
A Reference Ontology for Collision Avoidance
Systems and Accountability

David Martı́n-Lammerding
Department of Stats. Comput. Sci. Math

Public University of Navarre (UPNA)
Pamplona, Spain

email:david.martin@unavarra.es

José Javier Astrain
Department of Stats. Comput. Sci. Math

Public University of Navarre (UPNA)
Pamplona, Spain

email:josej.astrain@unavarra.es

Alberto Córdoba
Department of Stats. Comput. Sci. Math

Public University of Navarre (UPNA)
Pamplona, Spain

email:alberto.cordoba@unavarra.es

Abstract—Unmanned Aerial Systems (UASs) are deployed in
Intelligence, Surveillance, and Reconnaissance (ISR) applications
with less cost and more flexibility rather than manned aircraft.
An increasing number of UAS missions requires an improvement
of their safety capabilities by equipping them with Collision
Avoidance Systems (CASs). It is recognized that the use of
small UAS at lower altitudes is now a driving force of economic
development, but a safety risk when its number increases. UAS
generates heterogeneous data from multiple sources, like the
Flight Control Unit (FCU), the Global Navigation Satellite System
(GNSS), a radio receiver, an onboard-camera, etc. Each CAS
implementation receives this data and processes it to avoid
collisions. There are many CAS implementations, but each one
has a specific design and data repository structure. There is a lack
of standards that simplify their development and homologation.
This paper presents a reference knowledge model for any CAS
for UAS implemented as a novel application ontology called
Dronetology-cas. It transforms data to knowledge by combining
heterogeneous telemetry and onboard-sensor data using linked-
data and an ontology for semantic interoperability across het-
erogeneous UAS traffic management systems. Dronetology-cas
provides a unified semantic representation within an ontology-
based triplet store designed to run in a low cost computer. Its
semantic model provides advantages, such as interoperability
between systems, machine-processable data and the ability to
infer new knowledge. It is implemented using semantic web
standards, which contribute to simplify an operational safety
audit.

Keywords—Semantic reasoning, ontology, UAS, knowledge,
conflicts, anti-collision, sensor, embedded, air traffic.

I. INTRODUCTION

The use of Unmanned Aerial Systems (UASs) improves
efficiency in logistics applications, infrastructure inspection,
emergency situations, etc. and avoids pilot risk. However,
their flights are limited to certain areas of the airspace to
avoid encountering other aircraft. Air traffic management must
evolve to allow the introduction of large numbers of mass-
market UAS. Each UAS must be equipped with new safety
systems, like Collision Avoidance Systems (CASs).

CASs are developed to detect airplanes in airspace, to
discover potential collision hazards and to perform maneu-
vers to avoid collisions. An increased use of UAS requires
autonomous capabilities for safety purposes. However, UAS
autonomy involves ensuring accountability. The accountability
principle requires UAS operators to take responsibility for

what their UAS do in a mission and how they comply
with traffic management authorities. UAS operators must have
appropriate records to be able to demonstrate their compliance.
The accountability of an UAS flight must be ensured because
any incident or accident must be able to be investigated by
surveyors or authorities. In the worst case, a collision may
occur, which must be investigated to determine the cause and
to improve CAS.

CAS design factors are showed in Figure 1. Multiple
CAS’s typologies can be obtained combining different design
factors. CAS should not depend on pilots or communications
with centralized systems, as any delay in making a decision
increases the risk of collision.

Each CAS studied has its own internal data implementation
with specific structures. So, data generated by CAS have pro-
prietary formats that are not easily inter-operable. To solve this
issue we are integrating and structuring data from CAS using
ontologies, linked data, and semantic integration techniques.

Ontologies [2] are formal and explicit specifications of
certain domains and are shared between large groups of stake-
holders. These properties make ontologies ideal for machine
processing and enabling inter-operation. The use of standards
for data encoding, structuring and description simplifies an
audit task.

In this paper, we present a novel ontology, denoted
Dronetology-cas [3], that is suitable for structuring any data
generated in a CAS. Dronetology-cas includes a Knowledge
Base (KB) which consists of triplets of data collected and
inferred knowledge during the UAS mission.

