section II describes the related work, Section III explains our 
simulation environment. Section IV analyzes the strengths 
and weaknesses of the researched localization approaches. In 
Section V, we describe and evaluate our check for 
implausible distances, Section VI describes and evaluates the 
hybrid localization approach. Section VII gives the 
conclusion and an outlook. 

II. RELATED WORK 

Beacon based localization algorithms can generally be 
divided into coarse-grained and fine-grained localization. 
The actual section describes common representatives of both 
groups of algorithms.  

 
1. Coarse-Grained Localization 

Coarse-grained localization algorithms represent 
heuristic methodologies to estimate the position of an 
unknown node. These classes of algorithms are characterized 
by the disadvantage, that even with exact distance 
measurements, they are not able to estimate the exact 
position of the unknown due to their simplification. In the 
following, three coarse-grained localization algorithms are 
described and evaluated. 

 

51

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-144-1



Centroid Localization 
By the idea of Centroid Localization (CL), an unknown 

node is located at the centroid of all received beacons [2]. If 
Pi(x,y) represents the position of an unknown node i, n 
represents the number of received beacons and Bj(x,y) 
represents the known position of a beacon node j in range, 
each unknown node i can perform the algorithm as given in 
(1). 

  (   )  
 

 
∑  (   )

 

   

 (1) 

 
It can be seen, that the algorithm is easily to perform and 

abstain from distance estimations. 
 
Weighted Centroid Localization 
An advanced approach is Weighted Centroid 

Localization (WCL) [3]. In contrast to CL, WCL uses 
additional information to calculate the centroid. Usually, a 
sensor node has the ability to measure the received signal 
strength of a message. The result of this measurement can be 
utilized to estimate the distance to the beacon node which 
sent this message. The estimated distance can be utilized to 
improve the position estimation by weighting the centroid 
calculation, as done by WCL. A practical approach is to 
describe the impact of a beacon Bj with the weight wij as 
reciprocal of the estimated distance dij between unknown i 
and beacon j, as done in equation (2). 

    (   )
   (2) 

 
With this weight, the calculation of the centroid changes 

as given in (3). 

 i(   ) 
∑ (      (   )) 

   

∑ wij
n
j  

 (3) 

 
As result, the position of the unknown node is not 

estimated as real centroid of all surrounding beacons, but 
nearer beacons pull the position of the unknown in their 
direction. 

 
Adaptive Weighted Centroid Localization 
The goal of Adaptive Weighted Centroid Localization 

(AWCL) was the improvement of the weighting [4]. If all 
distances between one unknown and its received beacons are 
similar to each other, the effect of the weighting becomes 
relatively low and the result is comparable to CL. To 
overcome this problem, AWCL adapts the resulting weights 
by applying the following steps: 

1.) Determination of the smallest weight wi,min 
2.) Calculation of the reduction part q. Simulation results 

in [4] provide to calculate a feasible reduction part as 
done in (4).  

              (4) 

 

3.) Applying the centroid estimation with reduced 
weighting, as done in (5).  

 i(   ) 
∑ ((     )    (   )) 

   

∑ (     )n
j  

 (5) 

 
As result, AWCL is able to apply a more influential 

weighting, which directly impact the localization accuracy in 
most situations.  

 
2. Fine-Grained Localization 

The idea of fine-grained localization approaches is to 
determine the exact position of an unknown node. The 
obvious disadvantage of the fine-grained localization 
approaches is the costly computational effort. In the 
following, the method of least squares as most common 
representative and one successor are explained. 

 
Linear Least Squares 
The method of linear least squares, also called atomic 

multilateration in [5], is an approach to approximate the 
solution of a linear over determined equation system. In least 
squares, the sum of the squares of the residua of the solved 
equation system is minimized. Applied to the localization 
problem, each unknown node i has to determine two 
unknown variables, xi and yi in a 2-dimensional sensor 
network. Additionally, each received beacon j allows setting 
up an equation as given in (6). 

