SEMAPRO 2020 : The Fourteenth International Conference on Advances in Semantic Processing

Using RESTful API and SHACL to Invoke Executable Semantics in the Context of
Core Software Ontology

Xianming Zhang
Aviation Industry Development and Research Center of China
Beijing, China
e-mail: forzxm@163.com

Abstract—It is known that executable semantics can be
constructed for tasks in the context of some ontologies for
computational domain (here, it is Core Software Ontology),
but it cannot support that the constructed executable semantics
be invoked to launch an actual computing process for returned
values. The goal of this paper is to put forward a framework in
which Representational State Transfer Application
Programming Interface (RESTful API), Shapes Constraint
Language (SHACL) and Core Software Ontology can work
together to invoke constructed executable semantics and finally
get the result. Firstly, a link between RESTful API and Core
Software Ontology is necessary and conceptually established.
With such a link, we can see that the former will energize and
refine the latter. Secondly, this paper investigates how to take
advantage of SHACL to invoke RESTful API for returned
value. Thirdly, with the help of SHACL, we can see how
RESTful API energizes Core Software Ontology, namely by
invoking the executable semantics in the context of Core
Software Ontology to get the result. With an example in this
paper, we can use this framework to get the returned value and
prove the feasibility of this framework.

Keywords-Executable Semantics; Core Software Ontology;
DUL Ontology; SHACL; RESTful API.

L INTRODUCTION

DOLCE Ontology is a well-known foundation ontology
that provides a few design patterns providing a substantial
foundation for building multiple core ontologies and domain
ontologies [1][11]. One of these ontologies is the Core
Software Ontology (CSO). It must be acknowledged that
CSO diligently achieves the goal of describing
computational domain, particularly portraying aspects of
computing object (software, data and their realizations) and
activity (execution of software) semantically, all of which
implement executable semantics. With SPARQL QUERY, it
is easy to catch sight of semantic aspects of a computing
configuration, including its I/O, execution plan, execution
situation and so on. By combining the SPARQL
CONSTRUCT with the execution plan, an execution
situation embodying computing objects and activities to
portray computing configuration can be constructed.
However, the execution situation still cannot be used to
invoke the included computing objects (software) and the
initial hope of building software is to launch a
computing/execution and return a value, so it is clear that the
current state of CSO fails to achieve that.

Today, more and more RESTful APIs are put into use as
computing resources; their emergence means that software

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-813-6

can be regarded as computing resources published on the
Web. Both users and running codes can access them and get
the result via their open URLs. It is known that a typical
ontology is based on the Resource Description Framework
(RDF) and the RDF provides a format basis in which URLs
are encapsulated to represent multiple entities, either types or
instances. While navigating ontology, users can access these
URLs that are often pointers to html files, texts and
multimedia files, the contents of which can be either directly
downloaded or viewed on the Web browsers. But RESTful
APIs often focus on computing, which means that their
URLs should not be simply accessed and need some values
as input and then the subsequent returned values should be
interpreted semantically and used for further computing
tasks. It is simple to directly fit RESTful APIs as URLs into
the context of CSO for content management, but that cannot
enable executable semantics, including these RESTful APIs,
to be invoked to launch computing in the context of CSO.
Shapes Constraint Language (SHACL) provides SHACL
JavaScript Extensions (SHACL-JS) engine that can access
and invoke JavaScript code on the Web by its URL, with
which SHACL Specification based on SPARQL (SHACL-
SPARQL) can be used to infer new triples containing values
coming from invoking JavaScript code. From this
perspective, SHACL can help to invoke executable semantic
in the context of CSO if JavaScript file URLs are fitted into
it. However, JavaScript cannot support important
intermediate data, often stored in databases or data files, for
returning the final result and too complex algorithms such as
Matrix or Calculus. As result, it is less necessary and
applicable to have JavaScript files fit into the context of CSO
than RESTful APIs.
This paper presents a framework in which the problem
above can be solved.
® a) Fitting RESTful API into the context of CSO
enables the URL of RESTful API to become part of
the context of CSO as computing resource, which
testifies the rationality that with the help of
RESTful API, the applicability of CSO makes a
great progress. It is not easy to access RESTful
APIs as computing resources only by their URLs
because the fault of CSO is that the first paper on
CSO is before the emergence of RESTful APIL.
® b) Breaking the hurdle between the SHACL-JS
engine and RESTful API to enable the former to
invoke the latter to get the result, which can be done
by investigating the running mechanism of the
SHACL-JS engine and taking advantage of it to

56

SEMAPRO 2020 : The Fourteenth International Conference on Advances in Semantic Processing

make a devised scenario in which the engine
invokes a specific RESTful API as JavaScript code.