The rest of the paper is structured as follows. Section II
presents the state of the art of CAS and accountability systems,
Section III defines the problem statement and Section IV
describes our contribution. The ontology design is presented
in Section V. Section VI formulates ontology Competency
Questions (CQs) and Section VII summarizes experimental
simulations results. Section VIII presents the conclusions and
references end the paper.

II. RELATED WORK

The use of UAS for data gathering is becoming increasingly
widespread thanks to high quality and cost-effective sensors.
Therefore, the Semantic Sensor Network (SSN) [4] ontology

22Copyright (c) IARIA, 2021. ISBN: 978-1-61208-888-4

SEMAPRO 2021 : The Fifteenth International Conference on Advances in Semantic Processing

Figure 1. CAS design factors. Taken from [1].

can be used to model UAS as sensors. However, it has the
limitation of not having concepts to model the UAS mission.

[5] applies semantic technologies to air traffic in order to
unify heterogeneous data from multiple sources. The ontology
implementation is performed centralized. However, our pro-
posal is a decentralized ontology implemented in each UAS
to serve as a knowledge base for any CAS.

[6] presents a light-weight ontology for embedded systems
whose design reduces concepts, complexity and query times,
compared to the SSN ontology. It is intended for the sensor
domain and therefore has limitations for modeling an UAS.

ACAS-Xu [7] and Daidalus [8] are two reference CAS
implementations whose source code is available for review.
Each CAS requires a specific configuration for the same
scenario. Given the same scenario, their output formats are
different as shown in [9]. A limitation of both CAS is that
they do not share a common conceptual model.

The accountability of an UAS flight must be ensured be-
cause any incident or accident should be able to be investigated
by surveyors or authorities. There are systems similar to black
boxes for UAS, [10]–[12]. They store the UAS’s route and the
CAS’s status. However, the decision-making process prior to
a maneuver is complex and its recording is not provided in
these systems.

III. PROBLEM STATEMENT

The data required by a CAS depends on how the main
design factors presented in Figure 1 are combined. The main
concepts of CAS used in the design of Dronetology-cas are
described below.

A conflict between two UAS occurs when minimum sepa-
ration, defined as the protection distance dp, is lost. Figure 2
shows a conflict between local UAS and remote UAS. A loss of
separation does not always predict a future collision, but it is

a key safety indicator. A CAS deployed in an UAS is aimed at
maintaining a minimum safe separation between UASs. Once
a conflict is detected, a CAS diverts the UAS to a new safe
path. The number of simultaneous conflicts are denoted as NC.
Time to collision ttc is the time required to collide two UAS
if an UAS continues at their current speed and on the same
path. Lower ttc values correspond to higher risk of collision. It
is used to prioritize conflicts. Very Low Level airspace (VLL)
is the space below 500 ft. above ground level. It is the part
of the airspace intended for new UAS applications and it will
concentrate most UAS conflicts.

CASs are based on different technologies that collect data
from the surroundings using sensors and/or collaborative ele-
ments based on radio receivers/transmitters. UAS can deploy
collaborative elements and non-collaborative sensors. A col-
laborative element receives and transmits position and bearing
data with any other element within its coverage. Automatic
Dependent Surveillance – Broadcast (ADS-B) [13] is one
of the standards for collaborative systems, based on sharing
location information obtained from the Global Positioning
System (GPS). A non-collaborative sensor detects obstacles
without any external system. There are multiple technologies
applied to non-collaborative systems, such as vision cameras
[14], LIDAR [15], SONAR [16], Radar [17], etc. [18] details
the main technologies applied to sensors for conflict detection.

Most CASs for UASs are distributed, so they run in an
onboard computer. However, the size of the UAS limits the
weight of the payload, which limits the type and power of
processor that can be used. Any software component used
in a distributed CAS implementation should be non-compute-
intensive to ensure effective real time performance.

23Copyright (c) IARIA, 2021. ISBN: 978-1-61208-888-4

SEMAPRO 2021 : The Fifteenth International Conference on Advances in Semantic Processing

Figure 2. Conflict between local UAS and remote UAS.