(     )
 
 (     )

 
    

  (6) 

 
This equation can be transformed as given in (7). 

  
    

    
    

   (         )     
  (7) 

 
Here, dij is the known distance between unknown node i 

and beacon j, xi and yi are the unknown coordinates of the 
unknown node and xj and yj are the known coordinates of the 
beacon in a common reference system. For applying linear 
least squares, the quadratic terms of the unknown have to be 
removed. This can be done by subtraction of the equation of 
beacon k, as done in (8). 

 
  

    
    

    
   (                   )

    
     

  
(8) 

 
This linearization can be done for each couple l of 

received beacons. For n received beacons, the maximum 
number of different linear equations m is given by 
equation (9). 

     ((   )   ) (9) 

 
After that, the present equation can be transformed into a 

linear equation hi=gixi+yi. Here, gi and hi are absolute terms 
and represents single points for the unknown node i in the 
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final equation system, in which a straight line with offset yi 
and slope xi can be found.  

For each couple of beacons l, values for g and h are 
calculated as given in (10) and (11) for the example beacons 
j and k. 

     
(   

     
    

    
    

    
 )

  (     )
 (10) 

     
(     )

(     )
 (11) 

 
After transforming the equations for each couple of 

beacons into a system of linear equations, the values for xi 
and yi can be computed as given in equation (12) and (13), 

whereby   ̅ and   ̅  are the average values of all available 
terms of gi and hi. 

 

   
∑ (       ̅)(       ̅)

 
   

∑ (       ̅)
  

   

 (12) 

     ̅       ̅ (13) 

 
As result, linear least squares is able to calculate the 

exact position of an unknown node, if the distances between 
the unknown node and the beacons are correctly estimated. 
In this case, usually only three beacon nodes and hence two 
independent couples of beacons are sufficient to determine 
the exact position.  

 
Scalable Distributed Least Squares 
Linear least squares have two major drawbacks. The first 

one is the cost intensive computation of the final position, 
the second one is the inaccuracy, if the measured distances 
are inexact. Both drawbacks were tackled with Scalable 
Distributed Least squares (SDLS) in [6]. While the splitting 
of the calculation and the involved challenges are not in the 

focus of this paper, the improvement of the accuracy is 
significant. Instead of choosing all available or a subset of 
couples of beacons for calculating gi,l and hi,l, an unknown 
node i in SDLS selects the nearest beacon node as linearizer 
and subtract the equation of the linearizer from each other 
node. Hence, the number m of resulting beacon couples for n 
beacons is given by m=n-1, and each couple contains a part 
of the linearizer. The reason for selecting the closest beacon 
as linearizer is given by the fact, that smaller distances could 
be measured more exactly due to the greater absolute 
difference in the signal strength. 

To get an impression of the work of all localization 
algorithms with inaccurate distance estimations, example 
localization is given in Figure 1. LS and SDLS estimate the 
same position of the unknown node due to the limited 
number of beacons. Additionally it is recognizable that all 
coarse-grained algorithms localize the node in a triangle with 
the beacons as corners, which is always given by the 
heuristic of the algorithms. 

III. SIMULATION ENVIRONMENT 

The described localization algorithms share one major 

drawback: Until now, they were only partly analyzed and 

not optimized to deal with realistic fading situations. Due to 

the node deployment near to the ground, their 

motionlessness and the possibly heterogeneous environment 

conditions, the log-normal shadow fading offers a well 

performing model for the real-world behavior of 

communicating sensor nodes [7,8]. Major part of the model 

is transmission equation of Friis, as given in equation (14).  

            (
 

   
)
 

 (
 

 
)
 

 (14) 

 

Here, Pr is the received Power, Pt the transmitted Power, 

Gt and Gr the antenna gains, c the speed of light, f the 

transmission frequency and d the distance between 

transmitter and receiver. To adapt the transmission equation 

to log-normal shadow fading, an  environment depending 

path loss exponent N and a Gaussian distributed random 

variable Xσ with mean value 0 and standard deviation σ is 

included into this equation,  as given in (15), transformed to 

dB. 

