
Spacetime: a Two Dimensions Search and Visualisation Engine Based on Linked
Data

Fabio Valsecchi and Marco Ronchetti
DISI, Università degli Studi di Trento

Povo di Trento, Italy
fabiovalse@gmail.com, marco.ronchetti@unitn.it

Abstract— DBpedia is one of the most interesting projects in
the arena of the Semantic technologies. However, being able to
extract useful information from it is not a trivial task for a user
without a specific competence. We present the Spacetime, a
two dimensions search engine that provides a simple
visualization user interface for making it easy for a generic
user to perform certain types of queries on the DBpedia body,
and having results shown in a graphic and animated form.
Spacetime has been equipped with various features, such as
heat maps, time sliding animations, map aggregations, icon
map customization and map saving and loading.

Keywords-DBpedia; Wikipedia; Visualization; GUI.

I. INTRODUCTION
DBpedia is a community effort to extract structured

information from Wikipedia, the well known collaboratively
edited, multilingual, free Internet encyclopaedia supported
by the non-profit Wikimedia Foundation. Wikipedia has
over 25 million articles in various languages, written
collaboratively by volunteers around the world. Over 4
million articles are present in the English Wikipedia alone.
The DBpedia project extracts a subset of information from
Wikipedia, and allows asking sophisticated queries on it [1].
DBpedia is also at the core of the Linked Data project [2].
The strength of DBpedia is the capability of answering
complex user requests, such as, e.g., “Which European
countries have a capital with more than 3 million people in
which flows a river longer than 300 km?”. The weakness is
the difficulty in formulating such queries, due to the
complexity of the huge schema that underlies the data. Even
though DBpedia has built a ''light'' ontology for classifying
data, the problem still remains extremely difficult. Several
approaches to the problem have been developed, over the
last few years, to provide user interfaces that attempt to deal
(at least partially) with this issue. None of them is fully
satisfying.

We identified a subset of the problem, which deals with
space-temporal queries, and wrote a user interface, which
enables users to perform queries in a simple way, and to get
a response in graphical form. Our work is described in the
present paper.

This paper is organized as follows: in Section II we
shortly present more details of the problem; in Section III
we review the attempts to solve it; in Section IV we present

our “Spacetime” solution; in Section V we discuss our
approach and we draw our conclusions.

II. FORMULATING QUERIES TO DBPEDIA
Which European countries have a capital with more than

3 million people in which flows a river longer than 300 km?
Though Wikipedia does not have a page that directly
describes this complex set, it contains all the data required
for retrieving it. Wikipedia contains information written in
natural language, that is very hard for a computer to extract
meaning from, but it also contains some tables, called
Infoboxes, which present structured information. It is
exactly this information that is most valuable source of
knowledge harvested by DBpedia, which stores it in a large
database. The idea of using this source of information is due
to Auer and Lehmann [3]. DBpedia also extracts data from
other sources, such as the title of the Wikipedia articles,
their categories, interlinks (i.e., the links that connect
equivalent articles in different languages), geo-coordinates,
redirects (strings used by Wikipedia to identify synonymous
terms) and disambiguation (pages that explain the different
meanings of homonyms), etc. Also a short and a long
abstract are kept for each Wikipedia article.

The DBpedia Knowledge Base (DBKB) contains more
than 2.6 million entities [4]. Each entity is defined by a
Uniform Resource Identifier (URI), which is described by
the common pattern http://dbpedia.org/page/Name, where
Name is taken from the corresponding Wikipedia article
URL. Each entity is composed of a set of Resource
Description Framework (RDF) triples. DBKB is composed
of around 274 million RDF triples which have been
extracted from 35 different Wikipedia language versions.
This information is represented using an OWL-based
ontology, which was manually created by the members of
the community, even though there have been attempts to
automatically refine the ontology (see e.g., [5]). The
ontology is composed of a large number of classes and
properties. The need of having an ontology comes from the
fact that the Wikipedia Infobox template system evolved
without a central schema for describing entities and their
properties. This leads to a situation in which, for instance,
the entity Person has an attribute for describing his/her place
of birth that can be either ''birthplace'' or ''placeofbirth''. The
ontology allows centralizing the equivalent property names
in a unique property label.