IV. CONTRIBUTION

Dronetology-cas is a novel ontology intended for UAS,
whose domain is anti-collision knowledge management and
air safety compliance. It provides knowledge-based conflict
resolution capabilities. Dronetology-cas is defined as a refer-
ence model that improves communications, inter-operation and
automation of some air traffic management tasks.

Dronetology-cas defines the foundations to implement a
knowledge-based CAS. It provides two modes of integration
with a CAS: repository mode or knowledge mode. The reposi-
tory mode stores data in a semantic structure, so others systems
can understand and use it. The knowledge mode provides
additional knowledge using reasoning from current data.

Dronetology-cas offers key advantages over other repository
or log storage implementations. This is achieved by the web
semantic technologies used in its implementation. Dronetolog-
cas key features are performance, modifiability, ease of main-
tenance, built-in inference capabilities and potential for reuse.

V. DRONETOLOGY-CAS: THE APPLICATION ONTOLOGY

Dronetology-cas is an application ontology derived from the
domain ontology Dronetology [19]. The domain of Dronetol-
ogy is UASs. Dronetology-cas formal specification is based
on the design factors shown in Figure 1.

A. Dronetology: The domain ontology

The purpose of Dronetology is to describe concepts that
define the components of any UAS, the missions it performs
and the environment that surrounds it. Its main applications are
the management of bill of materials, the improvement of flight
efficiency and autonomous decision making. Dronetology im-
ports external ontologies to avoid repeating concepts from
other domains. Another advantage of importing widespread
ontologies is that there are data repositories (sources in Re-
source Description Framework (RDF) format) designed with
these models that can be integrated into Dronetology.

B. Dronetology-cas description

We derive the Dronetology-cas application ontology
from the Dronetology domain ontology. The domain of

Dronetology-cas is CAS for UAS. The aim of Dronetology-
cas is to be the KB of any CAS implementation. There-
fore, Dronetology-cas is generic and extensible. Dronetology-
cas simplifies auditing the CAS decision making process.
Its design allows queries in the KB history to retrieve the
CAS status at different times. The KB stores the temporal
evolution of conflicts with other UAS and the status of the
CAS. Dronetology-cas consists on a KB where knowledge
is stored. It also has an inference engine that generates
new knowledge by applying semantic rules to the KB. The
rules are expressed in SPARQL Protocol and RDF Query
Language (SPARQL) statements [20], [21]. Rules inference a
conflict’s attribute, an evasive trajectory method, a maneuver
attribute, etc. Knowledge is obtained from data recollected
from sensor systems and collaborative elements. Data sources
are sensors, the Flight Control Unit (FCU) and the Global
Navigation Satellite System (GNSS). Inference improves the
CAS decisions thanks to knowledge derived from the data.

A CAS runs in a loop with a operation frequency. This
is modeled in Dronetology-cas with the concept of Iteration.
Dronetology-cas stores CAS status, UAS telemetry and con-
flicts for each Iteration to audit the system. Data collected from
sensors are also related to the Iteration to provide a complete
picture of the environment and the CAS. Dronetology-cas
simplifies the integration of data from different sources. It inte-
grates data from any sensor system by defining generic classes,
which are not directly dependent on the technology and the
implementation. These classes are NoCollaborativeData and
CollaborativeData and both extend InputData.

A CAS estimates future positions of conflicts to obtain a
maneuver that avoids a collision. In knowledge mode, the CAS
asks the KB for knowledge to perform a specific function,
such as selecting the method to estimate the position. Figure 4
shows several methods to estimate the position. Dronetology-
cas stores data about conflicts and also interrelates this data
to discover new connections and knowledge. This knowledge
can be used to improve the prediction method of the conflict’s
location. For example, if the conflict has been detected only
through a vision camera, the uncertainty about the heading
of the conflict is higher, so the most appropriate method of
estimating may be the Worst Case method. However, if the
conflict has been detected by a collaborative element, the
heading is known and there is less uncertainty. In this case,
the Straight Projection method is the most appropriate.

