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Abstract— The paper describes the architecture of a non-

invasive, wireless embedded system for gait analysis and 

preventing involuntary movements including falls. The system 

operates with synchronized and digitized data samples from 8 

EMG (limbs) and 8 EEG (motor-cortex) channels. An 

embedded Altera Cyclone V FPGA operates the real-time 

signal pre-processing and the computation (resource 

utilization: 85.95% ALMs, 43283 ALUTs, 73.0% registers, 

9.9% block memory; processing latency < 1ms). The system 

has been tested on patients affected by Parkinson disease (PD) 

under physician guide and compared with healthy subjects’ 

results.  Both PD and healthy subjects have been involved in 

the standard diagnostic protocol (normal gait and pull test). 

The developed cyber-physical system detects differences 

between the PD and the healthy subjects in terms of walking 

pattern, i.e., agonist-antagonist co-contractions (Typ time: 

PD’s 148ms vs Healthy 88ms; Max: PD’s 388ms vs Healthy 

314ms). The PD’s cerebral Movement Related Potentials (i.e., 

Bereitschaft) analysis during the pull-test showed an increasing 

from 59dBμ to 66dBμ after 3 settling steps while measurements 

on healthy subject return, respectively, 57dBμ, 62dBμ in 1 

settling step. The system is able to prevent fall enabling the 

actuator in 168ms, i.e., better than the normal human time 

reaction (300ms). 

Keywords-Fall prevention; EEG; EMG; MRPs; FPGA. 

I.  INTRODUCTION  

Due to neurological diseases, muscular deformities, 
ageing and further numerous factors, the normal gait 
frequently tends to degenerate into gait disorders. They 
constitute a contributive intrinsic falling cause, heavily 
increasing the risk of falling. Nowadays, 28–35% of people 
aged 65 years and above fall and, as consequence, each year 
more than 424000 fall events are fatal [1][2]. The economic 
impact of this phenomenon is impressive: 43.8 billion dollars 
are estimated to be used in fall-related medical care 
expenditures by 2020 [3]. Despite the extensive research in 
this field, developed tools for fall risk have not been 
successful in predicting and preventing falls [3]. Indeed, 
although fall detection technology is now mature (detectors 
for domestic use can be implemented using artificial vision 
techniques, tri-axial gyroscopes and accelerometers, 
Microsoft Kinect’s infrared sensors, floor vibrations and 
sounds and numerous others) [4], fall prevention solutions 
are still far to be implemented. Fall prevention systems can 
be mainly divided into four categories: static fall-risk 
assessment, pre-fall intervention, fall-injury prevention and 
fall prevention [5][6]. The static fall-risk assessment 
category includes all the protocolled clinical tools which aim 

to identify people with high fall-risk due to neuro-muscular 
diseases (i.e., Barthel Index [7], the TGBA index [8], 
STRATIFY [9], TUG [10]). The static fall-risk assessment 
tools are indispensable for the beginning of a 
drug/rehabilitation plan but do not perform any intervention 
for preventing falls. The pre-fall intervention category 
includes all the methods oriented to the improvement of 
balance, stability and muscular strength of the subject. In 
recent years, in order to create more appealing exercises, 
assistive technology has been successfully implemented to 
drive the patients into a kind of game-exercise (i.e., 
Microsoft Kinect, Nintendo Wii, VR tools [11][12]). They 
can be part of a wider preventive plan but they cannot 
constitute a standalone solution since they do not limit the 
consequent damage of a fall. The fall-injury prevention 
category groups all the technologies implementing a shock 
absorber when a fall event is detected. Those systems are 
made up by the fall detection system and by the actuator, 
which timely manage the shock absorber. The shock 
absorption is conducted by an airbag that is promptly 
inflated. Toshiyo et al. [13] present a system protection 
against impact with the ground using accelerometers and 
gyroscopes for the fall detection and a jacket-worn airbag to 
be timely inflated before the impact. These systems, although 
reduce effectively the damage due to the fall, fail to cover all 
the scenarios and do not limit the brain damage associated 
with it (i.e., fair of falling). The fall prevention category aims 
to definitively avoid the fall event [14-17].  In [14], Zeilig et 
al., describe a fall prevention system named “ReWalk” 
consisting of a multi-sensing platform (blood pressure, ECG, 
etc.) for fall detection combined to an exoskeleton to assist 
the movement of the subject. Vuillerme et al. [15] propose to 
use a combination of pressure sensors and electro-tactile 
biofeedback to prevent the fall. Additionally, Munro et al. 
[16] describe a fall prevention tool based on an intelligent 
wearable knee flexion controller. These systems are the most 
suitable for fall prevention since if a fall event is detected, a 
feedback aiming to correct the movement is delivered to the 
subject and the fall is avoided.  In this frame, we propose a 
novel digital back-end architecture for fall prediction in the 
everyday life. The architecture, implemented on a field 
programmable gate array (FPGA), combines both 
electroencephalography (EEG) and electromyography to take 
decision for processing and eventual corrective actions on 
the muscles. To the best of our knowledge, our architecture 
is the first fully implemented cyber-physical system, which 
allows fall prevention by real-time processing of coupled 
EMG and EEG. 
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Figure 1.  Architecture of the proposed system. 