® ¢) With a, b and SHACL-SPARQL Construct,
RESTful API can fit into the context of CSO very
well and the constructed executable semantics can
be invoked for the desired purpose.

This paper is structured as follows. Section 2 presents the
related work, mainly why to choose SHACL. Section 3
introduces a framework to achieve the purpose of this paper.
Section 4 presents a use case of computing lift coefficient of
airfoil, where readers can get a sense of the motivation.
Section 5 describes how to apply the framework to the use
case and get the desired result to verify the framework.
Section 6 is the conclusion.

II. RELATED WORK

In the past years, a large number of RDF-based
applications have been developed for various domains. In
order to take advantage of the semantic feature of RDF,
several query and rule languages, such as SPARQL [10],
Jena rule [14] and SWRL [13], have been developed and
adopted widely with a number of inbuilt functions [15][16]
for users to execute various computations during either
querying or reasoning.

Unfortunately, due to computing complexity in the real
world, such as matrix calculation, linear operation and those
requiring external data source, the execution above is
insufficient to accomplish such computing tasks.

In order to solve such problems, Zhang [12] turns to
SPARQL Inferencing Notation (SPIN) [17]. In SPIN,
SPARQL queries can be stored together with RDF data
models in RDF graphs to define executable semantics of
classes and their members. SPIN provides a special
framework (SPINX) that allows a user-defined function to
link an external JavaScript file to RDF data by RDF
property; this user-defined function can be used for
executing computing by invoking this linked JavaScript file
[18]. The work in [12] investigates the mechanism of SPINx
framework and devises a method to link RESTful API with
RDF data, and invoke RESTful API while either querying or
reasoning. It must be pointed out that this paper opens a new
window in Semantic Web technology.

SHACL is strongly influenced by SPIN and can be
regarded as its successor [19]. SHACL includes basically all
features of SPIN, and more. Most importantly, SHACL is an
official W3C Recommendation, which makes it far more
likely that other vendors will support it [19]. As result of
this, this paper adopts SHACL rather than SPIN.

III. INTRODUCTION TO THE FRAMEWORK

This paper puts forward a framework working as basis for
invoking executable semantics, in which the following are
cooperating with each other to achieve the goal: Core
Software Ontology (CSO), Shapes Constraint Language
(SHACL) and RESTful API. We address how SHACL-JS
invokes a RESTful API.

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-813-6

A. Introduction to Core Software Ontology

In this paper, a lightweight, easy-to-apply foundational
ontology known as DOLCE+DnS Ultralite (DUL) [1] [5] is
used as basis for CSO. Due to space limit of this paper, only
some aspects concerned are discussed here. For more details,
readers can refer to [1]-[4].

1) Software and Data

The programs that manipulate the data are usually
referred to as CSO: Software, a special kind of DUL:
InformationObject. CSO: Data also can be considered as a
special kind of DUL: InformationObject. The difference
from CSO: Software is that CSO: Data does not DUL:
express a DUL: Plan.

CSO: ComputationalObject as a special kind of DUL:
InformationRealization can be the appearance of an
algorithm in memory or disks. Just like the fact that DUL:
InformationRealization DUL: realizes DUL:
InformationObject in DUL, CSO: ComputationalObject
DUL: realizes CSO: Data as well as CSO: Software.

CSO: ComputationalActivity as a special kind of DUL:
Activity is the correspondence of the execution of a CSO:
ComputationalObject. This is the form of software which
manifests itself in a sequence of activities in the computing
domain.

2) Task, Input and Output

We use CSO: ComputationalTask, a special kind of
DUL: Task, to represent invocations, and the actual
executions of CSO: ComputationalTask can be CSO:
Computational Activity. A set of CSO: ComputationalTask
are grouped and linked via the DUL: follows and DUL:
precedes associations in a DUL: Plan.

We also need to model the CSO: Input and CSO: Output
for CSO: ComputationalTask. The CSO: Input and CSO:
Output are required to represent the input and output for
computing task, and they are special kinds of DUL: Role,
which are both DUL: isRoleOf CSO: Data and DUL:
definedln a DUL: Plan. The relationships between CSO:
Input (CSO: Output) and CSO: ComputationalTask are
modeled by CSO: inputFor (CSO: outputFor).