When the CAS makes a maneuver to avoid a collision,
Dronetology-cas stores every UAS position and groups them
with a individual of class Maneuver. Thus, Dronetology-cas
replaces multiple specific-maneuvers concepts, like left-turn,
with a set of positions, which allows any combination of
trajectories, altitudes and speeds. Full trajectory prediction
made by the CAS are not stored in Dronetology-cas. The
dynamics of 3D conflicts are modeled in Dronetology-cas as
different positions at different times.

24Copyright (c) IARIA, 2021. ISBN: 978-1-61208-888-4

SEMAPRO 2021 : The Fifteenth International Conference on Advances in Semantic Processing

Figure 3. Dronetology-cas main classes

Figure 4. Methods used for projecting current encounter’s information. Taken
from [1].

C. Dronetology-cas integration with a CAS

Any CAS can integrate Dronetology-cas in two ways:
repository mode or knowledge mode. The Dronetology-cas
repository mode requires that the CAS implements some data
source specific code to translate UAS data from its original
source format to Dronetology-cas ontology triplets. In this
way, Dronetology-cas stores any conflict’s data obtained from
the onboard sensors into the KB.

The repository mode integration implies that the CAS inserts
data as triplets into the KB. The CAS stores data in the KB,
but it does not query it. Data stored are available for any
audit process. External data sources, like Ground Surveillance
Radars (GSRs), can add additional conflicts to the KB not
detected by onboard sensors, although they depend on network
connectivity during the UAS flight. The knowledge mode
extends the features of the repository mode. It adds implicit
knowledge inference and reasoning capabilities to some CAS

Figure 5. Dronetology-cas integration alternatives: (a) repository mode (b)
knowledge mode

functions, such as conflict detection or new path selection. In
the knowledge mode integration, the CAS inserts data in the
KB and also performs queries. These queries enhance CAS
functions, such as classifying conflicts, prioritizing conflicts,
selecting a trajectory calculation techniques according to the
type of conflicts, etc. The CAS queries the KB for a specific
result depending on its decision making implementation re-
quirements. Figure 5 shows the relation between the CAS and
Dronetology-cas for each integration mode.

Dronetology-cas is defined using the Web Ontology Lan-
guage (OWL) language [22]. The main languages used to
develop CAS (C, C++, Python) have implementations to
process RDF triples [23] and ontologies in OWL format.

D. Dronetology-cas design

Dronetology-cas is an application ontology whose concepts
are taken from CAS. The CAS design factors shown in Figure

25Copyright (c) IARIA, 2021. ISBN: 978-1-61208-888-4

SEMAPRO 2021 : The Fifteenth International Conference on Advances in Semantic Processing

1 are also considered. It is accessible at [3].
In order to integrate Dronetology-cas with a CAS,

Dronetology-cas’s concepts are defined with a high level of ab-
straction. The first design factor is the type of onboard sensors.
They are classified into collaborative and non-collaborative
sensors. Dronetology-cas models every onboard sensor as an
abstract data source, instead of defining detailed concepts
related to sensors.

Another design aspect to be considered of CAS is the
method used to detect conflicts. The main differences between
them are the data needed and the criteria followed to classify
a nearby UAS as a conflict. Dronetology-cas integrated in
repository mode stores the CAS and the conflict status. In
knowledge mode, it improves the CAS capabilities for conflict-
classification aggregating data from multiple sensors or linking
the conflict detection sensor with the conflict estimated path.
When a conflict‘s attribute are not available, like speed, it can
be inferred from the conflict past locations. The inference of
conflict attributes also improves the CAS decisions.

Finally, the method to calculate an evasive trajectory and the
associated maneuver are a CAS’s design choice. Dronetology-
cas integrated in repository mode stores a maneuver as a
sequence of UAS locations. In knowledge mode, the CAS
could query Dronetology-cas to select a maneuver calculation
method using knowledge about the conflict.

Dronetology-cas has been designed considering the compu-
tational limitations of onboard systems. Thus, memory usage
has been reduced by limiting the number of classes in the
model and avoiding importing auxiliary ontologies.

The main classes of Dronetology-cas are UAS, MissionEle-
ment, InputData, AntiCollisionSystem and Conflict. Figure 3
shows the main Dronetology-cas classes.