 

Figure 2.  EMG (a) and EEG (b) electrodes setting 

The paper is structured as follows. Section II introduces 
basic medical knowledge for the fall prediction. Section III 
discusses the cyber-physical system architecture. Section IV 
presents experimental data from a Parkinson’s diseased (PD) 
patient and a healthy subject. 

II. MEDICAL BACKGROUND 

Literature studies demonstrate the possibility to predict a 

fall by a combined analysis of muscular movement (EMG) 

and its brain pre-processing (EEG) by monitoring EEG 

Movement Related Potentials (MRP) anticipating muscle 

activations [1-4, 17-18]. Currently none of the above 

remarked solutions enables such analysis:  indeed only 

partial solutions have been proposed in literature. In fact, 

some systems measure individually EEG or EMG; others 

measure both of them, but only on a few EEG/EMG 

electrodes without relative synchronization, using an 

external clock and delivering filtered data to be post-

processed and not handled in real time [19]. We mainly 

focus on Bereitschaftspotential (BP), μ and β rhythms that 

can be detected in the motor-cortex area even one second 

before the muscle activation in the band of 2–5Hz, 7–12Hz, 

and 13–30Hz respectively. In movement disorders, mobility 

impairment is indicated by an altered modulation of the 

MRPs as well as a mismatch between the MRPs and the 

movement.  EMG data are processed in parallel, aiming to 

evaluate the co-contraction time among agonist-antagonist 

muscles. The co-contraction time is the period during which 

an agonist and antagonist muscles (i.e., Gastrocnemius and 

Tibialis) are contracted at the same time. During normal gait 

where agonist and antagonist muscles are alternately 

activated, the co-contraction time is low (< 300ms) and 

depends on the particular subject. High EMG co-contraction 

time during gait (larger than 500/600ms depending on the 

subject) is a significant index of unbalance and instability. 

According to [20], a reaction time of 300ms or lower returns 

a probability p < 0.01 of falling. Therefore, if the system 

reacts within this time limit and delivers a corrective action, 

the fall can be avoided.   

III. THE CYBER-PHYSICAL SYSTEM  

The high-level architecture of the cyber-physical system 

is outlined in Fig. 1. The wireless body area network 

(WBAN) allows synchronized collection of EEG and EMG. 

