
τOWL: A Framework for Managing Temporal Semantic Web Documents

Abir Zekri
University of Sfax

Sfax, Tunisia
abir.zekri@fsegs.rnu.tn

Zouhaier Brahmia
University of Sfax

Sfax, Tunisia
zouhaier.brahmia@fseg

s.rnu.tn

Fabio Grandi
University of Bologna

Bologna, Italy
fabio.grandi@unibo.it

Rafik Bouaziz
University of Sfax

Sfax, Tunisia
raf.bouaziz@fsegs.rnu.t

n

Abstract—The World Wide Web Consortium (W3C) OWL 2
Web Ontology Language (OWL 2) recommendation is an
ontology language for the Semantic Web. It allows defining
both schema (i.e., entities, axioms, and expressions) and
instances (i.e., individuals) of ontologies. OWL 2 ontologies are
stored as Semantic Web documents. However, OWL 2 lacks
explicit support for time-varying schema or for time-varying
instances. Hence, knowledge engineers or maintainers of
semantics-based Web resources have to use ad hoc techniques
in order to specify OWL 2 schema for time-varying instances.
In this paper, for a disciplined and systematic approach to the
temporal management of Semantic Web documents, we
propose the adoption of a framework called Temporal OWL 2
(τOWL), which is inspired by the τXSchema framework
defined for XML data. In a way similar to what happens in
τXSchema, τOWL allows creating a temporal OWL 2 ontology
from a conventional (i.e., non-temporal) OWL 2 ontology and a
set of logical and physical annotations. Logical annotations
identify which elements of a Semantic Web document can vary
over time; physical annotations specify how the time-varying
aspects are represented in the document. By using annotations
to integrate temporal aspects in the traditional Semantic Web,
our framework (i) guarantees logical and physical data
independence for temporal schemas and (ii) provides a low-
impact solution since it requires neither modifications of
existing Semantic Web documents, nor extensions to the OWL
2 recommendation and Semantic Web standards.

Keywords–Semantic Web; Ontology; OWL 2; τXSchema;
Logical annotations; Physical annotations; Temporal database;
XML Schema; XML

I. INTRODUCTION

Time is an omnipresent dimension in both classical and
modern applications [1]; it is used to timestamp data values
to keep track of changes in the real world and model their
history. Hence, studying time has been, and continues to be,
one of the main research interests in different scientific
fields, such as databases and knowledge representation.

Since the second half of the 1980s, a great deal of work
has been done in the field of temporal databases [2][3][4].
Several data models and query languages have been
proposed for the management of time-varying data.
Temporal databases usually adopt one or two time
dimensions to timestamp data: (a) transaction-time, which
indicates when an event is recorded in the database, and (b)

valid-time, which represents the time when an event
occurred, occurs or is expected to occur in the real world.

On the other hand, the World Wide Web (WWW or
Web) [5] was shifted from the semi-structured internet to a
more structured Web called the Semantic Web [6][7]. The
new generation of Web aims to provide languages and tools
that specify explicit semantics for data and enable knowledge
sharing among knowledge-based applications. In this vision,
ontologies [8] are used for defining and relating concepts
that describe Web resources, in a formal way. The new
emerging standard for describing ontologies, which has been
recommended by the W3C since 2009, is OWL 2
[9][10][11]. It allows defining both schema (in terms of
entities, axioms, and expressions) and instances (i.e.,
individuals) of ontologies; OWL 2 ontologies are stored as
Semantic Web documents.

Due to the dynamic nature of the Web, ontologies that
are used on the Web (like other Web application components
such as Web databases, Web pages and Web scripts) evolve
over time to reflect and model changes occurring in the real-
world. Furthermore, several Semantic Web-based
applications (like e-commerce, e-government and e-health
applications) require keeping track of ontology evolution and
versioning with respect to time, in order to represent, store
and retrieve time-varying ontologies.

Unfortunately, while there is a sustained interest for
temporal and evolution aspects in the research community
[12], existing Semantic Web standards and state-of-the-art
ontology editors and knowledge representation tools do not
provide any built-in support for managing temporal
ontologies. In particular, the W3C OWL 2 recommendation
lacks explicit support for time-varying ontologies, at both
schema and instance levels. Thus, knowledge engineers or
maintainers of semantics-based Web resources must use ad
hoc techniques when there is a need, for example, to specify
an OWL 2 ontology schema for time-varying ontology
instances. In the rest of the paper, we define as Knowledge
Base Administrator (KBA) a knowledge engineer or, more in
general, the person in charge of the maintenance of
semantics-based Web resources.

According to what precedes, we think that if we would
like to handle ontology evolution over time in an efficient
manner and to allow historical queries to be executed on
time-varying ontologies, a built-in temporal ontology

33Copyright (c) IARIA, 2014. ISBN: 978-1-61208-355-1

SEMAPRO 2014 : The Eighth International Conference on Advances in Semantic Processing

management system is needed. For that purpose, we propose
in this paper a framework, called τOWL, for managing
temporal Semantic Web documents, through the use of a
temporal OWL 2 extension. In fact, we want to introduce
with τOWL a principled and systematic approach to the
temporal extension of OWL 2, similar to that Snodgrass and
colleagues did to the eXtensible Markup Language (XML)
with Temporal XML Schema (τXSchema) [13][14][15].
τXSchema is a framework (i.e., a data model equipped with a
suite of tools) for managing temporal XML documents, well
known in the database research community and, in
particular, in the field of temporal XML [16]. Moreover, in
our previous work [17][18][19], with the aim of completing
the framework, we augmented τXSchema by defining
necessary schema change operations acting on conventional
schema, temporal schema, and logical and physical
annotations (extensions which we plan to apply to τOWL
too).

Being defined as a τXSchema-like framework, τOWL
allows creating a temporal OWL 2 ontology from a
conventional (i.e., non-temporal) OWL 2 ontology
specification and a set of logical (or temporal) and physical
annotations. Logical annotations identify which components
of a Semantic Web document can vary over time; physical
annotations specify how the time-varying aspects are
represented in the document. By using temporal schema and
annotations to introduce temporal aspects in the conventional
(i.e., non temporal) Semantic Web, our framework (i)
guarantees logical and physical data independence [20] for
temporal schemas and (ii) provides a low-impact solution
since it requires neither modifications of existing Semantic
Web documents, nor extensions to the OWL 2
recommendation and Semantic Web standards.

The remainder of the paper is organized as follows.
Section II motivates the need for an efficient management of
time-varying Semantic Web documents. Section III describes
the τOWL framework that we propose for extending the
Semantic Web to temporal aspects: the architecture of τOWL
is presented and details on all its components and support
tools are given. Section IV discusses related work. Section V
provides a summary of the paper and some remarks about
our future work.

II. MOTIVATION

In this section, we present a motivating example that
shows the limitation of the OWL 2 language for explicitly
supporting time-varying instances. Then, we state the
desiderata for an OWL 2 extension which could
accommodate time-varying instances in a disciplined and
systematic way.

A. Motivating Example

The Friend of a Friend (FOAF) project [21] is creating a
Web of machine-readable pages describing people, the links
between them and the things they create and do.

Suppose that the Web site “Web-S1” publishes the FOAF
definition for his user “Nouredine”. A fragment of the FOAF
Resource Description Framework (RDF) document of
“Nouredine” is presented in Fig. 1. It describes, according to

the FOAF ontology, the personal information of
“Nouredine” (i.e., name and nickname) and the information
about his online accounts on diverse sites (i.e., the home
page of the site, and the account name of the user). In this
example, we limit to describe user’s information concerning
the account on the online Web site “Facebook”.

Assume that information about the user “Nouredine” of
the Web site “Web-S1” was added on 2014-01-15. On 2014-
02-08, Nouredine modified his nickname from “Nor” to
“Nouri” and his account name of Facebook from
“Nor_Tunsi” to “Nouri_Tunsi”. Thus, the corresponding
fragment of the Nouredine FOAF RDF document was
revised to that shown in Fig. 2.
…
<foaf : Person rdf:ID="#Person1">

<foaf : name>Nouredine Tounsi</ foaf : name>
<foaf : nick >Nor</ foaf : nick >
<foaf : holdsAccount >

<foaf : OnlineAccount
 rdf:about="https://www.facebook.com/
 Nouredine.Tounsi">

<foaf : accountName >Nor_Tunsi
</ foaf : accountName >

</ foaf : OnlineAccount >
</ foaf : holdsAccount >

</ foaf : Person >
…

Figure 1. A fragment of Nouredine FOAF RDF document on 2014-01-15.

…
<foaf: Person rdf:ID="#Person1">

<foaf : name>Nouredine Tounsi</ foaf : name>
<foaf : nick >Nouri</ foaf : nick >
<foaf : holdsAccount >

<foaf : OnlineAccount
 rdf:about="https://www.facebook.com/
 Nouredine.Tounsi">

<foaf : accountName >Nouri_Tunsi
</ foaf : accountName >

</ foaf : OnlineAccount >
</ foaf : holdsAccount >

</ foaf : Person >
...

Figure 2. A fragment of Nouredine FOAF RDF document on 2014-02-08.

In many Semantic Web-based applications, the history of
ontology changes is a fundamental requirement, since such a
history allows recovering past ontology versions, tracking
changes over time, and evaluating temporal queries [22]. A
τOWL time-varying Semantic Web document records the
evolution of a Semantic Web document over time by storing
all versions of the document in a way similar to that
originally proposed for τXSchema [13].

Suppose that the webmaster of the Web site “Web-S1”
would like to keep track of the changes performed on our
FOAF RDF information by storing both versions of Fig. 1
and of Fig. 2 in a single (temporal) RDF document. As a
result, Fig. 3 shows a fragment of a time-varying Semantic
Web document that captures the history of the specified
information of “Nouredine”.
…
<foaf : Person rdf:ID="#Person1">

<foaf : name>Nouredine Tounsi</ foaf : name>
<versionedNick >

<NickVersion >

34Copyright (c) IARIA, 2014. ISBN: 978-1-61208-355-1

SEMAPRO 2014 : The Eighth International Conference on Advances in Semantic Processing

<nickValidityStartTime >2014-01-15
</ nickValidityStartTime >
<nickValidityEndTime >2014-02-07
</ nickValidityEndTime >
<foaf : nick >Nor</ foaf : nick >

</ NickVersion >
<NickVersion >

<nickValidityStartTime >2014-02-08
</ nickValidityStartTime >
<nickValidityEndTime >now
</ nickValidityEndTime >
<foaf : nick >Nouri</ foaf : nick >

</ NickVersion >
</ versionedNick >
<foaf : holdsAccount >

<foaf : OnlineAccount
 rdf:about="https://www.facebook.com/
 Nouredine.Tounsi">

<versionedAccountName >
<AccountNameVersion >

<accountNameValidityStartTime >
2014-01-15

</ accountNameValidityStartTime >
<accountNameValidityEndTime >

2014-02-07
</ accountNameValidityEndTime >
<foaf : accountName >Nor_Tunsi
</ foaf : accountName >

</ AccountNameVersion >
<AccountNameVersion >

<accountNameValidityStartTime >
2014-02-08

</ accountNameValidityStartTime >
<accountNameValidityEndTime >

now
</ accountNameValidityEndTime >
<foaf : accountName >Nouri_Tunsi
</ foaf : accountName >

</ AccountNameVersion >
</ versionedAccountName >

</ foaf : OnlineAccount >
</ foaf : holdsAccount >

</ foaf : Person >
...

Figure 3. A fragment of the time-varying Nouredine FOAF RDF document.

In this example, we use valid-time to capture the history
of Nouredine information. In order to timestamp the entities
which can evolve over time, we use the following optional
tags: nickValidityStartTime and nickValidityEndTime ,
for recording nick name evolution, and
accountNameValidityStartTime and
accountNameValidityEndTime, for keeping the
accountName history. These are optional Data Properties
which can be added to a temporal entity. The domain of
nickValidityEndTime or accountNameValidityEndTime
includes the value “now” [23]; the entity that has now as the
value of its validity end time property represents the current
entity until some change occurs.

Assume that the extract of the FOAF ontology presented
in Fig. 4 contains the conventional (i.e., non-temporal)
schema [13] for the FOAF RDF document presented in both
Fig. 1 and Fig. 2. The conventional schema is the schema for
an individual version, which allows updating and querying
individual versions.

<rdf:RDF>
<owl:Ontology

 rdf:about="http://purl.org/az/foaf#">
<rdfs:Class rdf:about="#Person">

<rdf:type
rdf:resource="http://www.w3.org/2002/
07/owl#Class"/>

</rdfs:Class>
<rdf:Property rdf:about="#holdsAccount">

<rdf:type
 rdf:resource="http://www.w3.org/2002/
 07/owl#ObjectProperty"/>

<rdfs:domain rdf:resource="#Person"/>
<rdfs:range
 rdf:resource="#OnlineAccount"/>

</rdf:Property>
<rdf:Property rdf:about="#accountName">

<rdf:type
 rdf:resource="http://www.w3.org/2002/
 07/owl#DatatypeProperty"/>
<rdfs:domain
 rdf:resource="#OnlineAccount"/>

</rdf:Property>
…

</rdf:RDF>

Figure 4. An RDF/XML extract from the OWL 2 FOAF ontology.

The problem is that the time-varying ontology document
(see Fig. 3) does not conform to the conventional ontology
schema (see Fig. 4). Thus, to resolve this problem, we need a
different ontology schema that can describe the structure of
the time-varying ontology document. This new schema
should specify, for example, timestamps associated to
entities, time dimensions involved, and how the entities vary
over time.

B. Desiderata

There are several goals which can be fulfilled when
augmenting the OWL 2 language to support time-varying
instances. Our approach aims to satisfy the following
requirements.

• Facilitating the management of time for KBAs.
• Supporting both valid time and transaction time.
• Supporting (temporal) versioning of OWL 2

instances.
• Keeping compatibility with existing OWL 2 W3C

recommendations, standards, and editors, and not
requiring any changes to these recommendations,
standards, and tools.

• Supporting existing applications that are already
using OWL 2 ontologies.

• Providing OWL 2 data independence so that changes
at the logical level are isolated from those performed
at the physical level, and vice versa.

• Accommodating a variety of physical representations
for time-varying OWL 2 instances.

III. THE ΤOWL FRAMEWORK

This section presents our framework τOWL for handling
temporal Semantic Web documents and provides an
illustrative example of its use. It describes the architecture of
τOWL and the tools used for managing both τOWL schema
and τOWL instances. Since τOWL is a τXSchema-like
framework, we were inspired by the τXSchema architecture
and tools while defining the architecture and tools of τOWL.

35Copyright (c) IARIA, 2014. ISBN: 978-1-61208-355-1

SEMAPRO 2014 : The Eighth International Conference on Advances in Semantic Processing

The τOWL framework allows a KBA to create a
temporal OWL 2 schema for temporal OWL 2 instances
from a conventional OWL 2 schema, logical annotations,
and physical annotations. Since it is a τXSchema-like
framework, τOWL use the following principles:

• separation between (i) the conventional (i.e., non-
temporal) schema and the temporal schema, and (ii)
the conventional instances and the temporal
instances;

• use of temporal and physical annotations to specify
temporal and physical aspects, respectively, at
schema level.

Fig. 5 illustrates the architecture of τOWL. Notice that
only the components which are shaded in the figure are
specific to an individual time-varying OWL 2 document and
need to be supplied by a KBA. The framework is based on
the OWL 2 language [9], which is a W3C standard ontology
language for the Semantic Web. It allows defining both
schema (i.e., entities, axioms, and expressions) and instances
(i.e., individuals) of ontologies. Thus, we consider that the
signature of an OWL 2 ontology O can be defined as
follows: O = {E, A, Exp} such that:

i) E = {C, DP, OP, AP} represents the set of the entities
with:

• C: Class, represents the set of concepts;
• DP: Data Property, represents the set of properties of

the concepts;
• OP: Object Property, represents the set of the

semantic relations between the concepts;
• AP: Annotation Property, represents the set of

annotations on the entities and those on the axioms.

ii) A = {EAx, KAx} represents the set of axioms with:
• EAx: Entity Axioms, represents the axioms which

concern the entities;
• KAx: Key Axioms, represents all the identifiers

associated to the various classes.
iii) Exp = {CE, OPE, DPE} represents the set of the used

expressions (an expression is a complex description
which results from combinations of entities by using
constructors such as enumeration, restriction of
cardinality and restriction of properties) with:

• CE: Class Expressions, represents the set of
combinations of concepts by using constructors;

• OPE: Object Property Expressions, represents the set
of combinations of relations;

• DPE: Data Property Expressions, represents the set of
combinations of properties.

The KBA starts by creating the conventional schema
(box 6), which is an OWL 2 ontology that models the
concepts of a particular domain and the relations between
these concepts, without any temporal aspect. To each
conventional schema corresponds a set of conventional (i.e.,
non-temporal) OWL 2 instances (box 11). Any change to the
conventional schema is propagated to its corresponding
instances.

After that, the KBA augments the conventional schema
with logical and physical annotations, which allow him/her
to express in an explicit way all requirements dealing with
the representation and the management of temporal aspects
associated to the components of the conventional schema, as
described in the following.

Figure 5. τOWL overall architecture.

36Copyright (c) IARIA, 2014. ISBN: 978-1-61208-355-1

SEMAPRO 2014 : The Eighth International Conference on Advances in Semantic Processing

Logical annotations [15] allow the KBA to specify (i)
whether a conventional schema component varies over valid
time and/or transaction time, (ii) whether its lifetime is
described as a continuous state or a single event, (iii)
whether the component may appear at certain times (and not
at others), and (iv) whether its content changes. If no logical
annotations are provided, the default logical annotation is
that anything can change. However, once the conventional
schema is annotated, components that are not described as
time-varying are static and, thus, they must have the same
value across every instance document (box 11).

Physical annotations [15] allow the KBA to specify the
timestamp representation options chosen, such as where the
timestamps are placed and their kind (i.e., valid time or
transaction time) and the kind of representation adopted. The
location of timestamps is largely independent of which
components vary over time. Timestamps can be located
either on time-varying components (as specified by the
logical annotations) or somewhere above such components.
Two OWL 2 documents with the same logical information
will look very different if we change the location of their
physical timestamps. Changing an aspect of even one
timestamp can make a big difference in the representation.
τOWL supplies a default set of physical annotations, which
is to timestamp the root element with valid and transaction
times. However, explicitly defining them can lead to more
compact representations [15].

In order to improve conceptual clarity and also to enable
a more efficient implementation, we adopt a “separation of
concerns” principle in our approach: since the entities, the
axioms and the expressions of an OWL 2 ontology evolve
over time independently, we distinguish between three
separate types of annotations to be defined and to be
associated to a conventional schema: the entity annotations
(box 8), the axiom annotations (box 9) and the expression
annotations (box 10).

Entity annotations describe the logical and physical
characteristics associated to the components of an OWL 2
ontology: classes, relations and properties. They indicate for
example the temporal formats of these components which
could be valid-time, transaction-time, bi-temporal or
snapshot (by default). The schema for the logical and
physical entity annotations is given by EntASchema (box
3). Axiom annotations and expression annotations describe
the logical and physical aspects of axioms and expressions
defined on classes or on properties. The schema for the
logical and physical axiom annotations is given by
AxiASchema (box 4) and the schema for the logical and
physical expression annotations is given by ExpASchema
(box 5).

Notice that AntASchema, AxiASchema, and
ExpASchema, which all contain both logical and physical
annotations, are XML Schemas [24]. The annotations
associated to the same conventional schema can evolve
independently. Any change to one of the three sets of
annotations does not affect the two other sets.

Finally, the KBA creates the temporal schema (box 7) in
order to provide the linking information between the
conventional schema and its corresponding logical and

physical annotations. The temporal schema is a standard
XML document which ties the conventional schema, the
entity annotations, the axiom annotations, and the expression
annotations together. In the τOWL framework, the temporal
schema is the logical equivalent of the conventional OWL 2
schema in a non-temporal context. This document contains
sub-elements that associate a series of conventional schema
definitions with entity annotations, axiom annotations, and
expression annotations, along with the time span during
which the association was in effect. The schema for the
temporal schema document is the XML Schema Definition
document TSSchema (box 2).

Notice that, whereas TSSchema (box 2), AntASchema
(box 3), AxiASchema (box 4), and ExpASchema (box 5) have
been developed by us, OWL 2 (box 0) and XML Schema
(box 1) correspond to the standards endorsed by the W3C.

In a way similar to what happens in the τXSchema
framework, the temporal schema document (box 7) is
processed by the temporal schema validator tool in order to
ensure that the logical and physical entity annotations, axiom
annotations and expression annotations are (i) valid with
respect to their corresponding schemas (i.e., AntASchema,
AxiASchema, and ExpASchema, respectively), and (ii)
consistent with the conventional schema. The temporal
schema validator tool reports whether the temporal schema
document is valid or invalid.

Once all the annotations are found to be consistent, the
representational schema generator tool generates the
representational schema (box 12) from the temporal schema
(i.e., from the conventional schema and the logical and
physical annotations); it is the result of transforming the
conventional schema according to the requirements
expressed through the different annotations. The
representational schema becomes the schema for temporal
instances (box 13). Temporal instances could be
automatically created from the non-temporal instances (box
11) and the temporal schema (box 7), using the temporal
instances generator tool (such an operation is called
“squash” in the original τXSchema approach). Moreover,
temporal instances are validated against the representational
schema through the temporal instances validator tool which
reports whether the temporal instances document (box 13) is
valid or invalid.

Notice that the four mentioned tools (i.e., Temporal
Schema Validator, Temporal Instances Validator,
Representational Schema Generator, and Temporal Instances
Generator) are under development. For example, the
temporal instances validator tool is being implemented as a
temporal extension of an existing conventional ontology
instance validator.

Illustrative example. In order to show the functioning of
the proposed approach, we provide in the following an
example that shows how management of temporal ontology
document versions is dealt with in our τOWL approach.

Let us resume the example of Sec. II.A. On 2014-01-15,
the KBA creates a conventional ontology schema, named
“PersonSchema_V1.owl” (as in Fig. 4), and a conventional
ontology document, named “Persons_V1.rdf” (as in Fig. 1),
which is valid with respect to this schema. Suppose that the

37Copyright (c) IARIA, 2014. ISBN: 978-1-61208-355-1

SEMAPRO 2014 : The Eighth International Conference on Advances in Semantic Processing

KBA defines also a set of logical and physical annotations,
associated to that conventional schema; they are stored in an
ontology annotation document titled
“PersonAnnotations_V1.xml” as shown in Fig. 6.
<?xml version=”1.0” encoding=”UTF-8”?>
<ontologyAnnotationSet >

<logicalAnnotations >
<item target=”/Person/nick”>

<validTime kind=”state”
 content=”varying”
 existence=”constant”/>
</ item >

</ logicalAnnotations >
<physicalAnnotations >

<stamp target=”Person/nick”
dataInclusion=”expandedVersion”>

<stampkind timeDimension=”validTime”
 stampBounds=”extent”/>
</ stamp >

</ physicalAnnotations >
</ ontologyAnnotationSet >

Figure 6. The annotation document on 2014-01-15.

After that, the KBA creates the temporal ontology
schema in Fig. 7, that ties “PersonSchema_V1.owl” and
“PersonAnnotations_V1.xml” together; this temporal schema
is saved in an XML file titled
“PersonTemporalSchema.xml”. Consequently, the Temporal
Instances Generator tool uses the temporal ontology schema
of Fig. 7 and the conventional ontology document in Fig. 1
to create a temporal document as in Fig. 8, that lists both
versions (i.e., temporal “slices”) of the conventional
ontology documents with their associated timestamps. The
squashed version of this temporal document, which could be
generated by the Temporal Instances Generator, is provided
in Fig. 9.

On 2014-02-08, the KBA updates the conventional
ontology document “Persons_V1.rdf” as presented in Sec.
II.A to produce a new conventional ontology document
named “Persons_V2.rdf” (as in Fig. 2). Since the
conventional ontology schema (i.e., PersonSchema_V1.owl)
and the ontology annotation document (i.e.,
PersonAnnotations_V1.xml) are not changed, the temporal
ontology schema (i.e., PersonTemporalSchema.xml) is
consequently not updated. However, the Temporal Instances
Generator tool updates the temporal document, in order to
include the new slice of the conventional ontology
document, as shown in Fig. 10. The squashed version of the
updated temporal document is provided in Fig. 11.
<?xml version=”1.0” encoding=”UTF-8”?>
<temporalOntologySchema >

<conventionalOntologySchema >
<sliceSequenc e>

<slice location=” PersonSchema_V1.owl ”
 begin=”2014-01-15” />
</ sliceSequence >

</ conventionalOntologySchema >
<ontologyAnnotationSet >

<sliceSequence >
<slice

location=” PersonAnnotations_V1.xml ”
begin=”2014-01-15” />

</ sliceSequence >
</ ontologyAnnotationSet >

</ temporalOntologySchema >

Figure 7. The temporal schema on 2014-01-15.

<?xml version=”1.0” encoding=”UTF-8”?>
<td:temporalRoot

temporalSchemaLocation= ”PersonTemporalSchema.xml
” />

<td:sliceSequence >
<td:slice location =”Persons_V1.rdf ”
 begin=”2014-01-15” />

</ td:sliceSequence >
</ td:temporalRoot >

Figure 8. The temporal document on 2014-01-15.

<foaf : Person rdf:ID="#Person1">
<foaf : name>Nouredine Tounsi</ foaf : name>
<nick_RepItem >

<nick_Version >
<timestamp_ValidExtent
 begin=”2014-01-15” end=”now” />
<foaf : nick >Nor</ foaf : nick >

</ nick_Version >
</ nick_RepItem >
<foaf : holdsAccount >

<foaf : OnlineAccount
 rdf:about="https://www.facebook.com/
 Nouredine.Tounsi">

<accountName_RepItem >
<accountName_Version >

<timestamp_ValidExtent
 begin=”2014-01-15” end=”now” />
<foaf : accountName >Nor_Tunsi
</ foaf : accountName >

</ accountName_Version >
</ accountName_RepItem >

</ foaf : OnlineAccount >
</ foaf : holdsAccount >

</ foaf : Person >

Figure 9. The squashed document correponding to the temporal document
on 2014-01-15.

<?xml version=”1.0” encoding=”UTF-8”?>
<td:temporalRoot

temporalSchemaLocation= ”PersonTemporalSchema.xml
” />

<td:sliceSequence >
<td:slice location =”Persons_V1.rdf ”
 begin=”2014-01-15” />
<td:slice location =”Persons_V2.rdf ”
 begin=”2014-02-08” />

</ td:sliceSequence >
</ td:temporalRoot >

Figure 10. The temporal document on 2014-02-08.

<foaf : Person rdf:ID="#Person1">
<foaf : name>Nouredine Tounsi</ foaf : name>
<nick_RepItem >

<nick_Version >
<timestamp_ValidExtent begin=”2014-01-15”
 end=”2014-02-07” />
<foaf : nick >Nor</ foaf : nick >

</ nick_Version >
<nick_Version >

<timestamp_ValidExtent begin=”2014-02-08”
 end=”now” />
<foaf : nick >Nouri</ foaf : nick >

</ nick_Version >
</ nick_RepItem >
<foaf : holdsAccount >

<foaf : OnlineAccount
 rdf:about="https://www.facebook.com/
 Nouredine.Tounsi">

38Copyright (c) IARIA, 2014. ISBN: 978-1-61208-355-1

SEMAPRO 2014 : The Eighth International Conference on Advances in Semantic Processing

<accountName_RepItem >
<accountName_Version >

<timestamp_ValidExtent
 begin=”2014-01-15”
 end=”2014-02-07”/>
<foaf : accountName >Nor_Tunsi
</ foaf : accountName >

</ accountName_Version >
<accountName_Version >

<timestamp_ValidExtent
 begin=”2014-02-08”
 end=”now” />
<foaf : accountName >Nouri_Tunsi
</ foaf : accountName >

</ accountName_Version >
</ accountName_RepItem >

</ foaf : OnlineAccount >
</ foaf : holdsAccount >

</ foaf : Person >

Figure 11. The squashed document correponding to the temporal document
on 2014-02-08.

Obviously, each one of the squashed documents (see Fig.
9 and Fig. 11) should conform to a particular schema, i.e.,
the representational schema, which is generated from the
temporal schema shown in Fig. 7.

IV. RELATED WORK DISCUSSION

OWL-Time (formerly DAML-Time) [25] is a temporal
ontology that has been developed for describing the temporal
content of Web pages and the temporal properties of Web
services. Excepting language constructs for representing time
in ontologies, mechanisms for representing evolution of
concepts (e.g., events) over time are absent. Furthermore,
temporal relations cannot be expressed directly in OWL,
since they are ternary (i.e., properties of objects that change
in time involve also a temporal value in addition to the object
and the subject); representing such temporal relations in
OWL requires appropriate methods (e.g., 4D-fluents [26]).
Our approach allows KBA representing (i) evolution of
concepts over time, and (ii) temporal relations.

In [27], the authors present the annotation features of
OWL 2 by showing that this latter allows for annotations on
ontologies, entities, anonymous individuals, axioms (e.g.,
giving information about who asserted an axiom or when),
and annotations themselves. In our work, we took another
direction from using OWL 2 annotation features because we
rather wanted to exploit the power of the τXSchema
approach (e.g. including the exploitation of a τXSchema-like
underlying infrastructure).

Time dimension(s) are explicitly added to Semantic Web
languages and formalisms (e.g., RDF, OWL, and SPARQL
Protocol and RDF Query Language (SPARQL)) in order to
represent time in semantic annotations, to build temporal
ontologies and to support temporal querying and reasoning.
An annotated bibliography of previous work in this area is
presented in [12], and a survey on the models and query
languages for temporally annotated RDF is provided in [37].
In particular, in the literature, there are various contributions
that propose to represent temporal data in the Semantic Web.

Gutiérrez et al. [28] presented a comprehensive
framework to incorporate temporal reasoning into RDF,

yielding temporal RDF graphs. They define a syntactic
notion of temporal RDF graphs. A powerful system, called
CHRONOS, for reasoning over temporal information in
OWL ontologies is presented in [38]. Since qualitative
representations are very common in natural language
expressions such as in free text or speech and can be proven
to be valuable in the Semantic Web, the authors choose to
represent both qualitative temporal (i.e., information whose
temporal extents are unknown such as “before”, “after” for
temporal relations) and quantitative information (i.e., where
temporal information is defined precisely, e.g., using dates).
The CHRONOS reasoner can be applied to temporal
relations in order to infer implied relations and to detect
inconsistencies while retaining soundness, completeness and
tractability over the supported relations set. As opposed to
Gutiérrez et al. [28] and Anagnostopoulos et al. [38], in our
present approach, we are not interested in temporal reasoning
(and, thus, in spatio-temporal reasoning).

A model of a multi-temporal RDF Schema (RDFS)
database is proposed in [29] where the author considered that
this database is a set of RDF triples timestamped along the
valid and/or transaction time axes. To enable querying such a
database, an extension of SPARQL language [30], called T-
SPARQL, has been defined in [22]. The paper [31] proposes
a logic-based approach to introduce valid-time into RDFS
and OWL 2 languages. An extension of SPARQL that can be
used to query temporal RDF(S) and OWL 2 is also
presented. Moreover, the author describes a general query
evaluation algorithm that can be used with all entailment
relations used in the Semantic Web. Finally, he presents two
optimizations of the algorithm that are applicable to
entailment relations characterized by a set of deterministic
rules, such RDF(S) and OWL 2 RL/RDF Entailment. In [32],
the authors introduce “The Valid Ontology” approach as a
temporal extension of OWL. Indeed, they propose to use a
single temporal XML document to represent and store a
multi-version ontology and use a temporal XML query
processor to efficiently extract valid OWL ontologies from
the XML document as temporal snapshots. The result is an
efficient ontology temporal versioning solution, relying on
standard XML technology. Two complementary and
alternative proposals for modeling temporally changing
information in OWL are proposed in [33]. They are based on
the perdurantist theory and benefit from results coming from
the discipline of Formal Ontology, in order to restrict the
appropriate use of the proposed frameworks. In the first
proposal, the authors combine the perdurantist worm view
with the notion of individual concepts for formulating a
conceptual structure that allows one to separate from the
information that define all the individuals the information
concerning those that can possibly change. In the second
proposal, they extend the first proposal with the distinction
between objects and moments and the notion of qua
individuals, where a qua individual is the way an object
participates in a certain relation. With regard to Grandi [29],
Motik [31], Grandi et al. [32], and Zamborlini et al. [33], our
approach does not deal with modeling of time inside the
ontology. It just supports temporal versioning.

39Copyright (c) IARIA, 2014. ISBN: 978-1-61208-355-1

SEMAPRO 2014 : The Eighth International Conference on Advances in Semantic Processing

O’Connor et al. [34] present a methodology and a set of
tools for representing and querying temporal information in
OWL ontologies. Their approach uses a lightweight temporal
model to encode the temporal dimension of data. It also uses
the OWL-based Semantic Web Rule Language (SWRL) and
the SWRL-based OWL query language (SQWRL) to reason
with and query the temporal information represented using
the proposed model. By now, our approach does not support
temporally-aware semantic rules.

The authors of [35] propose a new language, called
temporal OWL (tOWL), which is an extension of the
Ontology Web Language Description Logics (OWL-DL) to
the temporal aspect. It enables the representation of time and
change in dynamic domains. Through a layered approach,
they introduce three extensions: (i) Concrete Domains,
which allow the representation of restrictions using concrete
domain binary predicates, (ii) Temporal Representation,
which introduces timepoints, relations between timepoints,
intervals, and Allen’s 13 interval relations [36] into the
language, and (iii) TimeSlices/Fluents, which implement a
perdurantist view on individuals and enable the
representation of complex temporal aspects such as process
state transitions. The main purpose of our approach is to
support past ontology versions, to be accessed via time-slice
queries. We think that supporting temporal ontology versions
is very interesting for several purposes and in different areas.
The problem of not having temporal versions is that, e.g., if
we have now to investigate on someone having put some
illegal material on Facebook last week, we want to be able to
individuate the account details even if they have been
changed thereafter.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed τOWL, a τXSchema-like
framework, which allows creating a temporal OWL 2
ontology from a conventional OWL 2 ontology and a set of
logical and physical annotations. Our framework ensures
logical and physical data independence, since it (i) separates
conventional schema, logical annotations, and physical
annotations, and (ii) allows each one of these three
components to be changed independently and safely.
Furthermore, adoption of τOWL provides for a low-impact
solution, since it requires neither modifications of existing
Semantic Web documents, nor extensions to the OWL 2
recommendation and Semantic Web standards. The
extension of OWL 2 to temporal and versioning aspects is
performed without having to depend on approval of
proposed extensions by standardization committees (and on
upgrade of existing tools conforming to standards to comply
with approved extensions). In the next future, we intend to (i)
study querying and updating instances of τOWL ontologies,
and (ii) develop a prototype tool that shows the feasibility of
our approach.

Our future work aims at extending τOWL to also support
schema versioning [19][39] which is the most powerful
technique for managing the history of schema changes, since
(i) ontology schemata are also evolving over time to reflect
changes in real-world applications [40], and (ii) keeping a
fully fledged history of ontology changes, i.e. involving both

the ontology instances and the ontology schema, is a required
feature for many Semantic Web-based applications.

REFERENCES
[1] C. S. Jensen and R. T. Snodgrass, “Temporal Data

Management,” IEEE Transactions on Knowledge and Data
Engineering, vol. 11, January/February 1999, pp. 36-44.

[2] O. Etzion, S. Jajodia, and S. Sripada (eds.), “Temporal
Databases: Research and Practice,” LNCS 1399, Springer-
Verlag, 1998.

[3] C. S. Jensen and R. T. Snodgrass, “Temporal Database,” in
Liu L., Özsu M.T., (Eds.), Encyclopedia of Database Systems,
Springer US, 2009, pp. 2957-2960.

[4] F. Grandi, “Temporal Databases,” in M. Koshrow-Pour, (Ed.),
Encyclopedia of Information Science and Technology (3rd
Ed.), IGI Global, Hershey, in press.

[5] T. Berners-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen, and
A. Secret, “The World Wide Web,” Communications of the
ACM, vol. 37, August 1994, pp. 76-82.

[6] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic
Web,” Scientific American, vol. 284, May 2001, pp. 34-43.

[7] Semantic Web project. <http://www.w3.org/2001/sw/>
[retrieved: July, 2014]

[8] N. Guarino (Ed.), Formal Ontology in Information Systems,
IOS Press, Amsterdam, 1998.

[9] W3C, OWL 2 Web Ontology Language – Primer (Second
Edition), W3C Recommendation, 11 December 2012.
<http://www.w3.org/TR/owl2-primer/> [retrieved: July,
2014]

[10] W3C, OWL 2 Web Ontology Language – Document
Overview (Second Edition), W3C Recommendation, 11
December 2012. <http://www.w3.org/TR/owl2-overview/>
[retrieved: July, 2014]

[11] W3C, OWL 2 Web Ontology Language – Profiles (Second
Edition), W3C Recommendation, 11 December 2012.
<http://www.w3.org/TR/owl2-profiles/> [retrieved: July,
2014]

[12] F. Grandi, “An Annotated Bibliography on Temporal and
Evolution Aspects in the Semantic Web,” SIGMOD Record,
vol. 41, December 2012, pp. 18-21.

[13] F. Currim, S. Currim, C. E. Dyreson, and R. T. Snodgrass, “A
Tale of Two Schemas: Creating a Temporal XML Schema
from a Snapshot Schema with tXSchema,” Proceedings of the
9th International Conference on Extending Database
Technology (EDBT 2004), Heraklion, Crete, Greece, 14-18
March 2004, pp. 348-365.

[14] R. T. Snodgrass, C. E. Dyreson, F. Currim, S. Currim, and S.
Joshi, “Validating Quicksand: Schema Versioning in
τXSchema,” Data Knowledge and Engineering, vol. 65, May
2008, pp. 223-242.

[15] F. Currim et al., “τXSchema: Support for Data- and Schema-
Versioned XML Documents,” TimeCenter Technical Report
TR-91, 279 pages, September 2009.
<http://timecenter.cs.aau.dk/TimeCenterPublications/TR-
91.pdf> [retrieved: July, 2014]

[16] C. E. Dyreson and F. Grandi, “Temporal XML,” in L. Liu and
M. T. Özsu (Eds.), Encyclopedia of Database Systems,
Springer US, 2009, pp. 3032-3035.

[17] Z. Brahmia, R. Bouaziz, F. Grandi, and B. Oliboni, “Schema
Versioning in τXSchema-Based Multitemporal XML
Repositories,” Proceedings of the 5th IEEE International
Conference on Research Challenges in Information Science
(RCIS 2011), Guadeloupe - French West Indies, France, 19-
21 May 2011, pp. 1-12.

[18] Z. Brahmia, F. Grandi, B. Oliboni, and R. Bouaziz,
“Versioning of Conventional Schema in the τXSchema

40Copyright (c) IARIA, 2014. ISBN: 978-1-61208-355-1

SEMAPRO 2014 : The Eighth International Conference on Advances in Semantic Processing

Framework,” Proceedings of the 8th International Conference
on Signal Image Technology & Internet Systems
(SITIS’2012), Sorrento – Naples, Italy, 25-29 November
2012, pp. 510-518.

[19] Z. Brahmia, F. Grandi, B. Oliboni, and R. Bouaziz, “Schema
Change Operations for Full Support of Schema Versioning in
the τXSchema Framework,” International Journal of
Information Technology and Web Engineering, in press,
2014. IGI Global.

[20] T. Burns et al., “Reference Model for DBMS
Standardization, Database Architecture Framework Task
Group (DAFTG) of the ANSI/X3/SPARC Database System
Study Group,” SIGMOD Record, vol. 15, March 1986, pp.
19-58.

[21] The Friend of a Friend (FOAF) project. <http://www.foaf-
project.org/> [retrieved: July, 2014]

[22] F. Grandi, “T-SPARQL: a TSQL2-like temporal query
language for RDF,” Proceedings of the 1st International
Workshop on Querying Graph Structured Data (GraphQ
2010), Novi Sad, Serbia, 20 September 2010, pp. 21-30.

[23] J. Clifford, C. Dyreson, T. Isakowitz, C. S. Jensen, and R. T.
Snodgrass, “On the Semantics of "Now" in Databases,” ACM
Transactions on Database Systems, vol. 22, June 1997, pp.
171–214.

[24] XML Schema Part 0: Primer Second Edition, W3C
Recommendation, 28 October 2004.
<http://www.w3.org/TR/2004/REC-xmlschema-0-
20041028/> [retrieved: July, 2014]

[25] W3C, Time Ontology in OWL, W3C Working Draft, 27
september 2006. < http://www.w3.org/TR/owl-time/ >
[retrieved: July, 2014]

[26] C. A. Welty and R. Fikes, “A Reusable Ontology for Fluents
in OWL,” Proceedings of the 4th International Conference on
Formal Ontology in Information Systems (FOIS 2006),
Baltimore, Maryland, USA, 9-11 November 2006, pp. 226-
236.

[27] W3C, OWL 2 Web Ontology Language – New Features and
Rationale (Second Edition), W3C Recommendation, 11
December 2012. <http://www.w3.org/TR/owl2-new-
features/> [retrieved: July, 2014]

[28] C. Gutiérrez, C. A. Hurtado, and A. A. Vaisman, “Introducing
time into RDF,” IEEE Transactions on Knowledge and Data
Engineering, vol. 19, February 2007, pp. 207-218.

[29] F. Grandi, “Multi-temporal RDF ontology versioning,”
Proceedings of the 3rd International Workshop on Ontology
Dynamics (IWOD 2009), Washington DC, USA, 26 October
2009. CEUR Workshop Proceedings (CEUR-WS.org), Vol-
519. <http://ceur-ws.org/Vol-519/grandi.pdf> [retrieved: July,
2014]

[30] W3C, SPARQL Query Language for RDF, W3C
Recommendation, 15 January 2008,
<http://www.w3.org/TR/2008/REC-rdf-sparql-query-
20080115/> [retrieved: July, 2014]

[31] B. Motik, “Representing and Querying Validity Time in RDF
and OWL: A Logic-based Approach,” Proceedings of the 9th
International Semantic Web Conference (ISWC 2010),
Shanghai, China, 7-11 November 2010, pp. 550-565.

[32] F. Grandi and M. R. Scalas, “The valid ontology: A simple
OWL temporal versioning framework,” Proceedings of the 3rd
International Conference on Advances in Semantic Processing
(SEMAPRO 2009), Sliema, Malta, 11-16 October 2009, pp.
98-102.

[33] V. Zamborlini and G. Guizzardi, “On the representation of
temporally changing information in OWL,” Workshops
Proceedings of the 14th IEEE International Enterprise
Distributed Object Computing Conference (EDOCW 2010),
Vitória, Brazil, 25-29 October 2010, pp. 283-292.

[34] M. J. O’Connor and A. K. Das, “A method for representing
and querying temporal information inOWL,” In Biomedical
Engineering Systems and Technologies, volume 127 of
Communications in Computer and Information Science, pp.
97-110. Springer-Verlag, Heidelberg, Germany, 2011.

[35] V. Milea, F. Frasincar, and U. Kaymak, “tOWL: A Temporal
Web Ontology Language,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B, vol. 42, February 2012, pp.
268-281.

[36] J. F. Allen, “Maintaining Knowledge About Temporal
Intervals,” Communications of the ACM, vol. 26, November
1983, pp. 832-843.

[37] A. Analyti and I. Pachoulakis, “A survey on models and
query languages for temporally annotated RDF,” International
Journal of Advanced Computer Science and Applications,
vol. 3, September 2012, pp. 28-35.

[38] E. Anagnostopoulos, S. Batsakis, and E. G. M. Petrakis,
“CHRONOS: A Reasoning Engine for Qualitative Temporal
Information in OWL,” Proceedings of the 17th International
Conference in Knowledge-Based and Intelligent Information
& Engineering Systems (KES 2013), Kitakyushu, Japan, 9-11
September 2013, pp. 70-77.

[39] J. F. Roddick, “Schema Versioning,” in Liu L., Özsu M.T.,
(Eds.), Encyclopedia of Database Systems, Springer US,
2009, pp. 2499-2502.

[40] D. Rogozan and G. Paquette, “Managing ontology changes on
the semantic web,” Proceedings of the 2005 IEEE/WIC/ACM
International Conference on Web Intelligence (WI 2005),
Compiegne, France, 19-22 September 2005, pp. 430-433.

41Copyright (c) IARIA, 2014. ISBN: 978-1-61208-355-1

SEMAPRO 2014 : The Eighth International Conference on Advances in Semantic Processing