  [  ]    [  ]         (
 

   
)           ( )

        (     )    

(15) 

 

To analyze how the in Section II proposed localization 

algorithms perform in different environments, realistic 

values for the path loss exponent N and the standard 

deviation σ are required. In [8], the authors performed a 

widespread analysis of the log-normal shadow fading with a 

for sensor network feasible frequency band of 900 MHz. 

For our analysis, we selected two scenarios, from this paper.  

 
Figure 1. Example Localization (A) Example setup with erroneous distance 

estimations, (B) Visualization and results. All values in meters. 
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The first one is the “Sand  Flat Beach” scenario. This 

scenario represents a sensor network which is deployed on a 

beach, a desert or another sandy and relatively flat area, for 

example to detect vehicles. The second selected scenario is 

the “Dr  Tall Underbrush” scenario  which emulates a 

sensor network deployed in a forest, e.g. to detect or prevent 

forest fires. To compare the algorithms with each other in 

the appropriate scenarios, we set up a simulation 

environment as given in Table 1 in Prowler [9] with 

minimized edge effects by creating an internal area for 

unknown nodes and beacons and a surrounding are only for 

beacon nodes. As precondition for the distance estimation, 

each node has knowledge about the path loss exponent N of 

its environment and is able to compute a distance to a 

beacon on the basis of the received signal strength by 

assuming an undisturbed channel and applying 

equation (16). 

 [ ]    
(
  [  ]   [  ]        (

 
   

)        (     )

    
)

 
(16) 

It is assumed, that the path loss exponent is estimated by all 

communicating beacons and provided in the network. 

To get a statement about the number of received beacons 

versus the achieved accuracy, we varied the beacon density. 

For each selected density, we created 200 beacon 

arrangements and in each arrangement 50 unknown nodes 

localized their position with all described algorithms, if 

possible. The increased beacon density correlates with a 

certain number of beacons in range, as shown in Figure 2, 

and for low density, a fraction of nodes did not received 

enough beacons to localize themselves, as shown in 

Figure 3. After applying the simulation with all beacon 

densities, the overall number of nodes with certain beacons 

in range differed extremely, as shown in Figure 4.  

For statistical significance, we decided that a beacon 

number had to be used at least 1000 times for localization. 

Hence, we were able to analyze the accuracy with up to 15 

received beacon nodes in the Sandy Flat Beach scenario and 

up to 44 received beacon nodes in the Dry Tall Underbrush 

scenario. 

IV. PERFORMANCE ANALYSIS 

To estimate the performance of the algorithms, we noted 

the localization error as distance of the origin position of a 

node and computed position of each algorithm. The 

simulation for the Sandy Flat Beach scenario is shown in 

Figure 5 and for the Dry Tall Underbrush scenario in 

Figure 6 as Boxplot-diagram. We selected this kind of 

presentation for a better visualization of the dispersion of 

the achieved results. The result shows that each algorithm 

performs better if more messages of different beacons are 

received. This is not surprising and covers our expectations.  

The simulations allow comparing the coarse-grained and 

later the fine-grained algorithms among each other. In both 

TABLE I 

SIMULATION SETUP 

Property Value 

Sensor node properties  

Frequency f 900 MHz 

Transmission power 0 dBm 

Receiver sensitivity 98 dBm 

Receiving Antenna Gain Gr 1 

Transmitting Antenna Gain Gt 1 

Scenario “Sandy Flat Beach”  

Path Loss exponent N 4.2 

Standard deviation σ 2 

Scenario “Dry Tall Underbrush”  

Path Loss exponent 3.6 

Standard deviation σ 2.9 

Simulation environment  

Surrounding area 300m x 300m 

Internal area 100m x 100m 

Beacon density [10-4/m²] 2.5;5;7.5;…;22.5;25 

Beacon arrangements per density 200 

Unknown nodes/beacon arrangement 50 

 

 
Figure 3. Fraction of localizable nodes versus beacon density. Coarse-

grained algorithms require at least 1 received beacon, fine-grained 

algorithms at least 3 received beacons 
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scenarios, AWCL outperforms CL and WCL by a reduced 

median and arithmetic mean error. The reason is given by 

the improved weighting of the different distances to the 

beacons. The outliers of all three algorithms are similar and 

there is no predication about the best performance possible. 

In the fine-grained algorithms, the arithmetic mean and 

the median of SDLS outperform the linear least squares 

algorithm with random choice of beacon couples. The 

reason is the careful choice of the linearizer in SDLS, which 

is always one of the closest beacons. Due to the channel 

model, the average distance estimation error is reduced if 

the distance is shorter. Hence, the impact of the more 

accurate linearizer distance allows a performance increase 

compared to randomly selected beacon couples. 

Furthermore, the simulations allow a comparison 

between the fine-grained and the coarse-grained algorithms. 

It is recognizable that the fine-grained algorithms perform 

only marginal better or even worse than the coarse-grained 

algorithms. Additionally, both fine-grained algorithms are 

characterized by a number of extreme outliers, which 

achieve errors in the range of hundreds up to several 

thousand meters. There are two reasons for such outliers. 

The first one is an inauspicious beacon arrangement where 

the received beacons do not surround the unknown node, 

but are (nearly) arranged in a line. The second one is 

erroneous distance measurements to the beacon nodes. Due 

to the algorithm, which does not optimize until the smallest 

distance error is found, but optimize the terms as given in 

(10) and (11), the final positions are not forced to reflect 

real possible positions. In contrast, the localization results of 

the coarse-grained algorithms localize the unknown node 

always anywhere between the beacons. On the one hand, 

this limits the maximum possible error, on the other hand, 

this limits the maximum achievable localization accuracy. 

As last part of our analysis, we investigated the correlation 

between errors in coarse-grained and fine-grained 

localization by selecting randomly 100 localized nodes with 

each received 3 beacon messages, and compared the 

localization error AWCL with WCL and SDLS of each 

localized node in a scatter plot, as shown in Figure 7. It is 

recognizable that there is a strong correlation between the 

two coarse-grained localization algorithms, while there is 

nearly no correlation between AWCL and SDLS. This 

different behavior is later utilized by HyPAERLoc. 

Concluding, both algorithm families perform similar in 
the terms of accuracy in average, but with different accuracy 
in single beacon arrangements and distance estimations. Due 
to the higher accuracy potential of the fine-grained 
algorithms, our developed algorithm HyPAERLoc is based 
on the idea of SDLS, which accuracy is improved in two 
steps. 

V. DETECTION OF IMPLAUSIBLE DISTANCE  

MEASUREMENTS 

The major idea to improve the distance measurement is 

given by a plausibility check, which benefits from the 

known positions of each couple of beacons j and k, whose 

distances to the unknown i are used to create a common 

linear equation. With the knowledge of the beacons’ 

positions and the estimated distances to and between them, 

an unknown node is able to recognize implausible gaps as 

result of erroneous distance measurements. A node can 

 
Figure 5. Accuracy of the investigated localization algorithms in the 

scenario “Sand  Flat Beach” 
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Figure 6. Accuracy of the investigated localization algorithms in the 

scenario “Dr  Tall Underbrush” 
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Figure 7. Correlation between sorted localization errors of SDLS-

measurements and according localization errors of AWCL 
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apply the plausibility check by solving equations (17), (18) 

and (19).  

If one of the resulting gaps are greater than 0, at least one 

distance estimation is erroneous, even if the unknown and 

the beacons are deployed in a line, as shown in Figure 8. 