Eight EEG (according to the international 10-20 system T3, 

T4, C3, C4, CZ, P3, P4, O2, – 500Hz and 24bit resolution) 

and as many EMG channels (Gastrocnemius, Tibialis, 

Rectus and Biceps Femoralis of both the legs – 500Hz 

sampling rate and 16bit resolution [21]) are collected by a 

wireless and wearable recording systems, and sent to a 

gateway as shown in Fig. 2. The signal processing is 

performed on an FPGA. Signal processing outcomes are 

subsequently passed to a reasoner, which detect critical 

situation by analyzing EEG, EMG, inertial sensor data, 

environment and clinical condition information. When a 

potential fall is detected, a feedback is generated and 

delivered to the subject. The global vision of the project 

includes the electrical stimulation of the antagonist limb 

muscles in order to favor the postural correction, drastically 

reducing the probability of fall. The electrostimulation sub-

system is part of our future works. 

A. High-Level Algorithm Description  

EMG and EEG follow two different processing 

branches. A trigger signal is extracted from EMG raw data 

using a dynamic-threshold approach. The trigger signal is 

computed as follows. First, the EMG signal is rectified, 

squared and stored in an M samples shift-register (in our 

algorithm M = 512, that is 1s data). The mean value of all 

register samples (global average) is therefore directly the 

EMG power in the M samples window and it is used as 

threshold. A second mean value (local average) is computed 

on the last N samples (i.e., corresponding to just a part of 

the complete M samples shift register, being N<M, in our 

design N = 128) and compared with the threshold. As a new 

EMG sample arrives, both global and local average are 

refreshed, making the thresholding scheme dynamic. The 

EMG trigger rises and stays high only if the local power is 

larger than the dynamic global average threshold. This 

approach heavily compresses the EMG signals, providing 

and unambiguous muscle activation signal (only 1bit trigger 

signal per muscle). For the EEG part running in parallel 

with respect to the EMG one, the time-frequency analysis is 

run on seven motor-cortex channels only (T3, T4, C3, C4, 

CZ, P3, P4), while the occipital one (O2) is used for noise 

reduction. As soon as new EEG samples arrive, data are 

stored in a 256 samples register. When a coupled EMG 

rising edge is detected, a 256 points 24bit resolution Fast 

Fourier Transform (FFT) is computed on the previous 256 

EEG samples stored into the register. The cortical 

involvement is opposite with respect to the movement 

performed: if a right limb movement is detected (right 
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Figure 3.  Schematic diagram of a single EMG branch 

 
Figure 4.  Schematic diagram of a single EEG branch 

Gastrocnemius), the analysis is performed on left motor-

cortex channels (Cz, C3, T3, P3) and vice versa (left 

Gastrocnemius triggers Cz, C4, T4, P4, note that since Cz is 

a central channel is triggered by both). The FFT output data 

are processed to compute the square magnitude and the 

appropriate frequency components summed in order to 

calculate the spectral powers in the MRPs bands. When the 

EMG trigger arrives, the EEG power levels in the MRPs 

band are referred to approximately 500ms before the 

movement occurs. The obtained power levels for each EEG 

channel are then compared to fixed thresholds (which need 

to be trimmed on the subject) in order to evaluate the 

voluntariness of the EMG contraction. Thresholds are 

customized on the individual after a period of learning (the 

subjects were asked to rest for 1 minute). 

B. FPGA Architecture: Processor System-level Design 

In the aim of a future ASIC implementation, the 

architecture has been validated on a FPGA (Altera Cyclone 

V). A more detailed description of the FPGA 

implementation has been presented in [21][22]. The input-

output interface of our design is characterized by:16 bio-

signals inputs (eight 16bit EMG and eight 24bit EEG); 25 

outputs (BP, μ and β 1bit flags for the seven EEG motor-

cortex channels and 4 co-contraction 1bit signals). The 

System clock is set to 8.19209MHz (signal 8 MHz CLK), 

obtained with an on-chip Phase-Locked Loop (PLL, block 

named PLL) from the embedded 50MHz oscillator (50 

MHz CLK). The global signals of the whole implementation 

are: Reset, an asynchronous reset (derived from the 

Reset KEY input) ; Enable SW, an enable signal which 

freezes the processing; 500Hz CLK, an input data clock 

signal from the  EMG and EEG channels (500Hz 

frequency); 8 MHz CLK, a 8.19209MHz system clock 

obtained by the on-chip PLL. In the complete system, 8 

EMG and 7 EEG processing branches are replicated in 

parallel on the FPGA. In the following sub-section, we 

summarize the processing data path for a generic combined 

[21][22].  

EMG Processing Branch (see Fig. 3). Incoming squared 

EMG samples passed to two FSMs, Global Power FSM and 

Local Power FSM, to calculate in parallel, respectively, the 

dynamic threshold (global power) and the local power. 

Based on two block RAM (Global Threshold and Local 

Threshold Block RAM of M = 512 and N = 128, 32bit 

words), when a new EMG sample arrives (500Hz CLK = 

‘1’) the last inserted sample is pointed and “pop” (512th and 

128th for, respectively, Global Power and Local 

Power Block RAM). Then, the read sample is subtracted 

and the new sample is added to refresh the overall power 

Sum within the window. An asynchronous 64bit comparator 

(>) compares the powers calculated in parallel by the two 

blocks (THR and Local THR). Local THR is also 

compared to a fixed threshold (evaluated on the subject 

resting) that prevents unpredictable behavior due to noise 

when the subject stops walking. The output of the 

comparator is the 1bit EMG trigger (signal Trigger), used 

both in the EEG computation to enable the time-frequency 

analysis and in the co-contraction calculation. The co-

contraction signal is obtained by computing an AND logic 

operation on agonist-antagonist coupled muscles. The 

adopted approach allows the efficient calculation of the 

powers in the desired windows, without necessarily having 

to re-compute, at each 8MHz clock rising edge, the overall 

sum of the RAMs.  

EEG Processing Branch (see Fig. 4). The EEG branch 

comprises a 256 points 24bit resolution FFT processor 

based on a butterfly structure [24, 25]. The 256 EEG 

samples to be transformed are dynamically stored in a 256 

24bit words RAM(EEG Block RAM) addressed by a loop 

address counter in the FFT Controller. When EMG 

Trigger rises to ‘1’, the 256 samples stored into the RAM 

are passed the FFT block by properly temporizing the 

Sink_controls signals through a series of dedicated states. 

After data is sent and validated (Source_controls), the FSM 

waits for another Trigger rising edge to repeat the 

sequencing. The FFT output data is interpreted by the MRP 

Calculator where they are squared and opportunely summed 

(both real and imaginary parts) using a 64bit adder in order 

to extract the BP, µ and β powers, in natural units (BP, MU, 

BETA signals). Finally, when MRP Ready is asserted, BP, 

µ and β are compared to fixed thresholds related to the 

subject, preloaded on the FPGA. 

C. The Reasoner  

The decision algorithm is based on the annotation of 

EMG/EEG wireless wearable electrodes signals and on the 

application of logic-based inferences in order to classify fall 

patterns and calculate a response for feedback delivery.  
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EMG co-contractions, EEG MRPs and data acquired from 

an inertial sensor are used to distinguish when a fall is 

starting and to trigger the further processing steps. The 

environmental conditions and the medical history of the 

patient are taken into account. The reasoner has been 

already developed in previous works: a more detailed 

description of the semantic matchmaking algorithm is 

reported in [19]. 

IV. RESULTS 

Experimental results on healthy subjects have been 

already presented in [21-23, 25, 31-33]. In the present paper, 

we propose a dataset including EEG/EMG recordings of a 

subject affected by Parkinson disease (PD) and a healthy 

one, both performing natural gait (120s) and ‘pull tests’ 

[26]. Those tests are performed in a controlled environment 

(local hospital), under the supervision of specialized staff. 

The use of the proposed system in these analyses provides a 

systematic and objective quantification of diagnostic 

indexes. Overall, the worst case power consumption (when 

unrealistically all blocks are simultaneously operating) can 

be estimated as 150mW, which is a feasible upper bound for 

portable applications [21, 24, 28, 29]. The system is able to 

deliver the corrective action in 168ms well within the 300ms 

time limit (data collection: 14ms; data processing: 42ms; 

reasoning: 12ms; feedback: 100ms) [19]. 

A. Cyber-Physiscal System Performance 

The FPGA system implementation with 16 bio-signals 

inputs and 25 outputs requires 81.7% ALMs (arithmetic 

logic module), 44808 ALUTs, 73.4% registers, 10.3% block 

memory of the available resources.  FPGA results present a 

mean relative error of 0.01% if compared with Matlab 

outcomes on the same dataset. The most power hungry part 

of the system is the FFT. In a 180nm CMOS ASIC, a 16bit 

butterfly 256 points FFT at 4MHz would consume about 

13mW during continuous operation including block RAM, 

which at 4MHz would consume approximately 1mW [27]. 

B. Experimental Results: Gait Analysis 

For the gait analysis, the subjects are asked to perform a 

natural and fluid walk. The results are summarized in table  

I, which reports, from the top of the table, the failure rate of 

the EMG trigger generation, maximum, typical and 

number/second co-contractions, limb muscles 

activation/deactivation and their ratio (duty cycle) during a 

single step. Table I distinctly shows the parameters for PD 

and healthy subjects. The results quantify the differences 

between the PD and the healthy subjects in terms of walking 

patterns.   

i. The EMG trigger failure rate to detect EMG contraction is 

only 0.07% (worst-case).   

ii. The Haste rate (HR), defined as number of co-

contractions (ccs) per second, is 1.17 ccs/s for the PD 

subject against 0.44 ccs/s for a healthy subject: co-

contractions are more frequent in PD than the healthy.  

iii. Typical co-contraction times show an increase of 58ms 

(average value on all the four muscles couples) between PD 

subject and healthy one with greater incidence on the right 

leg (Δt=+120ms on R.Gast-R. Tib and Δt=+90ms on R. Bic 

– R. Rect): the co-contraction times are, on average, higher 

in PD than the healthy during gait.  

iv. The maximum co-contraction time for the PD subject is 

higher for all the muscles if compared with the healthy 

subject (e.g. PD Max= 756ms and Healthy Max=548ms on 

L. Rect-L. Bic). The maximum co-contraction time is higher 

in PD than the healthy during gait. 

v. On single muscle, PD subject shows contraction times 

that cover, on average, the 48.56% of the step time length. 

The healthy subject returns a value of 33.62%. The PD 

outlines muscular hyperactivity during gait. During normal 

gait, no significant differences on MRPs were found. 

Indeed, both subjects present a BP that ranges from 58-65 

dBµ, µ-rhythm ranges from 51-55 dBµ and β-rhythm 

sweeps between 41-44 dBµ. However, considering the BP, 

evident differences have been highlighted in both subjects 

between the state of resting and the time slot preceding the 

step. Considering the healthy subject, in the resting state the 

BP mean value was 49±4.6 dBμ while before a step the BP 

mean value reached 60.8±6.4 dBμ (see Fig. 5). The 

difference of the walking patterns is also evident from the 

diagram presented in Fig. 6, on which is reported a BP vs. 

co-contraction times plot for PD (in blue) and healthy (in 

red) subjects is shown. For clarity, the shown co-contraction 

times are computed on the left gastrocnemius/tibialis pair 

while the shown BP are referred to the right-motor

TABLE I. GAIT ANALYSIS OF A PD AND A HEALTHY SUBJECT ACHIEVED BY THE PROPOSED CYBER-PHYSISCAL SYSTEM 

74Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-507-4

SEMAPRO 2016 : The Tenth International Conference on Advances in Semantic Processing



 
Figure 5.  BP calculation in a resting state (a) and before the step (b). 

 
Figure 6.  BP vs co-contraction time for both PD (blue) and healthy 

subjects (red).  

 
Figure 7.  Normalized comparison between FFT computed on 500ms 
before a voluntary (blue) and involuntary (red) movement on Cz. 

 

Figure 8.  Demonstrative evidence of MRP power levels increment in the 

PD patient in order to recovery his stability. 