8Copyright (c) IARIA, 2014. ISBN: 978-1-61208-355-1

SEMAPRO 2014 : The Eighth International Conference on Advances in Semantic Processing

Since the data in DBKB are stored as RDF triples, a
natural way to extract information is to perform SPARQL
queries. SPARQL is in fact a well-known query language
designed specifically to query RDF databases [6]. Although
this is in principle enough to solve the problem of extracting
information from DBpedia, it is in no way a practical road.
First of all, it requires the user to be familiar with SPARQL.
This would be equivalent to saying that any Chief Executive
Officer can know everything about the company he
manages, because s/he only needs to run a SQL query
against the company database(s). Although the statement is
in principle true, it is not a viable solution.

In order to extract information from a database, one needs
to be familiar with its schema. It is necessary to know which
entities are represented, which attributes they have and
which relations are stored. Hence, to be able to run a query
onto DBpedia one needs to be familiar with its ontology,
which is composed of 359 classes and 1775 properties. For
instance, the class Person has properties like first name,
surname, age, birth date, death date, hometown, etc., while
the class Organisation has name, foundation date,
hometown, founders, etc. A deep familiarity with the
ontology is needed to be able to write queries. The ontology
in itself presents shortcomings. In first place, it was not
really “designed”, but it is rather the outcome of choices
taken by individuals or groups who collaborated in writing
the corresponding Wikipedia pages. The ontology is hence
partial. For instance, trade fairs do not have an Infobox in
Wikipedia pages, hence DBpedia does not have TradeFair
class in its ontology. Furthermore, it is unbalanced. In fact,
some classes have a deeper structure than the others. For
instance, the class Event has a number of subclasses
(Convention, Election, FilmFestival, MilitaryConflict,
SpaceMission and SportsEvent). Some are much more
developed than others. For instance, SpaceMission has 40
attributes while Election and FilmFestival have respectively
9 and 15 properties. Moreover, some (like Convention) are
much more general than other (like SpaceMission), while
many other (such as TradeFair) are missing.

Another class of problem is related to the quality of the
results rather than to complexity of formulating queries. One
of them is related to the completeness of the data. When
writing the Wikipedia page, some fields in the Infoboxes can
be left blank. This makes sense from the point of view of
Wikipedia, which allows progressive evolution of the pages,
so that even stubs are allowed. Of course the lack of
completeness of the data harms the quality of the query
results. As an example, we mention that not all the movies
belonging to the Film class have the attribute releaseDate. At
the time of our work this property had a value (in Wikipedia)
only on 30943 resources out of the 71715 belonging to the
Film class (43%). Therefore, any query involving the
releaseDate attribute will miss over half of the target
population, simply because the data are not there.

In the same category also falls the misclassification
problem. For example, sometimes a “thing” (represented by
a Wikipedia page) is not classified in the correct class but

rather in a superclass. For instance, the rock band Pink Floyd
is generically classified as Organisation rather than as Band
(Band is subclass of Organisation). It is worth remarking
that when we speak of classification we mean the
classification which is provided by the Infoboxes rather that
the one given by Wikipedia Categories, which by the way
have their own set of problems. For instance, in addition to
sharing most of the DBpedia ontology shortcomings we just
mentioned, Wikipedia Categories form a non-acyclic graph.

III. PROPOSED SOLUTIONS
Several attempts have been made to help end users

extracting valuable information from DBpedia. Here, we do
not intend to propose an exhaustive review of all available
tools, but rather we arbitrarily choose some examples, as
representative of the class of solutions they belong to.

Some are front-ends suitable for exploring the sea of
RDF triples, and make it possible to interactively run
SPARQL queries. An example is OpenLink Virtuoso. It
allows performing research starting from keyword, URI or
label. The text search requires the insertion of a text pattern
to look for. Then a finder shows a list of entities with the text
occurring in any literal property value or label. The entity
URI lookup is used inserting entity URI that are recognised
by the autocomplete feature of the tool.

Although such sort of tools is certainly useful, it is by no
means suited for the end user. Apart the exposition of the
technicalities of the query language, the “what can be asked”
problem (which requires an understanding of at least a
portion of the ontology) is far from being solved.

RelFinder [7] is an example of a different class of tools.
It starts from instances instead of from queries. The user
specifies two entities, and the system explores the RDF
graph to find relations that associate the two instances, and
shows the resulting graph to the user. