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Abstract—The World Wide Web Consortium (W3C) OWL 2 
Web Ontology Language (OWL 2) recommendation is an 
ontology language for the Semantic Web. It allows defining 
both schema (i.e., entities, axioms, and expressions) and 
instances (i.e., individuals) of ontologies. OWL 2 ontologies are 
stored as Semantic Web documents. However, OWL 2 lacks 
explicit support for time-varying schema or for time-varying 
instances. Hence, knowledge engineers or maintainers of 
semantics-based Web resources have to use ad hoc techniques 
in order to specify OWL 2 schema for time-varying instances.  
In this paper, for a disciplined and systematic approach to the 
temporal management of Semantic Web documents, we 
propose the adoption of a framework called Temporal OWL 2 
(τOWL), which is inspired by the τXSchema framework 
defined for XML data. In a way similar to what happens in 
τXSchema, τOWL allows creating a temporal OWL 2 ontology 
from a conventional (i.e., non-temporal) OWL 2 ontology and a 
set of logical and physical annotations. Logical annotations 
identify which elements of a Semantic Web document can vary 
over time; physical annotations specify how the time-varying 
aspects are represented in the document. By using annotations 
to integrate temporal aspects in the traditional Semantic Web, 
our framework (i) guarantees logical and physical data 
independence for temporal schemas and (ii) provides a low-
impact solution since it requires neither modifications of 
existing Semantic Web documents, nor extensions to the OWL 
2 recommendation and Semantic Web standards.  

Keywords–Semantic Web; Ontology; OWL 2; τXSchema; 
Logical annotations; Physical annotations; Temporal database; 
XML Schema; XML 

I.  INTRODUCTION  

Time is an omnipresent dimension in both classical and 
modern applications [1]; it is used to timestamp data values 
to keep track of changes in the real world and model their 
history. Hence, studying time has been, and continues to be, 
one of the main research interests in different scientific 
fields, such as databases and knowledge representation.  

Since the second half of the 1980s, a great deal of work 
has been done in the field of temporal databases [2][3][4]. 
Several data models and query languages have been 
proposed for the management of time-varying data. 
Temporal databases usually adopt one or two time 
dimensions to timestamp data: (a) transaction-time, which 
indicates when an event is recorded in the database, and (b) 

valid-time, which represents the time when an event 
occurred, occurs or is expected to occur in the real world.  

On the other hand, the World Wide Web (WWW or 
Web) [5] was shifted from the semi-structured internet to a 
more structured Web called the Semantic Web [6][7]. The 
new generation of Web aims to provide languages and tools 
that specify explicit semantics for data and enable knowledge 
sharing among knowledge-based applications. In this vision, 
ontologies [8] are used for defining and relating concepts 
that describe Web resources, in a formal way. The new 
emerging standard for describing ontologies, which has been 
recommended by the W3C since 2009, is OWL 2 
[9][10][11]. It allows defining both schema (in terms of 
entities, axioms, and expressions) and instances (i.e., 
individuals) of ontologies; OWL 2 ontologies are stored as 
Semantic Web documents.  

Due to the dynamic nature of the Web, ontologies that 
are used on the Web (like other Web application components 
such as Web databases, Web pages and Web scripts) evolve 
over time to reflect and model changes occurring in the real-
world. Furthermore, several Semantic Web-based 
applications (like e-commerce, e-government and e-health 
applications) require keeping track of ontology evolution and 
versioning with respect to time, in order to represent, store 
and retrieve time-varying ontologies. 

Unfortunately, while there is a sustained interest for 
temporal and evolution aspects in the research community 
[12], existing Semantic Web standards and state-of-the-art 
ontology editors and knowledge representation tools do not 
provide any built-in support for managing temporal 
ontologies. In particular, the W3C OWL 2 recommendation 
lacks explicit support for time-varying ontologies, at both 
schema and instance levels. Thus, knowledge engineers or 
maintainers of semantics-based Web resources must use ad 
hoc techniques when there is a need, for example, to specify 
an OWL 2 ontology schema for time-varying ontology 
instances. In the rest of the paper, we define as Knowledge 
Base Administrator (KBA) a knowledge engineer or, more in 
general, the person in charge of the maintenance of 
semantics-based Web resources.   

According to what precedes, we think that if we would 
like to handle ontology evolution over time in an efficient 
manner and to allow historical queries to be executed on 
time-varying ontologies, a built-in temporal ontology 
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management system is needed. For that purpose, we propose 
in this paper a framework, called τOWL, for managing 
temporal Semantic Web documents, through the use of a 
temporal OWL 2 extension. In fact, we want to introduce 
with τOWL a principled and systematic approach to the 
temporal extension of OWL 2, similar to that Snodgrass and 
colleagues did to the eXtensible Markup Language (XML) 
with Temporal XML Schema (τXSchema) [13][14][15]. 
τXSchema is a framework (i.e., a data model equipped with a 
suite of tools) for managing temporal XML documents, well 
known in the database research community and, in 
particular, in the field of temporal XML [16]. Moreover, in 
our previous work [17][18][19], with the aim of completing 
the framework, we augmented τXSchema by defining 
necessary schema change operations acting on conventional 
schema, temporal schema, and logical and physical 
annotations (extensions which we plan to apply to τOWL 
too).   

Being defined as a τXSchema-like framework, τOWL 
allows creating a temporal OWL 2 ontology from a 
conventional (i.e., non-temporal) OWL 2 ontology 
specification and a set of logical (or temporal) and physical 
annotations. Logical annotations identify which components 
of a Semantic Web document can vary over time; physical 
annotations specify how the time-varying aspects are 
represented in the document. By using temporal schema and 
annotations to introduce temporal aspects in the conventional 
(i.e., non temporal) Semantic Web, our framework (i) 
guarantees logical and physical data independence [20] for 
temporal schemas and (ii) provides a low-impact solution 
since it requires neither modifications of existing Semantic 
Web documents, nor extensions to the OWL 2 
recommendation and Semantic Web standards. 

The remainder of the paper is organized as follows. 
Section II motivates the need for an efficient management of 
time-varying Semantic Web documents. Section III describes 
the τOWL framework that we propose for extending the 
Semantic Web to temporal aspects: the architecture of τOWL 
is presented and details on all its components and support 
tools are given. Section IV discusses related work. Section V 
provides a summary of the paper and some remarks about 
our future work. 

II. MOTIVATION  

In this section, we present a motivating example that 
shows the limitation of the OWL 2 language for explicitly 
supporting time-varying instances. Then, we state the 
desiderata for an OWL 2 extension which could 
accommodate time-varying instances in a disciplined and 
systematic way. 

A. Motivating Example 

The Friend of a Friend (FOAF) project [21] is creating a 
Web of machine-readable pages describing people, the links 
between them and the things they create and do.  

Suppose that the Web site “Web-S1” publishes the FOAF 
definition for his user “Nouredine”. A fragment of the FOAF 
Resource Description Framework (RDF) document of 
“Nouredine” is presented in Fig. 1. It describes, according to 

the FOAF ontology, the personal information of 
“Nouredine” (i.e., name and nickname) and the information 
about his online accounts on diverse sites (i.e., the home 
page of the site, and the account name of the user). In this 
example, we limit to describe user’s information concerning 
the account on the online Web site “Facebook”.  

Assume that information about the user “Nouredine” of 
the Web site “Web-S1” was added on 2014-01-15. On 2014-
02-08, Nouredine modified his nickname from “Nor” to 
“Nouri” and his account name of Facebook from 
“Nor_Tunsi” to “Nouri_Tunsi”. Thus, the corresponding 
fragment of the Nouredine FOAF RDF document was 
revised to that shown in Fig. 2. 
… 
<foaf : Person rdf:ID="#Person1"> 

<foaf : name>Nouredine Tounsi</ foaf : name> 
<foaf : nick >Nor</ foaf : nick > 
<foaf : holdsAccount > 

<foaf : OnlineAccount  
      rdf:about="https://www.facebook.com/ 
      Nouredine.Tounsi">  

<foaf : accountName >Nor_Tunsi 
</ foaf : accountName > 

</ foaf : OnlineAccount > 
</ foaf : holdsAccount > 

</ foaf : Person > 
… 

Figure 1. A fragment of Nouredine FOAF RDF document on 2014-01-15. 

… 
<foaf: Person rdf:ID="#Person1"> 

<foaf : name>Nouredine Tounsi</ foaf : name> 
<foaf : nick >Nouri</ foaf : nick > 
<foaf : holdsAccount > 

<foaf : OnlineAccount  
      rdf:about="https://www.facebook.com/ 
      Nouredine.Tounsi"> 

<foaf : accountName >Nouri_Tunsi 
</ foaf : accountName > 

</ foaf : OnlineAccount > 
</ foaf : holdsAccount > 

</ foaf : Person > 
... 

Figure 2. A fragment of Nouredine FOAF RDF document on 2014-02-08. 

In many Semantic Web-based applications, the history of 
ontology changes is a fundamental requirement, since such a 
history allows recovering past ontology versions, tracking 
changes over time, and evaluating temporal queries [22]. A 
τOWL time-varying Semantic Web document records the 
evolution of a Semantic Web document over time by storing 
all versions of the document in a way similar to that 
originally proposed for τXSchema [13]. 