TABLE II. MRPS AND CO-CONTRACTION VALUES DURING PULL TEST  

 

channels average. The analysis demonstrates that, while for 

the MRPs similar results are obtained for both subjects, the 

co-contractions for the PD subject are more frequent and 

reach values much higher in comparison with the healthy 

subject. In Fig. 7, a comparison between the EEG spectra 

computed before a voluntary movement (in blue) and before 

an involuntary movement (in red) are compared. The spectra 

are normalized. Considering the bands of interest (BP, µ and 

β), the power computed in the BP band during a voluntary 

movement is more than 100 times higher than the one 

calculated during an involuntary one. Similarly, the µ and β 

powers are about 10 times higher during a voluntary 

movement. 

C. Experimental Results: Pull Test    

The postural stability is tested in specialized centers by 

the “pull test” protocol [26].  During this test, the 

neurologist gives a moderately forceful backwards tug on 

the standing individual and observes how the person 

recovers his stability. The normal response is one or more 

quick backwards steps to prevent a fall. Usually during this 

test, the physician associates a numeric index basing on the 

subject response. Using the proposed cyber-physical system, 

we were able to quantify the instability of the subject and 

his intentionality in the stability recovery by MRPs. Pull test 

results for both PD and healthy subjects are summarized in 

Table II, which includes MRPs for both right ( R) and left 

(L) EEG channels and the maximum co-contraction value 

reached. The EMG triggers analysis highlights that, when 

the sudden unbalancing is externally induced from the 

operator, PD subject reacted with four step. Two of these 

are backward, while two forward, until complete settling. 

The healthy subject reacted to the unbalancing with a single 

settling step. PD subject co-contractions in pull test 

increase, on average, of 98.75ms in comparison with gait’s 

values. The healthy subject co-contraction values show no 

relevant change with an increase of 11.75ms. The PD 

subject co-contraction maximum value was 1.06s and was 

recorded on right biceps-rectus Femoralis. The MRPs have 

an interesting behavior when the sudden unbalancing 

happens. For the PD subject, MRPs increase their initial 

value (that sweep between 59.9-62.8dBµ) of 6.5dBµ on 

right EEG channels and 6dBµ on left ones. The increase is 

distributed over the steps showing the recovery of 

voluntariness during the movements. The healthy subject 

showed an initial range of 56.4-58.4dBµ and reached 64.2 

dBµ (increase of 7.8 dBµ) and 69.2dBµ (increase of 7.8 

dBµ) on left and right EEG channels respectively. The 

MRPs evolution during a single entire pull test for the PD 

subject is presented in Fig.  8. When the unbalance is 

externally induced, the recorded MRPs values are 

comparable to the resting values. However, in the 

subsequent recovery steps the MRPs increase both on right 

(ΔBP = +11.9% ; Δµ =5.5% ; Δβ = + 11.1%) and left (ΔBP 

= +14.3% ;  Δµ = +8.8% ; Δβ = +2.2%) EEG channels.  

V. CONCLUSION  

In this work, a cyber-physical system for gait analysis 

and fall risk evaluation has been presented. EEG/EMG 

wireless nodes for real-time synchronous data collection 

make up the system.  The system is able to evaluate 

different indexes, in order to establish the coupling between 

brain activity and movement, leading to the assessment of 

the intentionality level of a muscle contraction. An FPGA 
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(Altera Cyclone V) implementation, including test and 

validation of the system has been presented. The FPGA 

results show low residual numerical error (0.012%) if 

compared to Matlab ones and the maximum power 

consumption is of about 150mW. A further stage of 

semantic matchmaking collects, interprets and 

contextualizes the processed data. In this article, the system 

has been tested on a subject affected by the Parkinson’s 

syndrome and on a healthy subject performing a natural gait 

and pull tests [28]. The system is able to detect critical 

conditions in 168ms (data collection: 14ms; data processing: 

42ms; reasoning: 12ms; feedback: 100ms), within the 

300ms, i.e., the standard time limit to avoid the fall [23].  
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