CSO: executes is also introduced to formalize that a
CSO: Software is wused to complete a CSO:
ComputationalTask. That means that CSO:Software begins
to CSO:executes a CSO: ComputationalTask in the
DUL:Plan and then a DUL:Situation regarded as a
computing configuration holding DUL:satisfies association
with the DUL:Plan comes into being, where a DUL:
CSO:ComputationalObject ~ that =~ DUL:realizes this
CSO:Software holds a DUL:hasParticipant association with

a CSO: ComputationalActivity that also has
DUL:executesTask association ~ with the CSO:
ComputationalTask (see D1).

CSO:executes(x, y) =def CSO:Software(x) /A
CSO:ComputationalTask(y) /A
Jco,ca,p(CSO:Computational Object(co) /\
CSO:Computational Activity(ca) /A DUL:Plan(p) A
DUL.:realizes(co,x) /\ DUL:express(x, p) /A DUL:

57

SEMAPRO 2020 : The Fourteenth International Conference on Advances in Semantic Processing

defines(p, y) /\ DUL: executesTask (ca, y) /A DUL:
hasParticipant (ca, co)) (D1)

B. Simple Introduction to RESTful API

A RESTful API is an application program interface (API)
that uses existing HTTP methodologies defined by the RFC
2616 protocol. They use GET to retrieve a resource, PUT to
change the state of or update a resource, which can be an
object, file or block, POST to create that resource, and
DELETE to remove it [9].

RESTful APIs for a website are codes that allow software
programs to communicate with each other. The RESTful
API spells out the proper way for a developer to write a
program requesting services from an operating system or
other applications.

With RESTful APIs, networked components are resources
the wuser requests access to - a black box whose
implementation details are unclear. All calls are stateless;
nothing can be retained by the RESTful service between
executions [9].

C. Introduction to SHACL, SHACL-SPARQL and SHACL-
JS

SHACL is a W3C recommendation [6] [7]. A SHACL
processor takes a shapes graph and a data graph as input. The
shapes graph defines so-called shapes, which are a collection
of constraints. A shape also tells the engine for which nodes
in the data graph it applies to (using sh: targetNode).

SHACL-SPARQL 1is one extension mechanism for
SHACL to express constraints in SPARQL, allowing shape
definitions to point at executable SPARQL queries to
perform the validations [8].

SHACL-JS engine is an advanced extension mechanism
for SHACL, allowing users to express SHACL constraints
and the advanced features of custom targets, functions and
rules with the help of JavaScript. The principle of calling
JavaScript function is to download JavaScript file contents
via HTTP to the engine, and then the engine resolves the
contents to execute the code specified by the function name.
Figure 1 below shows how SHACL-JS invokes a RESTful
APIL

Figure 1. How to use SHAL-JS to invoke a RESTful APL

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-813-6

According to Figure 1, a computer with SHACL-JS is
called a client and a computer running RESTful API on it is
called Web Server.

1) A user operating the client submits data in RDF that
contain URL of a RESTful API and a function name into
SHACL-JS. SHACL-JS sends the URL to the Web Server
after parsing. In this case, the URL is http://ip/lift-
coefficient?attack-angle=13 and the function name is called
func.

2) The Web Server runs the received URL and then gets
1.51, the returned value.

3) The Web Server encapsulates the value as the string
“function func () {return 1.55 ;}” in JavaScript code format
and then sends it as feedbacks to the client.

4) The client simply runs the string and returns 1.51 to
the user.

INTRODUCTION TO A USE CASE OF COMPUTING
LIFT COEFFICIENT OF AIRFOIL

The dedicated function of an airfoil on an airplane is to
provide lift during flight and it is necessary for computing
varying lift with continuously changing attack-angle. The
lift-coefficient formula is as follows.

Lifi-coefficient=f(attack-angle) (1)

In (1), there is no explicit formula (or calculation script)
to accurately calculate the lift coefficient from the attack
angle. Typically, the actual lift-coefficient is a list of data
through a limited number of experiments that record the
data under different attack angles, as shown in Figure 2.

IVv.

Attack Angle|Lift Coefficient
B 0
0 06
5 11

H

10 14 - P
15 17 &
=

20 16
2 0.6
23 0

Figure 2. The left part is a list of attack angles and
corresponding lift coefficients; The right part is the curve graph
reflecting the left part.

Here, these experiments are conducted independently,
which means these data are locally stored in a Web server
not freely accessible to others. A dedicated RESTful API can
be developed and deployed on the Web server. The RESTful
API implements numerical approximation, such as least
square and interpolating to allow users to query for any given
attack-angle. In this paper, the URL for this RESTful API is
below:

http://ip/lift-coefficient?attack-angle={value}

In order to work out the lift coefficient while the attack
angle is 13, the access URL is:

http://ip/lift-coefficient?attack-angle=13

58

SEMAPRO 2020 : The Fourteenth International Conference on Advances in Semantic Processing

V. APPLYING THE FRAMEWORK TO THE USE CASE

In this section, the framework is applied to the use case
and we can freely get the returned value of the lift
coefficient for a given attack angle. In this paper, a
temporary ontology is created in the context of CSO for this
use case, known as S-C ontology.

A. Modeling the Basic Entities and Properties of S-C
Ontology for Use Case in the Context of CSO

A few of entities and properties can be extracted from

this use case and be aligned to predefined concepts in CSO.

1. The s-c: attack-angle and s-c: lift-coefficient can be
regarded as an instance of CSO: Data because their
goals are to be manipulated by the software as input
and output, respectively.

2. The s-c: computationl can be regarded as an
instance of CSO: Software, which is responsible for
computing the lift-coefficient with an attack-angle.

3. The s-c: computationl-computational-object can be
regarded as an instance of CSO:
ComputationalObject, which DUL: realizes s-c:
computationl and rdfs:seeAlso
“http://server:8080/lift-coefficient? Attack-
angle={value}”.

4. The s-c: activityl can be regarded as an instance of
CSO: Computational Activity, which identifies the
execution of a certain CSO:
ComputationalObject/CSO: Software.

5. The s-c: run is rdfs:subProperty of DUL:
hasParticipant, =~ which associates a CSO:
Computational Activity with a CSO:

ComputationalObject and means giving rise to an
actual execution of a software.

6. The s-c:iin is rdfs: subProperty of DUL:
hasParticipant, ~ which associates a CSO:
ComputationalActivity with a CSO: Data as input
for computing.

7. The s-ciout is rdfs:subProperty of DUL:
hasParticipant, ~ which associates a CSO:
Computational Activity with a CSO: Data as output
for computing.

B. Modeling Plan and Situation in S-C ontology

The s-c:computation-plan is an instance of DUL: Plan,
the design of computing configuration, which includes the
following entities: s-c:input-attack-angle, s-c:output-lift-
coefficient and s-c:task1.The s-c:input-attack-angle can be
regarded as an instance of CSO:Input and DUL:isRoleOf s-
c:attack-angle outside the plan. The s-c:output-lift-angle can
be regarded as an instance of CSO:Output and
DUL:isRoleOf s-c:lift-coefficient outside the plan. The s-
citaskl can be regarded as an instance of
CSO:ComputationalTask, ~ which has CSO:inputFor
association with s-c:input-attack-angle, CSO:outputFor
association with s-c:output-lift-angle and CSO:executes
association with s-c:computation].

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-813-6

Figure 3. The structure of s-c: computation-plan and its
association with software and data.

Although s-c:computation-plan is the design of
computing configuration and the design does not come into
use until the situation known as s-c:computation-situation
(an instance of DUL:Situation) holding DUL:satisfies
association with it, includes s-c:attack-angle,s-c:lift-
coefficient,s-c:activityl, s-ccomputationl-computational-
object.In s-c:computation-situation, s-c:attack-angle s-c:in s-
c:activity1l,s-c:lift-coefficient s-c:out s-c:activityl and s-
c:computationl-computational-object s-cirun s-activityl.
According to D1 (Section 2), s-c: computation-situation will
be constructed by s-c: computation-plan and the associated
CSO: Software and CSO: Data outside the plan.

Figure 4. The structure of s-c: computation-situation and
association with s-c: computation-plan.

C. Inferencing Situation from Plan

The s-c: computation-plan is the design of computing
configuration and, according to CSO, the actual computing
configuration (executable semantics) which return values
should be s-c: computation-situation, the special kind of
DUL: Situation. In this paper, the CONSTRUCT clause of
SPARQL Update is used to construct s-c: computation-
situation from s-c: computation-plan with associated CSO:
Data and CSO: Software. The SPARQL statement is below.