         (       ) (17) 

         (       ) (18) 

         (       ) (19) 

Our solution to deal with this knowledge about the 
implausible gaps is to adapt the estimated distances between 
the node and the beacons, until the conditions are not longer 
fulfilled, as given in Table II. As result, a more realistic 
distance estimation is performed, which can be applied to 
any fine-grained localization algorithm. Applied to SDLS, 
the increased accuracy is shown in Figure 9. Although the 
dispersion is not reduced, the plausibility check increases the 
arithmetic mean of the algorithm in both scenarios by up to 
20%..  

VI. HYBRID LOCALIZATION 

Unfortunately, the plausibility check is not able to tackle 
the outliers due to inauspicious beacon arrangements or 
unrecognized erroneous distance estimations. For a further 
improvement of the localization accuracy, we tackle extreme 
outliers by a comparison of the plausibility of the fine-
grained algorithm result with the result of a robust coarse-
grained algorithm. This hybrid approach completes our 
HyPAERLoc algorithm and is performed in 3 steps: 

1.) Estimation of the position of an unknown node with 
SDLS with preceding plausibility check and with AWCL. 

2.) Rating of the accuracy of the estimated position of the 
unknown by comparing the estimated distances to all 

beacons RATESDLS and RATEAWCL with equation (20). 

     ∑(√(     )
 
 (     )

 
    )

  

   

 (20) 

 
Here, xi and yi are the estimated position of an unknown 

i, xj and yj are the position of the beacon j, dij the estimated 
distance between beacon j and node i and n the number of 
beacons in range. As a result, a high rate correlates with bad 
position estimation, because the resulting position does not 
correlate with the estimated distances to the beacons. 

3.) Computation of the final position for HyPAERLoc xi,h 
and yi,h with equations (21) and (22). 

             

 
        

                 
 (               ) 

(21) 

             

 
        

                 
 (               ) 

(22) 

After applying equations (20) and (21), the position of 
the node is estimated between the position of SDLS and 
AWCL and the node is located nearer to the position with the 
lower rate. The result for the position estimation of 
HyPAERLoc as boxplot diagram is given in Figure 10. One 
can see that the outliers of SDLS are completely eliminated 
and also the accuracy of the median is increased. For a 
further comparison, the resulting mean averages of SDLS, 
AWCL and HyPAERLoc compared to the beacon density 
are given in Figure 11 for both scenarios. One can see that 
HyPAERLoc always outperform its preceding algorithms 
with round about 50% accuracy increase in average. 

 
 

 
Figure 8. Implausible distance estimations (A) Condition 1, (B) Condition 

2. For condition 3, exchange j and k in (B)  
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Figure 9. Accuracy of SDLS with plausibility check in both investigated 

scenarios 
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Figure 10.  Accuracy of HyPAERLoc in both investigated scenarios 
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VII. CONCLUSION AND OUTLOOK 

This paper presented HyPAERLoc as an enhanced 
localization algorithm of SDLS for inaccurate distance 
measurements. In two steps major problems of SDLS are 
tackled. The first one is a plausibility check, which allows 
detecting a fraction of erroneous distance estimations. The 
second one avoids outliers by evaluating the achieved 
positions and comparing them with the robust AWCL, which 
eliminates all strong outliers and improves the overall 
performance. 

The algorithm comes along with additional 
computational cost, but the strong accuracy increase should 
compensate this drawback. Furthermore, there is no 
additional knowledge necessary compared to the involved 
localization algorithms. The algorithm is easily extendable to 
3D-scenarios, which allow the application in more wireless 
sensor network scenarios. 

Although the algorithm was tested in two scenarios with 
assumed log-normal fading channel model, an application 
onto real nodes would additionally strength the result and 
identifies additional challenges, e.g. erroneous RSSI 
measurements. 

Essential questions, which are still left open in the paper 
are how to figure out the path loss exponent for each node 

and how a less random beacon deployment would impact the 
algorithms performance and the number of required beacon 
nodes. A comparison to alternative localization algorithms, 
e.g. MDS-map [10], is also intended in the near future. 
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Figure 11. Average mean localization error versus beacon density. Only 
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