Suppose that the webmaster of the Web site “Web-S1” 
would like to keep track of the changes performed on our 
FOAF RDF information by storing both versions of Fig. 1 
and of Fig. 2 in a single (temporal) RDF document. As a 
result, Fig. 3 shows a fragment of a time-varying Semantic 
Web document that captures the history of the specified 
information of “Nouredine”.  
… 
<foaf : Person rdf:ID="#Person1"> 

<foaf : name>Nouredine Tounsi</ foaf : name> 
<versionedNick > 

<NickVersion > 
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<nickValidityStartTime >2014-01-15 
</ nickValidityStartTime > 
<nickValidityEndTime >2014-02-07 
</ nickValidityEndTime > 
<foaf : nick >Nor</ foaf : nick > 

</ NickVersion > 
<NickVersion > 

<nickValidityStartTime >2014-02-08 
</ nickValidityStartTime > 
<nickValidityEndTime >now 
</ nickValidityEndTime > 
<foaf : nick >Nouri</ foaf : nick > 

</ NickVersion > 
</ versionedNick > 
<foaf : holdsAccount > 

<foaf : OnlineAccount  
      rdf:about="https://www.facebook.com/ 
      Nouredine.Tounsi"> 

<versionedAccountName > 
<AccountNameVersion > 

<accountNameValidityStartTime > 
2014-01-15 

</ accountNameValidityStartTime > 
<accountNameValidityEndTime > 

2014-02-07 
</ accountNameValidityEndTime > 
<foaf : accountName >Nor_Tunsi 
</ foaf : accountName > 

</ AccountNameVersion > 
<AccountNameVersion > 

<accountNameValidityStartTime > 
2014-02-08 

</ accountNameValidityStartTime > 
<accountNameValidityEndTime > 

now 
</ accountNameValidityEndTime > 
<foaf : accountName >Nouri_Tunsi 
</ foaf : accountName > 

</ AccountNameVersion > 
</ versionedAccountName > 

</ foaf : OnlineAccount > 
</ foaf : holdsAccount > 

</ foaf : Person > 
... 

Figure 3. A fragment of the time-varying Nouredine FOAF RDF document. 

In this example, we use valid-time to capture the history 
of Nouredine information. In order to timestamp the entities 
which can evolve over time, we use the following optional 
tags: nickValidityStartTime  and nickValidityEndTime , 
for recording nick name evolution, and 
accountNameValidityStartTime and 
accountNameValidityEndTime, for keeping the 
accountName history. These are optional Data Properties 
which can be added to a temporal entity. The domain of 
nickValidityEndTime or accountNameValidityEndTime 
includes the value “now” [23]; the entity that has now as the 
value of its validity end time property represents the current 
entity until some change occurs.  

Assume that the extract of the FOAF ontology presented 
in Fig. 4 contains the conventional (i.e., non-temporal) 
schema [13] for the FOAF RDF document presented in both 
Fig. 1 and Fig. 2. The conventional schema is the schema for 
an individual version, which allows updating and querying 
individual versions.   

<rdf:RDF> 
<owl:Ontology  

     rdf:about="http://purl.org/az/foaf#"> 
<rdfs:Class rdf:about="#Person"> 

<rdf:type  
rdf:resource="http://www.w3.org/2002/ 
07/owl#Class"/> 

</rdfs:Class> 
<rdf:Property rdf:about="#holdsAccount"> 

<rdf:type  
 rdf:resource="http://www.w3.org/2002/ 
 07/owl#ObjectProperty"/> 

<rdfs:domain rdf:resource="#Person"/> 
<rdfs:range  
    rdf:resource="#OnlineAccount"/> 

</rdf:Property> 
<rdf:Property rdf:about="#accountName"> 

<rdf:type      
    rdf:resource="http://www.w3.org/2002/ 
    07/owl#DatatypeProperty"/> 
<rdfs:domain  
    rdf:resource="#OnlineAccount"/> 

</rdf:Property> 
… 

</rdf:RDF> 

Figure 4. An RDF/XML extract from the OWL 2 FOAF ontology. 

The problem is that the time-varying ontology document 
(see Fig. 3) does not conform to the conventional ontology 
schema (see Fig. 4). Thus, to resolve this problem, we need a 
different ontology schema that can describe the structure of 
the time-varying ontology document. This new schema 
should specify, for example, timestamps associated to 
entities, time dimensions involved, and how the entities vary 
over time. 

B. Desiderata 

There are several goals which can be fulfilled when 
augmenting the OWL 2 language to support time-varying 
instances. Our approach aims to satisfy the following 
requirements. 

• Facilitating the management of time for KBAs. 
• Supporting both valid time and transaction time. 
• Supporting (temporal) versioning of OWL 2 

instances. 
• Keeping compatibility with existing OWL 2 W3C 

recommendations, standards, and editors, and not 
requiring any changes to these recommendations, 
standards, and tools. 

• Supporting existing applications that are already 
using OWL 2 ontologies. 

• Providing OWL 2 data independence so that changes 
at the logical level are isolated from those performed 
at the physical level, and vice versa.  

• Accommodating a variety of physical representations 
for time-varying OWL 2 instances. 

III.  THE ΤOWL FRAMEWORK 

This section presents our framework τOWL for handling 
temporal Semantic Web documents and provides an 
illustrative example of its use. It describes the architecture of 
τOWL and the tools used for managing both τOWL schema 
and τOWL instances. Since τOWL is a τXSchema-like 
framework, we were inspired by the τXSchema architecture 
and tools while defining the architecture and tools of τOWL.  
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The τOWL framework allows a KBA to create a 
temporal OWL 2 schema for temporal OWL 2 instances 
from a conventional OWL 2 schema, logical annotations, 
and physical annotations. Since it is a τXSchema-like 
framework, τOWL use the following principles:  

• separation between (i) the conventional (i.e., non-
temporal) schema and the temporal schema, and (ii) 
the conventional instances and the temporal 
instances; 

• use of temporal and physical annotations to specify 
temporal and physical aspects, respectively, at 
schema level. 

Fig. 5 illustrates the architecture of τOWL. Notice that 
only the components which are shaded in the figure are 
specific to an individual time-varying OWL 2 document and 
need to be supplied by a KBA. The framework is based on 
the OWL 2 language [9], which is a W3C standard ontology 
language for the Semantic Web. It allows defining both 
schema (i.e., entities, axioms, and expressions) and instances 
(i.e., individuals) of ontologies. Thus, we consider that the 
signature of an OWL 2 ontology O can be defined as 
follows: O = {E, A, Exp} such that: 

i) E = {C, DP, OP, AP} represents the set of the entities 
with: 

• C: Class, represents the set of concepts; 
• DP: Data Property, represents the set of properties of 

the concepts; 
• OP: Object Property, represents the set of the 

semantic relations between the concepts; 
• AP: Annotation Property, represents the set of 

annotations on the entities and those on the axioms. 

ii)  A = {EAx, KAx} represents the set of axioms with:  
• EAx: Entity Axioms, represents the axioms which 

concern the entities; 
• KAx: Key Axioms, represents all the identifiers 

associated to the various classes. 
iii)  Exp = {CE, OPE, DPE} represents the set of the used 

expressions (an expression is a complex description 
which results from combinations of entities by using 
constructors such as enumeration, restriction of 
cardinality and restriction of properties) with: 

• CE: Class Expressions, represents the set of 
combinations of concepts by using constructors; 

• OPE: Object Property Expressions, represents the set 
of combinations of relations; 

• DPE: Data Property Expressions, represents the set of 
combinations of properties. 

The KBA starts by creating the conventional schema 
(box 6), which is an OWL 2 ontology that models the 
concepts of a particular domain and the relations between 
these concepts, without any temporal aspect. To each 
conventional schema corresponds a set of conventional (i.e., 
non-temporal) OWL 2 instances (box 11). Any change to the 
conventional schema is propagated to its corresponding 
instances. 

After that, the KBA augments the conventional schema 
with logical and physical annotations, which allow him/her 
to express in an explicit way all requirements dealing with 
the representation and the management of temporal aspects 
associated to the components of the conventional schema, as 
described in the following. 

 

 
Figure 5. τOWL overall architecture. 
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Logical annotations [15] allow the KBA to specify (i) 
whether a conventional schema component varies over valid 
time and/or transaction time, (ii) whether its lifetime is 
described as a continuous state or a single event, (iii) 
whether the component may appear at certain times (and not 
at others), and (iv) whether its content changes. If no logical 
annotations are provided, the default logical annotation is 
that anything can change. However, once the conventional 
schema is annotated, components that are not described as 
time-varying are static and, thus, they must have the same 
value across every instance document (box 11). 

Physical annotations [15] allow the KBA to specify the 
timestamp representation options chosen, such as where the 
timestamps are placed and their kind (i.e., valid time or 
transaction time) and the kind of representation adopted. The 
location of timestamps is largely independent of which 
components vary over time. Timestamps can be located 
either on time-varying components (as specified by the 
logical annotations) or somewhere above such components. 
Two OWL 2 documents with the same logical information 
will look very different if we change the location of their 
physical timestamps. Changing an aspect of even one 
timestamp can make a big difference in the representation. 
τOWL supplies a default set of physical annotations, which 
is to timestamp the root element with valid and transaction 
times. However, explicitly defining them can lead to more 
compact representations [15]. 

In order to improve conceptual clarity and also to enable 
a more efficient implementation, we adopt a “separation of 
concerns” principle in our approach: since the entities, the 
axioms and the expressions of an OWL 2 ontology evolve 
over time independently, we distinguish between three 
separate types of annotations to be defined and to be 
associated to a conventional schema: the entity annotations 
(box 8), the axiom annotations (box 9) and the expression 
annotations (box 10). 

Entity annotations describe the logical and physical 
characteristics associated to the components of an OWL 2 
ontology: classes, relations and properties. They indicate for 
example the temporal formats of these components which 
could be valid-time, transaction-time, bi-temporal or 
snapshot (by default). The schema for the logical and 
physical entity annotations is given by EntASchema (box 
3). Axiom annotations and expression annotations describe 
the logical and physical aspects of axioms and expressions 
defined on classes or on properties. The schema for the 
logical and physical axiom annotations is given by 
AxiASchema (box 4) and the schema for the logical and 
physical expression annotations is given by ExpASchema 
(box 5).  

Notice that AntASchema, AxiASchema, and 
ExpASchema, which all contain both logical and physical 
annotations, are XML Schemas [24]. The annotations 
associated to the same conventional schema can evolve 
independently. Any change to one of the three sets of 
annotations does not affect the two other sets. 

Finally, the KBA creates the temporal schema (box 7) in 
order to provide the linking information between the 
conventional schema and its corresponding logical and 

physical annotations. The temporal schema is a standard 
XML document which ties the conventional schema, the 
entity annotations, the axiom annotations, and the expression 
annotations together. In the τOWL framework, the temporal 
schema is the logical equivalent of the conventional OWL 2 
schema in a non-temporal context. This document contains 
sub-elements that associate a series of conventional schema 
definitions with entity annotations, axiom annotations, and 
expression annotations, along with the time span during 
which the association was in effect. The schema for the 
temporal schema document is the XML Schema Definition 
document TSSchema (box 2).  

Notice that, whereas TSSchema (box 2), AntASchema 
(box 3), AxiASchema (box 4), and ExpASchema (box 5) have 
been developed by us, OWL 2 (box 0) and XML Schema 
(box 1) correspond to the standards endorsed by the W3C. 

In a way similar to what happens in the τXSchema 
framework, the temporal schema document (box 7) is 
processed by the temporal schema validator tool in order to 
ensure that the logical and physical entity annotations, axiom 
annotations and expression annotations are (i) valid with 
respect to their corresponding schemas (i.e., AntASchema, 
AxiASchema, and ExpASchema, respectively), and (ii) 
consistent with the conventional schema. The temporal 
schema validator tool reports whether the temporal schema 
document is valid or invalid. 

Once all the annotations are found to be consistent, the 
representational schema generator tool generates the 
representational schema (box 12) from the temporal schema 
(i.e., from the conventional schema and the logical and 
physical annotations); it is the result of transforming the 
conventional schema according to the requirements 
expressed through the different annotations. The 
representational schema becomes the schema for temporal 
instances (box 13). Temporal instances could be 
automatically created from the non-temporal instances (box 
11) and the temporal schema (box 7), using the temporal 
instances generator tool (such an operation is called 
“squash” in the original τXSchema approach). Moreover, 
temporal instances are validated against the representational 
schema through the temporal instances validator tool which 
reports whether the temporal instances document (box 13) is 
valid or invalid. 

Notice that the four mentioned tools (i.e., Temporal 
Schema Validator, Temporal Instances Validator, 
Representational Schema Generator, and Temporal Instances 
Generator) are under development. For example, the 
temporal instances validator tool is being implemented as a 
temporal extension of an existing conventional ontology 
instance validator. 

Illustrative example. In order to show the functioning of 
the proposed approach, we provide in the following an 
example that shows how management of temporal ontology 
document versions is dealt with in our τOWL approach.  