59

SEMAPRO 2020 : The Fourteenth International Conference on Advances in Semantic Processing

construct {
?software _computational object s-c: run s-c: activityl.
?inData s-c: in s-c: activityl.
?inData DUL: hasDataValue ?value.
?outData s-c: out s-c: activityl.
?software _computational object rdfs: seeAlso 7url.
}
where {
GRAPH
plan>{
?inRole cso: input-for s-c: taskl.
?outRole cso: output-for s-c: taskl.

<http://semantic-computing/#computation-

GRAPH <http://semantic-computing/#software-plan>{
?software cso: executes s-c: taskl.
?inData DUL: hasRole ?inRole.
?outData DUL: hasRole ?outRole.}

GRAPH <http://semantic-computing/#software-data>{
?software_computational object DUL:realizes ?software.
?software _computational object rdfs: seeAlso ?url.

?7inData DUL: hasDataValue ?value. }

!

prefix sh: <http://www.w3.org/ns/shacl#>

construct {

s-c: dynamicFunc sh: jsFunctionName "dynamicFunc".

s-c: dynamicFunc sh: jsLibrary <http://jsLibrary/temp>.

s-c: dynamicFunc sh: returnType xsd: double.

s-c: dynamicFunc sh: parameter <http://parameter/temp>.

s-c: dynamicFunc rdf: type sh: JSFunction.
<http://parameter/temp> sh: datatype xsd: double.
<http://parameter/temp> sh: path s-c: number.
<http://jsLibrary/temp> sh: jsLibraryURL ?dynamicFuncURL.

where {
?software_computational object s-c: run s-c: activityl.
?inData s-c: in s-c: activityl.
?inData DUL: hasDataValue ?value.
7software_computational object rdfs: seeAlso 7url.
BIND(('http://IP/REST Template/access?url="+STR(?url)+
*? value="+STR (?value)) as ?dynamicFuncURL).

The constructed model is called Shape-Function; it can

also be regarded as a shape according to SHACL, see below.

There are several graphs in this statement:
<http://semantic-computing/#computation-plan> contains
triples of s-c: computation-plan; <http://semantic-
computing/#software-plan> contains triples representing
associations between CSO: Data/CSO: Software and entities
in s-c:computation-plan; <http://semantic-
computing/#software-data> contains triples representing
associations among CSO:Data, CSO:Software. The
constructed result is below. It is noted that the s-c:
computationl-computational-object (an instance of CSO:

ComputationalObject) links a RESTful API via rdfs: seeAlso.

sh:jsLibraryURL
'http://ip/REST Template/access?url=http://ip/lift-
coefficient?attack-angle=13'.

s-c: dynamicFunc sh: jsFunctionName "dynamicFunc".
s-c: dynamicFunc sh: jsLibrary <http://jsLibrary/temp>.
s-c: dynamicFunc sh: returnType xsd:double.

s-c: dynamicFunc sh: parameter <http://parameter/temp>.
s-c: dynamicFunc rdf: type sh: JSFunction.
<http://parameter/temp> sh: datatype xsd: double.
<http://parameter/temp> sh: path s-c: number.
<http://jsLibrary/temp>

s-c: computationl-computational-object s-c: run s-c:
activityl.

s-c: attack-angle s-c: in s-c: activityl.

s-c: attack-angle DUL: hasDataValue 13.0.

s-c: lift-coefficient s-c: out s-c: activityl.
s-c: computationl-computational-object rdfs: seeAlso
<http://ip/lift-coefficient?attack-angle=>.

It is noted that there are two RESTful APIs that should be

discussed. They are 'http://ip/RESTTemplate/access?url="
and http://ip/lift-coefficient?attack-angle=. The function of
the former is to invoke the latter and encapsulate the return
value in JavaScript format with “dynamicFunc” as function
name. We show below the concise code.

SHACL-JS,

In addition to the Shape-Function complied with
another model named Shape—Construct

complied with SHACL-SPARQL is needed to work with the
Model-Function to achieve the goal. The Shape —Construct is
shown below.

D. Using SHACL to Invoke Executable Semantics

The s-c: computation-situation forms executable
semantics and now its goal is to create a triple of “s-c: lift-
coefficient DUL: hasDataValue ?value”.