TABLE I
DRONETOLOGY-CAS COMPETENCY QUESTIONS

CQ1 How many conflicts are detected?
CQ2 Which UAS has the highest priority among the UAS in conflict?
CQ3 Which conflict has the shortest time to collision?
CQ4 Has the number of conflicts increased or decreased?
CQ5 How has been detected the conflict with a given UAS?
CQ6 How long it has taken to resolve a conflict?
CQ7 Has the distance flown been increased with respect to the flight plan?
CQ8 In which locations have there been conflicts?
CQ9 Where and when was the collision?
CQ10 How many UAS were in conflict before the collision?
CQ11 What UAS has it collided with?
CQ12 What maneuver was the UAS performing before the collision?

The class UAS describes unmanned aircrafts including the
communication systems and the ground base. The class Con-
flict is a subclass of UAS so in our model only UAS can
be conflicts. MissionElement is a class that enclose all the
elements of a mission. The classes Waypoint and FlightPlan
derive from MissionElement.

The class InputData represents any data collected from a
sensor (non-collaborative), from a collaborative element (radio
receiver), from the GNSS or from the FCU. The concepts
NoColaborativeData and ColaborativeData are derived from

InputData to identify a conflict and its source type. The prop-
erty drone:detect is an object property that relates individuals
of NoColaborativeData or ColaborativeData with individuals
of Conflict.

Some classes in Dronetology-cas have geographic data de-
fined as datatype properties. The latitude and longitude are rel-
ative to the World Geodetic System 1984 (WGS84) coordinate
system. The altitude is relative to Mean Sea-Level (MSL). To
improve interoperability, the Conflict class uses geo:wktLiteral
datatype with a WGS 84 geodetic latitude-longitude. This
allows Dronetology-cas to implement a geospatial web service
that could be reused and recombined to fulfill a user query.

The class AntiCollisionSystem groups elements of any CAS.
The classes State, Maneuver, NextIterationLocation and Itera-
tion are derived from it. The state of the CAS are represented
as instances of the class State with an attribute that codifies
the state and a timestamp. The class Iteration relates all the
knowledge stored in the KB at an instant of time.

The class Maneuver defines a set of locations of the UAS
when the CAS is active. CAS calculates multiple location
alternatives of the UAS to avoid the collision and stores
them in the KB as instances of the class NextIterationLo-
calUASLocation. It also selects one locations that best resolve
the conflict from the previous set of locations. An individual
of class Maneuver groups every individual of class NextIt-
erationLocalUASLocation through an object-property. Every
iteration, the CAS sends to the FCU the individual of class
NextIterationLocalUASLocation.

VI. COMPETENCY QUESTIONS

We define a set of CQs that specify what knowledge has
to be entailed in Dronetology-cas. This questions has been
used to validate Dronetology-cas. Some CQs are suitable
for an UAS mission audit process. Others can assist the
CAS in a decision making process, when Dronetology-cas is
integrated in knowledge mode. Table I shows a list of some
CQs considered. There are CQs that are intended to find out
how the conflict has been resolved, e.g., CQ6, CQ7 and CQ8.
Some CQs help to find out what happened and how when a
collision happens, e.g. CQ9, CQs CQ10, CQs CQ11 and CQ12.

In a knowledge mode integration, the CAS uses the results
of some CQs to make decisions. An example is the CQ What
type of conflict is X?. With this knowledge about the conflict,
the CAS selects the most appropriate way of calculating the
future position of the conflict. Other CQs are intended for a
security audit of the CAS. An example is the CQ to check
when a collision occurred.

VII. PERFORMANCE EVALUATION

The performance of Dronetology-cas is analyzed executing
CQs translated to SPARQL in a low cost computer, Pi3
[24]. We simulate a system CAS with a software component
developed in Java 8 that inserts triplets with conflicts data in
the KB. Response time and memory footprint are measured
with different number of triplets stored in the KB. Memory
footprint has been measured using the Java 8 API. The number

26Copyright (c) IARIA, 2021. ISBN: 978-1-61208-888-4

SEMAPRO 2021 : The Fifteenth International Conference on Advances in Semantic Processing

TABLE II
RESPONSE TIME (IN MILLISECONDS) AND MEMORY FOOTPRINT (IN KILOBYTES) OF REPOSITORY MODE AND KNOWLEDGE MODE IN A PI3.

Repository mode Knowledge mode
CQ1 CQ3 CQ5 CQ6

No Response time Memory footprint Response time Memory footprint Response time Memory footprint Response time Memory footprint
triplets mean sdev mean sdev mean sdev mean sdev mean sdev mean sdev mean sdev mean sdev

100 18.95 4.13 5025.28 1418.13 26.68 7.83 5101.67 1420.78 19.98 5.91 5104.45 1420.83 18.21 7.45 5100.81 1421.06
250 23.54 2.26 5200.98 1308.69 23.38 2.17 5241.25 1308.82 24.12 4.18 5211.77 1308.21 24.03 2.23 5233.40 1305.41
500 38.10 2.97 5441.26 1327.53 38.14 3.10 5441.51 1322.02 52.37 18.03 5377.53 1327.33 39.05 3.56 5491.02 1322.82

1000 74.42 17.78 5986.61 1332.65 67.47 3.10 5983.91 1336.00 68.49 3.18 6061.40 1331.63 68.74 3.10 5969.27 1319.01
2500 165.62 36.42 6997.64 1342.78 171.69 46.86 3362.77 1727.86 173.87 55.31 3875.86 1768.38 160.60 6.81 6972.95 1315.36
5000 320.98 64.36 6004.34 1718.44 320.30 63.49 5391.63 1587.92 355.39 100.29 5309.72 1510.33 324.63 65.44 5935.41 1724.54
10000 662.00 162.01 9545.00 1744.46 662.24 164.92 8440.54 2154.39 654.65 151.11 8560.70 2140.84 670.81 162.15 9595.25 1752.67

(a) (b)

Figure 6. Response time (x) and memory footprint (�) for knowledge mode for CQ5(a) and CQ6(b).

of triples with conflicts and CAS data in the KB grows as
the UAS flies. Therefore, the flight duration determines the
number of triples stored in the KB. In our tests we have
simulated up to 10000 triples corresponding to 15 minutes
of flight by inserting an average of 10 triples per second.

To measure response times and memory footprint, the most
generic CQs have been selected as they are the most likely to
be used in any integration mode. CQ1 and CQ3 are necessary
for any auditing process to review conflicts and their status.
CQ5 and CQ6 provide knowledge that the CAS can use to
modify its response to conflicts. 100 repetitions of each case
were performed to calculate the mean and standard deviation.
The results obtained from the response times and memory
footprint are shown in Table II. CQs considered are translated
to SPARQL, available at [25].

The response time affects the CAS depending on the in-
tegration type chosen. In repository mode, there are no strict
response time requirements as it is not required a real-time
operation. However, in knowledge mode, the response time
delays the CAS decisions. For our purpose, a suitable response
time should allow to take a decision with the most recent data,
before new data is available, that is, the response time should
be below the refreshing rate of incoming data. Each sensor
system has its refreshing rate ranging from 1 Hz of ADS-B
until 20 Hz of a vision camera [26]. The response times of
CQ5 and CQ6 obtained comply with the previous criteria as
long as the number of triplets are below approximately 1000
triplets.

Figure 6 shows that Dronetology-cas response time in-
creases when the number of triples increases. Memory con-
sumption grows as the UAS flies as well. That is, the duration

of the UAS flight increases the response time. The worst
response time is at the end of a flight. This result is due to
our limited implementation of the software components that
instantiates and queries the KB. An option to scale up is
to have two instances of Dronetology-cas model, each with
a different purpose, one instance for the repository mode
and the other for the knowledge mode. The instance for the
repository mode should store all triplets, but the instance for
the knowledge mode should keep only triplets needed for the
inference process.

VIII. CONCLUSION

In this paper, we described the Dronetology-cas ontology
as a value-added component for any CAS. Dronetology-cas
integration modes facilitate its application in any CAS. A
production-ready implementation of Dronetology-cas should
take into a account the performance results and the integration
mode required to balance response time and memory con-
sumption.

As the need for UAS safety compliance is expected to
increase, reference CAS implementations promoted by govern-
ment agencies, like Daidalus [8], are candidates to implement
advanced audit systems like the proposed in this paper.

Future work will be focused on the implementation of a
CAS for UAS using Dronetology-cas and the integration of
Dronetology-cas with an existing CAS. Another line of work
is to create a dataset with semantic mission data to be used
for research of UAS air traffic. Further developments of this
work have the potential to achieve an ontology standard for
autonomous UAS.

27Copyright (c) IARIA, 2021. ISBN: 978-1-61208-888-4

SEMAPRO 2021 : The Fifteenth International Conference on Advances in Semantic Processing

REFERENCES

[1] B. Albaker and N. Rahim, “A survey of collision avoidance approaches
for unmanned aerial vehicles,” in 2009 international conference for
technical postgraduates (TECHPOS), IEEE, 2009, pp. 1–7.

[2] J. Davies, D. Fensel, and F. Van Harmelen, Towards the semantic web:
ontology-driven knowledge management. John Wiley & Sons, 2003.

[3] D. Martı́n-Lammerding. (2021). Dronetology-cas, the anti-collision
ontology, https://dronetology.net/dronetology-cas, [Online]. Available:
https://dronetology.net/dronetology-cas (visited on 02/02/2021).

[4] W. W. Group. (2021). SSN, Semantic Sensor Network Ontology,
https://www.w3.org/tr/vocab-ssn/, [Online]. Available: https : / / www.
w3.org/TR/vocab-ssn/ (visited on 02/02/2021).

[5] R. M. Keller, S. Ranjan, M. Y. Wei, and M. M. Eshow, “Semantic
representation and scale-up of integrated air traffic management data,”
in Proceedings of the International Workshop on Semantic Big Data,
2016, pp. 1–6.

[6] H. Rahman and M. I. Hussain, “A light-weight dynamic ontology for
internet of things using machine learning technique,” ICT Express,
2020.

[7] M. P. Owen, A. Panken, R. Moss, L. Alvarez, and C. Leeper, “Acas
xu: Integrated collision avoidance and detect and avoid capability for
uas,” in 2019 IEEE/AIAA 38th Digital Avionics Systems Conference
(DASC), IEEE, 2019, pp. 1–10.

[8] C. Muñoz, A. Narkawicz, G. Hagen, J. Upchurch, A. Dutle, M.
Consiglio, and J. Chamberlain, “Daidalus: Detect and avoid alerting
logic for unmanned systems,” in 2015 IEEE/AIAA 34th Digital Avionics
Systems Conference (DASC), IEEE, 2015, 5A1–1.

[9] J. T. Davies and M. G. Wu, “Comparative analysis of acas-xu
and daidalus detect-and-avoid systems,” National Aeronautics and
Space Administration NASA Ames Research Center; Moffett Field CA
United States Technical Report NASA/TM-2018-219773 ARC-E-DAA-
TN50499, 2018.

[10] Redcat Holdings. (2021). Drone Box,
https://www.redcatholdings.com/drone-box, [Online]. Available:
https://www.redcatholdings.com/drone-box (visited on 02/02/2021).

[11] Tl-Elektronic. (2021). Black box, https://www.tl-elektronic.com/, [On-
line]. Available: https://www.tl-elektronic.com/index.php?page=uav&
p id=40&lang=en (visited on 02/02/2021).

[12] UAV Navigation. (2021). Black Box https://www.uavnavigation.com/,
[Online]. Available: https : / / www. uavnavigation . com / sites / default /
files/docs/2021-03/UAV%20Navigation%20FDR01%20Brochure.pdf
(visited on 02/02/2021).

[13] C. Rekkas and M. Rees, “Towards ads-b implementation in europe,” in
2008 Tyrrhenian International Workshop on Digital Communications-
Enhanced Surveillance of Aircraft and Vehicles, IEEE, 2008, pp. 1–4.

[14] D. Zuehlke, N. Prabhakar, M. Clark, T. Henderson, and R. J. Prazenica,
“Vision-based object detection and proportional navigation for uas
collision avoidance,” in AIAA Scitech 2019 Forum, 2019, p. 0960.

[15] U. Papa, G. Ariante, and G. Del Core, “Uas aided landing and obstacle
detection through lidar-sonar data,” in 2018 5th IEEE International
Workshop on Metrology for AeroSpace (MetroAeroSpace), IEEE, 2018,
pp. 478–483.

[16] U. Papa, “Sonar sensor model for safe landing and obstacle detection,”
in Embedded Platforms for UAS Landing Path and Obstacle Detection,
Springer, 2018, pp. 13–28.

[17] N. Gellerman, M. Mullins, K. Foerster, and N. Kaabouch, “Integration
of a radar sensor into a sense-and-avoid payload for small uas,” in
2018 IEEE Aerospace Conference, IEEE, 2018, pp. 1–9.

[18] A. Muraru, “A critical analysis of sense and avoid technologies for
modern uavs,” Advances in Mechanical Engineering ISSN: 2160-0619,
vol. 2, Mar. 2012. DOI: 10.5729/ame.vol2.issue1.23.

[19] D. Martı́n-Lammerding. (2021). Dronetology, the UAS Ontology,
https://dronetology.net/dronetology, [Online]. Available: https : / /
dronetology.net/dronetology (visited on 02/02/2021).

[20] Web Working Group. (2021). SPARQL Query Language for RDF,
https://www.w3.org/2001/sw/wiki/sparql, [Online]. Available: https://
www.w3.org/TR/sparql11-query/ (visited on 02/02/2021).

[21] ——, (2021). Spin Working Group, Rules for SPARQL,
https://www.w3.org/submission/spin-sparql/, [Online]. Available:
https://www.w3.org/Submission/spin-sparql/ (visited on 02/02/2021).

[22] ——, (2021). Web Ontology Language (OWL),
https://www.w3.org/owl/, [Online]. Available: https://www.w3.org/owl/
(visited on 02/02/2021).

[23] ——, (2021). Resource Description Framework (RDF),
https://www.w3.org/2001/sw/wiki/rdf, [Online]. Available: https :
//www.w3.org/rdf/ (visited on 02/02/2021).

[24] Raspberry Pi Foundation. (2021). Raspberry Pi 3,
https://www.raspberrypi.org/, [Online]. Available: https : / / www .
raspberrypi.org/ (visited on 02/02/2021).

[25] D. Martı́n-Lammerding. (2021). Competency questions in sparql,
https://dronetology.net/sim/competency-questions.zip, [Online]. Avail-
able: https://dronetology.net/sim/competency-questions.zip (visited on
08/02/2021).

[26] S. Graham, J. De Luca, W.-z. Chen, J. Kay, M. Deschenes, N.
Weingarten, V. Raska, and X. Lee, “Multiple intruder autonomous
avoidance flight test,” in Infotech@ Aerospace 2011, 2011, p. 1420.

28Copyright (c) IARIA, 2021. ISBN: 978-1-61208-888-4

SEMAPRO 2021 : The Fifteenth International Conference on Advances in Semantic Processing

https://dronetology.net/dronetology-cas
https://www.w3.org/TR/vocab-ssn/
https://www.w3.org/TR/vocab-ssn/
https://www.redcatholdings.com/drone-box
https://www.tl-elektronic.com/index.php?page=uav&p_id=40&lang=en
https://www.tl-elektronic.com/index.php?page=uav&p_id=40&lang=en
https://www.uavnavigation.com/sites/default/files/docs/2021-03/UAV%20Navigation%20FDR01%20Brochure.pdf
https://www.uavnavigation.com/sites/default/files/docs/2021-03/UAV%20Navigation%20FDR01%20Brochure.pdf
https://doi.org/10.5729/ame.vol2.issue1.23
https://dronetology.net/dronetology
https://dronetology.net/dronetology
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/Submission/spin-sparql/
https://www.w3.org/owl/
https://www.w3.org/rdf/
https://www.w3.org/rdf/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://dronetology.net/sim/competency-questions.zip

	Introduction
	Related Work
	Problem statement
	Contribution
	Dronetology-cas: The application ontology
	Dronetology: The domain ontology
	Dronetology-cas description
	Dronetology-cas integration with a CAS
	Dronetology-cas design

	Competency questions
	Performance evaluation
	Conclusion