Let us resume the example of Sec. II.A. On 2014-01-15, 
the KBA creates a conventional ontology schema, named 
“PersonSchema_V1.owl” (as in Fig. 4), and a conventional 
ontology document, named “Persons_V1.rdf” (as in Fig. 1), 
which is valid with respect to this schema. Suppose that the 
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KBA defines also a set of logical and physical annotations, 
associated to that conventional schema; they are stored in an 
ontology annotation document titled 
“PersonAnnotations_V1.xml” as shown in Fig. 6.  
<?xml version=”1.0” encoding=”UTF-8”?> 
<ontologyAnnotationSet > 

<logicalAnnotations > 
<item  target=”/Person/nick”> 

<validTime  kind=”state”  
            content=”varying”  
            existence=”constant”/> 
</ item > 

</ logicalAnnotations > 
<physicalAnnotations > 

<stamp  target=”Person/nick”  
dataInclusion=”expandedVersion”> 

<stampkind  timeDimension=”validTime”  
            stampBounds=”extent”/> 
</ stamp > 

</ physicalAnnotations > 
</ ontologyAnnotationSet > 

Figure 6. The annotation document on 2014-01-15. 

After that, the KBA creates the temporal ontology 
schema in Fig. 7, that ties “PersonSchema_V1.owl” and 
“PersonAnnotations_V1.xml” together; this temporal schema 
is saved in an XML file titled 
“PersonTemporalSchema.xml”. Consequently, the Temporal 
Instances Generator tool uses the temporal ontology schema 
of Fig. 7 and the conventional ontology document in Fig. 1 
to create a temporal document as in Fig. 8, that lists both 
versions (i.e., temporal “slices”) of the conventional 
ontology documents with their associated timestamps. The 
squashed version of this temporal document, which could be 
generated by the Temporal Instances Generator, is provided 
in Fig. 9. 

On 2014-02-08, the KBA updates the conventional 
ontology document “Persons_V1.rdf” as presented in Sec. 
II.A to produce a new conventional ontology document 
named “Persons_V2.rdf” (as in Fig. 2). Since the 
conventional ontology schema (i.e., PersonSchema_V1.owl) 
and the ontology annotation document (i.e., 
PersonAnnotations_V1.xml) are not changed, the temporal 
ontology schema (i.e., PersonTemporalSchema.xml) is 
consequently not updated. However, the Temporal Instances 
Generator tool updates the temporal document, in order to 
include the new slice of the conventional ontology 
document, as shown in Fig. 10. The squashed version of the 
updated temporal document is provided in Fig. 11. 
<?xml version=”1.0” encoding=”UTF-8”?> 
<temporalOntologySchema > 

<conventionalOntologySchema > 
<sliceSequenc e> 

<slice  location=” PersonSchema_V1.owl ”  
        begin=”2014-01-15” /> 
</ sliceSequence > 

</ conventionalOntologySchema > 
<ontologyAnnotationSet > 

<sliceSequence > 
<slice   

location=” PersonAnnotations_V1.xml ” 
begin=”2014-01-15” /> 

</ sliceSequence > 
</ ontologyAnnotationSet > 

</ temporalOntologySchema > 

Figure 7. The temporal schema on 2014-01-15. 

<?xml version=”1.0” encoding=”UTF-8”?> 
<td:temporalRoot   

temporalSchemaLocation= ”PersonTemporalSchema.xml
” /> 

<td:sliceSequence > 
<td:slice  location =”Persons_V1.rdf ”  
          begin=”2014-01-15” /> 

</ td:sliceSequence > 
</ td:temporalRoot > 

Figure 8. The temporal document on 2014-01-15. 

<foaf : Person rdf:ID="#Person1"> 
<foaf : name>Nouredine Tounsi</ foaf : name> 
<nick_RepItem > 

<nick_Version > 
<timestamp_ValidExtent  
         begin=”2014-01-15” end=”now” /> 
<foaf : nick >Nor</ foaf : nick > 

</ nick_Version > 
</ nick_RepItem > 
<foaf : holdsAccount > 

<foaf : OnlineAccount  
      rdf:about="https://www.facebook.com/ 
      Nouredine.Tounsi"> 

<accountName_RepItem > 
<accountName_Version > 

<timestamp_ValidExtent  
       begin=”2014-01-15” end=”now” /> 
<foaf : accountName >Nor_Tunsi 
</ foaf : accountName > 

</ accountName_Version > 
</ accountName_RepItem > 

</ foaf : OnlineAccount > 
</ foaf : holdsAccount > 

</ foaf : Person > 

Figure 9. The squashed document correponding to the temporal document 
on 2014-01-15. 

<?xml version=”1.0” encoding=”UTF-8”?> 
<td:temporalRoot   

temporalSchemaLocation= ”PersonTemporalSchema.xml
” /> 

<td:sliceSequence > 
<td:slice  location =”Persons_V1.rdf ”  
          begin=”2014-01-15” /> 
<td:slice  location =”Persons_V2.rdf ”  
          begin=”2014-02-08” /> 

</ td:sliceSequence > 
</ td:temporalRoot > 

Figure 10. The temporal document on 2014-02-08. 

<foaf : Person rdf:ID="#Person1"> 
<foaf : name>Nouredine Tounsi</ foaf : name> 
<nick_RepItem > 

<nick_Version > 
<timestamp_ValidExtent begin=”2014-01-15”  
                      end=”2014-02-07” /> 
<foaf : nick >Nor</ foaf : nick > 

</ nick_Version > 
<nick_Version > 

<timestamp_ValidExtent begin=”2014-02-08”  
                       end=”now” /> 
<foaf : nick >Nouri</ foaf : nick > 

</ nick_Version > 
</ nick_RepItem > 
<foaf : holdsAccount > 

<foaf : OnlineAccount  
      rdf:about="https://www.facebook.com/ 
      Nouredine.Tounsi"> 
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<accountName_RepItem > 
<accountName_Version > 

<timestamp_ValidExtent  
           begin=”2014-01-15”  
           end=”2014-02-07”/>  
<foaf : accountName >Nor_Tunsi 
</ foaf : accountName > 

</ accountName_Version > 
<accountName_Version > 

<timestamp_ValidExtent  
           begin=”2014-02-08”  
           end=”now” /> 
<foaf : accountName >Nouri_Tunsi 
</ foaf : accountName > 

</ accountName_Version > 
</ accountName_RepItem > 

</ foaf : OnlineAccount > 
</ foaf : holdsAccount > 

</ foaf : Person > 

Figure 11. The squashed document correponding to the temporal document 
on 2014-02-08. 

Obviously, each one of the squashed documents (see Fig. 
9 and Fig. 11) should conform to a particular schema, i.e., 
the representational schema, which is generated from the 
temporal schema shown in Fig. 7. 

IV. RELATED WORK DISCUSSION 

OWL-Time (formerly DAML-Time) [25] is a temporal 
ontology that has been developed for describing the temporal 
content of Web pages and the temporal properties of Web 
services. Excepting language constructs for representing time 
in ontologies, mechanisms for representing evolution of 
concepts (e.g., events) over time are absent. Furthermore, 
temporal relations cannot be expressed directly in OWL, 
since they are ternary (i.e., properties of objects that change 
in time involve also a temporal value in addition to the object 
and the subject); representing such temporal relations in 
OWL requires appropriate methods (e.g., 4D-fluents [26]). 
Our approach allows KBA representing (i) evolution of 
concepts over time, and (ii) temporal relations. 

In [27], the authors present the annotation features of 
OWL 2 by showing that this latter allows for annotations on 
ontologies, entities, anonymous individuals, axioms (e.g., 
giving information about who asserted an axiom or when), 
and annotations themselves. In our work, we took another 
direction from using OWL 2 annotation features because we 
rather wanted to exploit the power of the τXSchema 
approach (e.g. including the exploitation of a τXSchema-like 
underlying infrastructure). 

Time dimension(s) are explicitly added to Semantic Web 
languages and formalisms (e.g., RDF, OWL, and SPARQL 
Protocol and RDF Query Language (SPARQL)) in order to 
represent time in semantic annotations, to build temporal 
ontologies and to support temporal querying and reasoning. 
An annotated bibliography of previous work in this area is 
presented in [12], and a survey on the models and query 
languages for temporally annotated RDF is provided in [37]. 
In particular, in the literature, there are various contributions 
that propose to represent temporal data in the Semantic Web. 

Gutiérrez et al. [28] presented a comprehensive 
framework to incorporate temporal reasoning into RDF, 

yielding temporal RDF graphs. They define a syntactic 
notion of temporal RDF graphs. A powerful system, called 
CHRONOS, for reasoning over temporal information in 
OWL ontologies is presented in [38]. Since qualitative 
representations are very common in natural language 
expressions such as in free text or speech and can be proven 
to be valuable in the Semantic Web, the authors choose to 
represent both qualitative temporal (i.e., information whose 
temporal extents are unknown such as “before”, “after” for 
temporal relations) and quantitative information (i.e., where 
temporal information is defined precisely, e.g., using dates). 
The CHRONOS reasoner can be applied to temporal 
relations in order to infer implied relations and to detect 
inconsistencies while retaining soundness, completeness and 
tractability over the supported relations set. As opposed to 
Gutiérrez et al. [28] and Anagnostopoulos et al. [38], in our 
present approach, we are not interested in temporal reasoning 
(and, thus, in spatio-temporal reasoning). 