By using the triples of s-c: computation-situation to
create a model named Shape-Function, triples of which meet
the standard of SHACL-JS, we form a function that will be
further used to invoke RESTful API. The SPARQL
Construct statement to use is below.

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-813-6

AS ?value).

@prefix s-c :< http://semantic-computing/#>.
s-c:rulel
a rdfs: Class, sh:NodeShape ;
sh:targetNode s-c:activityl ;
rdfs:label "to run sc:activityl" ;
sh: rule[
a sh:SPARQLRule ;
sh: construct """
CONSTRUCT {
?outdata DUL: hasDataValue ?value.}
WHERE {
?outdata s-c: out ?this.
BIND (<http://semantic-computing/#dynamicFunc>()

}

mn
b

60

SEMAPRO 2020 : The Fourteenth International Conference on Advances in Semantic Processing

Figure 5 below shows the process and the result.

Shape-Function+

+.

s-cicomputation-situation+ Shape-Construct+

org.topbraid shacl, the java package+

'

s-c:lift-coefficient DUL:hasDatavalue 1.51+

o

Figure 5. The process and method of creating the new triple.

In Figure 5, after interference a new triple is generated,
the content of which is “s-c: lift-coefficient DUL:
hasDataValue 1.51”.

VL

With the abundance in Information Technology (IT)
infrastructure today, the number of RESTful APIs is growing
and applications of ontologies for computational domain
should be constructed by fully taking advantage of this
situation. This paper discusses that usefulness and feasibility
of using SHACL and RESTful API to invoke executable
semantics. It can be said that the paper's achievement is
useful in the development of ontology-based knowledge
system.

In our opinion, the study of this paper can make the
Semantic Web models, here Core Software Ontology, have
powerful computing capacity. Of course, the coordinating
asynchronous requests, latency, availability and security
must be taken into account. These problems should be solved
effectively (at least in part) as the technologies for RESTful
API, exemplified by SPRING BOOT, have made much
effort to solve them from birth.

CONCLUSION

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-813-6

(1]
(2]

[3]
(4]

[3]

(6]
(7]

(8]
[9]
[10]
[11]

(12]

[13]

[14]

[15]
[16]
[17]

[18]
[19]

REFERENCES

A. Gangemi et al., "Sweetening Ontologies with DOLCE”,
EKAW 2002, pp. 166-181, 2002.

A. Gangemi and P. Mika, “Understanding the Semantic Web
through Descriptions and Situations”, ODBASE 2003, pp.
689-706, 2003.

A. Gangemi, “Task taxonomies for knowledge content.
Metokis Deliverable D07, 2004.

D. Oberle et al.,"Towards Ontologies for Formalizing
Modularization and Communication in Large Software
Systems" , Journal of Applied Ontology, vol. 1, no. 2, pp.
163-202, 2006.

https://www.w3.0rg/2005/Incubator/ssn/wiki/DUL_ssn
[retrieved: November, 2020]
https://www.w3.org/TR/shacl/.[retrieved: November, 2020]

J. Corman et al.,” Semantics and validation of recursive
SHAC”, ISWC 2018, pp. 318336, 2018.
https://w3c.github.io/data-shapes/shacl-js/#introduction
[retrieved: September, 2020]
https://searchapparchitecture.techtarget.com/definition/RESTf
ul-API. [retrieved: November, 2020]
https://www.w3.org/TR/sparql1 1-query [retrieved: November,
2020]

S. Borgo and C. Masolo,” chapter Foundational choices in
DOLCE”, Handbook on Ontologies, 2009.

X. Zhang, ”An approach to enabling RDF data in querying to
invoke REST API for complex calculating”,International
Conference on Dublin Core and Metadata Applications 2018,
pp. 34-42, 2018.

http://www.w3.org/Submission/SWRL. [retrieved: September,
2020]

J. Carroll et al., ”The Jena Semantic Web Platform:
Architecture and Design”, HP Laboratories Technical Report
HPL-2003-146,2003.

https://github.com/dotnetrdf/dotnetrdf/wiki/DeveloperGuide-
SPARQL-XPath-Functions. [retrieved: November, 2020]

http://jena.apache.org/documentation/query/library-
function.html. [retrieved: November, 2020]

https://www.topquadrant.com/technology/sparql-rules-spin.
[retrieved: November, 2020]

http://spinrdf.org/spinx.html. [retrieved: September, 2020]

https://www.spinrdf.org/spin-shacl.html. [retrieved:
September, 2020]

61

