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Abstract—This paper introduces a differentiable semantic reasoner,
where rules are presented as a relevant set of graph transformations.
These rules can be written manually or inferred by a set of facts and
goals presented as a training set. While the internal representation
uses embeddings in a latent space, each rule can be expressed as a set
of predicates conforming to a subset of Description Logic.
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I. INTRODUCTION

Symbolic logic is the most powerful representation for building
interpretable computational systems [1]. In this work, we adopt a
subset of Description Logic [2] to represent knowledge and build
a semantic reasoner, which derives new facts by applying a chain
of transformations to the original set.

In the restricted context of this paper, knowledge can be
expressed in predicate or graph form, interchangeably. Thus,
semantic reasoning can be understood as a sequence of graph
transformations [3], which act on a subset of the original knowledge
base and sequentially apply the matching rules.

In this paper, we show that rule matching can be made
differentiable by representing nodes and edges as embeddings. After
building a one-to-one correspondence between a sequence of rules
and a linear algebra expression, the system can eventually train the
embeddings using a convenient loss function. The rules created in
this fashion can then be applied during inference time.

Our system follows the recent revival of hybrid neuro-symbolic
models [1], combining insights from logic programming with deep
learning methods. The main contribution of this work is to show
that reasoning over graphs is a learnable task. While the system
is presented here as a proof of concept, we show that differential
graph transformations can effectively learn new rules by training
nodes, edges, and matching thresholds through backpropagation.

In Section II we describe in detail the fundamentals of our
reasoner, with working examples shown in Section III. Section IV
reviews specific connections with prior works and finally a few
remarks in Section V conclude the paper. The relevant code can
be found at [4].

II. PROBLEM STATEMENT

The system presented here is a semantic reasoner inspired by the
early STRIPS language [5]. It creates a chain of rules that connects
an initial state of facts to a final state of inferred predicates. Each
rule has a set of pre- and post-conditions, expressed here using
a subset of Description Logic (DL). In the following, we restrict
our DL to Assertional Axioms (ABox). Thus, each fact can be
represented as a set of predicates, or - equivalently - as a graph with
matching rules as described below.

A. Rules as graph transformations

We use a predicate form to represent facts, rules, and intermediate
states, as shown in Figure 1. For example, the semantics for "Joe
wins the election in the USA" is captured in the following form

joe(a), win(a,b), election(b), in(b,c), USA(c)

In the prior example, joe, election, and USA are nodes of the
semantic graph, whereas win and in are convenient relations to
represent the graph’s edges.

The rules are specified with a MATCH/CREATE pair as below

MATCH person(a), win(a,b), election(b)
CREATE (a), be(a,b), president(b)

The MATCH statement specifies the pre-condition that triggers
the rule, while the CREATE statement acts as the effect - or
post-condition - after applying the rule. The result of applying this
rule is shown in Figure 1, where a new state is created from the
original fact. Notice that the name joe (which matches person) is
propagated forward to the next set of facts.

By applying rules in sequence one builds an inferential chain of
MATCH and CREATE conditions. After each rule the initial facts
graph is changed into a new set of nodes and edges. This chain of
graph transformations builds a path in a convenient semantic space,
as shown in Figure 2. One of this paper’s main result is to show that
there is a one-to-one correspondence between the chain of matching
rules and a chain of linear algebra operations.

B. Nodes and edges as embeddings

Both nodes and edges are represented as embeddings in a latent
space. For convenience, in the current work the vocabulary of
possible nodes matches the Glove 300dim dataset [6], whereas edges
are associated random embeddings linked to the relevant ontology.

C. Matching nodes and edges

A rule is triggered if the pre-condition graph is a sub-isomorphism
of the facts. Each node and edge of the pre-conditions has a learnable
threshold value t. Two items match if the dot product between their
embeddings is greater than a specific threshold. In the predicate
representation, we make explicit these trainable thresholds by
adding the symbol > to the predicate’s name. In this way, the rule
in Section II-A becomes

MATCH person>0.6(a), win>0.7(a,b), election>0.6(b)
CREATE (a), be(a,b), president(b)
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Figure 1. A matching rule example, as explained in II-A. The facts on the left are "transformed" into the ones on the right
following the application of the relevant rule. This picture makes explicit the dual nature of the predicates/graph representation.

indicating that - for example - joe and person would only match if
their normalized dot product is greater than t=0.6. In the Descrip-
tion Logic framework this is equivalent to an individuality assertion

joe≈person⇐⇒ embedding(joe) · embedding(person)>t

Matching facts and pre-conditions creates a most general unifier
(MGU) that is propagated forward on the inference chain.

D. Creating a trainable path

During training, the final state is a goal of the system, as shown
in Figure 2. The system learns how to create rules given a set of
template empty rules, where the embeddings for each node and
edge are chosen randomly. These templates are specified prior to the
training using ∗ to indicate a random embedding, as in the following
MATCH *(a), *(a,b), *(b)
CREATE (b), *(b,d), *(d)

In the current state of development, the algorithm generates all
possible paths - compatibly with boundary conditions - and then
applies to each of them the training algorithm explained below. A
more efficient method will be pursued in future works.

E. Training of the embeddings and thresholds

At every step of the inference chain the collection of predicates
changes according to the order of transformations. At every step i,
we employ a vector fi that signals the truth value of each predicate.
For computational reasons, the dimensions of this vector must be
fixed in advance and set to the maximum size of the predicate
set. The first value f0 is a vector of ones, as every predicate in the
knowledge base is assumed to be true.

At the end of the resolution chain there is a "goal" set of
predicates, usually less numerous than the initial set of facts. A
vector g indicates the truth conditions of the goal predicates. This
vector - also of size n - contains a number of ones equal to the
number of goal nodes and is zero otherwise. The application of a
rule can then be described by two matrices: the similarity matrix
S and the rule propagation matrix R.

A similarity matrix describes how well a set of facts matches
the pre-conditions.

Si=Mi�Softmax(PT
i Fi−Ti) (1)

Where Pi is the matrix with the pre-conditions’s nodes as colums,
Fi is the matrix with the fact nodes as columns at step i. Mi is
the matrix of the matches, bearing value of 1 if two nodes match
and vanishing otherwise. For example, if the first node of the
pre-conditions matches the second node of the facts, the matrix will
have value 1 at position (1, 0).

The matrix Ti is a bias matrix whose columns are the list of
(trainable) thresholds for each predicate in the pre-conditions
Ti =

[
ti1, t

i
2, ... t

i
n

]
. This bias effectively enforces the matching

thresholds: A negative value as an argument to Softmax will lead
to an exponentially small result after the operation.

All the matrices M , P , and F are square matrices ∈ Rn×n.
Equation (1) is reminiscent of self-attention [7], with an added bias
matrix T and a mask M .

A rule propagation matrix R puts into contact the left side of
a rule with the right side. The idea behind R is to keep track of how
information travels inside a single rule. In this work we simplify the
propagation matrix as a fully connected layer with only one trainable
parameter. For example, if the chosen sizen is 4, a rule with three pre-
conditional nodes and two post-conditional nodes has anR matrix as

Ri=w

 1 1 1 0
1 1 1 0
0 0 0 0
0 0 0 0

 (2)

where w is the "weight" of the rule. Given a first state f0, the set of
truth condition after n steps is

fn=Sn−1...R1S1R0S0f0 (3)

This final state fn is compared against the goal’s truth vector g to
create a loss function.

The training of the relation embeddings follows the same
sequence of operations as for the nodes. A set of truth vectors fr
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Figure 2. Example of a graph matching path. The facts on the left (represented as a graph of connected embeddings) are transformed through a chain of pre- and post-conditions
into the goal on the right. This chain of rules is equivalent to a sequence of linear algebra operations, where the truth values of each predicated are propagated forward through a set

of S and R matrices.

and states F r is acted upon the relation similarity matrix

Sr
i =Mr

i �Softmax(P r
i
TF r

i −tri ), (4)

and the corresponding rule propagation matrix for relations Rr
i ,

leading to the final truth vector for relations

fr
n=Sr

n−1...R
r
1S

r
1R

r
0S

r
0f

r
0 . (5)

Following the example of the nodes, a goal vector for the relations
is named gr, containing the desired truth conditions for relations
at the end of the chain.

The system learns the node and edge embeddings of the rules,
while the initial facts and the goal are frozen during training. The
system also learns the matching thresholds t and each rule’s weight
w. Following (3) and (5), the final loss function is computed as a
binary cross entropy expression

L=g log(fn)+gr log(fr
n). (6)

The system can in principle be trained over a set of multiple facts
and goal pairs, in which case the loss function is the sum of all the
pairs’ losses. For simplicity, in this paper we limit the training to
a single pair of facts and goal.

In order to avoid the Sussman anomaly, the same rule can only
be used once in the same path.

III. EXAMPLES AND DISCUSSION

A. One-rule learning

As a toy example we want the system to learn that if someone is
married to a "first lady", then this person is president. The facts are

person(a), spouse(a,b), person(b), be(a,c), first-lady(c)

and the goal is

person(a), profession(a,b), president(b)

Given the empty rule

MATCH *(a), *(a,b), *(b), *(a,c), *(c)
CREATE (b), *(b,d), *(d)

The system correctly learns the rule that connects the facts with
the goal.

MATCH person>0.6(a), first-lady>0.6(b), person>0.6(c),
be>0.63631916(a,b), spouse>0.6338593(a,c)

CREATE (b), president(d), profession(b,d)

While trivial, this is a fundamental test of the capacity of the system
to learn the correct transformation. The matching thresholds have
been clipped and cannot go below 0.6 in training.

While a successful result is almost guaranteed by choosing a rule
that closely matches the boundary conditions, the system is proven
capable of converging onto the correct embeddings and thresholds
using just backpropagation.

B. Chained two-rule learning

While a single-rule transformation can be useful in a few edge
cases, the real power of semantic reasoning comes from combining
rules together. In this section we show - using another toy example
- that the system can learn two rules at the same time. The simplified
task is as in the following: to learn that "if a fruit is round and is
delicious, then it is an apple." The facts are

fruit(a), be(a,b), round(b), be(a,c), delicious(c)

and the goal is

fruit(a), be(a,b), apple(b)
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The system is given the two template rules to fit
MATCH *(a), *(a,b), *(b), *(a,c), *(c)
CREATE (b), and(b,c), (c)

MATCH *(a), and(a,b), *(b)
CREATE *(c), *(c,d), *(d)

Notice the "and" relations in the templates. These relations are
frozen during training and constitute another constraint for the
system to satisfy. In the end, our model learns the correct rules
MATCH fruit>0.6(a), round>0.6(b), delicious>0.6(c),

be>0.6953449(a,b), be>0.6957883(a,c)
CREATE (b), (c), and(b,c)

MATCH round>0.6(a), delicious>0.6(b), and>0.9(a,b)
CREATE fruit(c), apple(d), be(c,d)

which satisfy the goal when chained.
Here, we forced the system to apply two rules since no single

template would fit the boundary conditions. Of particular interest
is the fact that the system learned the pre-conditions of the second
rule round > 0.6(a), delicious > 0.6(b), and > 0.9(a,b). This
is not a trivial task, given that it started training with random
embeddings and the only information about the correct values is
the one propagated forward from the first rule.

IV. RELATED WORKS

Neuro-symbolic reasoning has been an intriguing line of research
in the past decades [8][9]. Some recent results make use of a
Prolog-like resolution tree as a harness where to train a neural
network [10], [11], [12], [13]. Our work is similar to theirs, but
builds upon a STRIPS-like system instead of Prolog. A different
approach employs a Herbrand base for inductive logic programming
in a bottom-up solver [14].

Finally, one can see our method as a sequence of operations
that create or destroy items sequentially. Each (differential)
transformation brings forward a new state of the system made by
discrete elements. These types of algorithms have already been
investigated in the Physics community, for example in [15].

V. CONCLUSIONS

In this work we presented a semantic reasoner that leverages on
differential graph transformations for rule learning. The system is
built through a one-to-one correspondence between a chain of rules
and a sequence of linear algebra operations. Given a set of facts,
a goal, and a set of rules with random embeddings, the reasoner
can learn new rules that satisfy the constraints. The rules are then
written as a set of predicates with pre- and post-conditions, a more
interpretable representation than embeddings and weights.

The system presented here is limited in speed and - as a
consequence - volume of training data. This is mostly due to our
path-creation algorithm, which generates all possible paths given
a set of rules. A more efficient algorithm would employ a guided
approach to path creation, similar to the method in [13]. A different
and possibly novel efficiency gain could be found in a Monte Carlo
method, where the path converges to the correct one through means
of a Metropolis algorithm.

Using a more efficient algorithm the system would be able
to leverage on a higher number of templates, thus making the
system useful outside the set of toy examples presented here. In this
scenario, another topic that needs addressing is how to best generate
the templates from the available data.

Finally, an open question resides on whether the system is able
to generalize, given multiple sets of facts and goals. This last inquiry
will need a faster algorithm and will be pursued in a future work.

REFERENCES

[1] A. d’Avila Garcez and L. C. Lamb, “Neurosymbolic AI: The 3rd Wave,”
arXiv e-prints, Dec. 2020, p. arXiv:2012.05876.

[2] M. Krötzsch, F. Simancik, and I. Horrocks, “A description logic primer,”
ArXiv, vol. abs/1201.4089, 2012.

[3] H. Ehrig, C. Ermel, U. Golas, and F. Hermann, Graph and Model
Transformation. Berlin, Heidelberg: Springer-Verlag, 01 2015.

[4] “Source code,” 2021. [Online]. Available: https://github.com/fractalego/dgt/
tree/semapro2021

[5] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to
the application of theorem proving to problem solving,” Artificial
Intelligence, vol. 2, no. 3, 1971, pp. 189–208. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0004370271900105

[6] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1532–1543. [Online]. Available:
http://www.aclweb.org/anthology/D14-1162

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds. Curran Associates, Inc., 2017, pp. 5998–6008. [Online]. Available:
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

[8] A. S. d. Garcez, D. M. Gabbay, and K. B. Broda, Neural-Symbolic Learning
System: Foundations and Applications. Berlin, Heidelberg: Springer-Verlag,
2002.

[9] A. Garcez, L. Lamb, and D. Gabbay, “Neural-symbolic cognitive reasoning,”
in Cognitive Technologies. Berlin, Heidelberg: Springer-Verlag, 2009.

[10] T. Rocktäschel and S. Riedel, “End-to-end differentiable proving,” in Advances
in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30.
Curran Associates, Inc., 2017. [Online]. Available: https://proceedings.neurips.
cc/paper/2017/file/b2ab001909a8a6f04b51920306046ce5-Paper.pdf

[11] P. Minervini, M. Bosnjak, T. Rocktäschel, and S. Riedel, “Towards Neural
Theorem Proving at Scale,” in ICML Workshop on Neural Abstract Machines
and Program Induction (NAMPI), 2018.

[12] L. Weber, P. Minervini, J. Münchmeyer, U. Leser, and T. Rocktäschel,
“NLProlog: Reasoning with weak unification for question answering in
natural language,” in Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. Florence, Italy: Association
for Computational Linguistics, Jul. 2019, pp. 6151–6161. [Online]. Available:
https://aclanthology.org/P19-1618

[13] P. Minervini, M. Bosnjak, T. Rocktäschel, S. Riedel, and E. Grefenstette,
“Differentiable Reasoning on Large Knowledge Bases and Natural Language,”
in Proceedings of the Association for the Advancement of Artificial
Intelligence Conference on AI (AAAI), 2020.

[14] R. Evans and E. Grefenstette, “Learning explanatory rules from noisy data,”
J. Artif. Int. Res., vol. 61, no. 1, Jan. 2018, p. 1–64.

[15] A. W. Sandvik, “The stochastic series expansion method for quantum lattice
models,” in Computer Simulation Studies in Condensed-Matter Physics XIV,
D. P. Landau, S. P. Lewis, and H.-B. Schüttler, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 182–187.

4Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-888-4

SEMAPRO 2021 : The Fifteenth International Conference on Advances in Semantic Processing