A model of a multi-temporal RDF Schema (RDFS) 
database is proposed in [29] where the author considered that 
this database is a set of RDF triples timestamped along the 
valid and/or transaction time axes. To enable querying such a 
database, an extension of SPARQL language [30], called T-
SPARQL, has been defined in [22]. The paper [31] proposes 
a logic-based approach to introduce valid-time into RDFS 
and OWL 2 languages. An extension of SPARQL that can be 
used to query temporal RDF(S) and OWL 2 is also 
presented. Moreover, the author describes a general query 
evaluation algorithm that can be used with all entailment 
relations used in the Semantic Web. Finally, he presents two 
optimizations of the algorithm that are applicable to 
entailment relations characterized by a set of deterministic 
rules, such RDF(S) and OWL 2 RL/RDF Entailment. In [32], 
the authors introduce “The Valid Ontology” approach as a 
temporal extension of OWL. Indeed, they propose to use a 
single temporal XML document to represent and store a 
multi-version ontology and use a temporal XML query 
processor to efficiently extract valid OWL ontologies from 
the XML document as temporal snapshots. The result is an 
efficient ontology temporal versioning solution, relying on 
standard XML technology. Two complementary and 
alternative proposals for modeling temporally changing 
information in OWL are proposed in [33]. They are based on 
the perdurantist theory and benefit from results coming from 
the discipline of Formal Ontology, in order to restrict the 
appropriate use of the proposed frameworks. In the first 
proposal, the authors combine the perdurantist worm view 
with the notion of individual concepts for formulating a 
conceptual structure that allows one to separate from the 
information that define all the individuals the information 
concerning those that can possibly change. In the second 
proposal, they extend the first proposal with the distinction 
between objects and moments and the notion of qua 
individuals, where a qua individual is the way an object 
participates in a certain relation. With regard to Grandi [29], 
Motik [31], Grandi et al. [32], and Zamborlini et al. [33], our 
approach does not deal with modeling of time inside the 
ontology. It just supports temporal versioning. 
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O’Connor et al. [34] present a methodology and a set of 
tools for representing and querying temporal information in 
OWL ontologies. Their approach uses a lightweight temporal 
model to encode the temporal dimension of data. It also uses 
the OWL-based Semantic Web Rule Language (SWRL) and 
the SWRL-based OWL query language (SQWRL) to reason 
with and query the temporal information represented using 
the proposed model. By now, our approach does not support 
temporally-aware semantic rules. 

The authors of [35] propose a new language, called 
temporal OWL (tOWL), which is an extension of the 
Ontology Web Language Description Logics (OWL-DL) to 
the temporal aspect. It enables the representation of time and 
change in dynamic domains. Through a layered approach, 
they introduce three extensions: (i) Concrete Domains, 
which allow the representation of restrictions using concrete 
domain binary predicates, (ii) Temporal Representation, 
which introduces timepoints, relations between timepoints, 
intervals, and Allen’s 13 interval relations [36] into the 
language, and (iii) TimeSlices/Fluents, which implement a 
perdurantist view on individuals and enable the 
representation of complex temporal aspects such as process 
state transitions. The main purpose of our approach is to 
support past ontology versions, to be accessed via time-slice 
queries. We think that supporting temporal ontology versions 
is very interesting for several purposes and in different areas. 
The problem of not having temporal versions is that, e.g., if 
we have now to investigate on someone having put some 
illegal material on Facebook last week, we want to be able to 
individuate the account details even if they have been 
changed thereafter. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we proposed τOWL, a τXSchema-like 
framework, which allows creating a temporal OWL 2 
ontology from a conventional OWL 2 ontology and a set of 
logical and physical annotations. Our framework ensures 
logical and physical data independence, since it (i) separates 
conventional schema, logical annotations, and physical 
annotations, and (ii) allows each one of these three 
components to be changed independently and safely. 
Furthermore, adoption of τOWL provides for a low-impact 
solution, since it requires neither modifications of existing 
Semantic Web documents, nor extensions to the OWL 2 
recommendation and Semantic Web standards. The 
extension of OWL 2 to temporal and versioning aspects is 
performed without having to depend on approval of 
proposed extensions by standardization committees (and on 
upgrade of existing tools conforming to standards to comply 
with approved extensions). In the next future, we intend to (i) 
study querying and updating instances of τOWL ontologies, 
and (ii) develop a prototype tool that shows the feasibility of 
our approach. 

Our future work aims at extending τOWL to also support 
schema versioning [19][39] which is the most powerful 
technique for managing the history of schema changes, since 
(i) ontology schemata are also evolving over time to reflect 
changes in real-world applications [40], and (ii) keeping a 
fully fledged history of ontology changes, i.e. involving both 

the ontology instances and the ontology schema, is a required 
feature for many Semantic Web-based applications. 
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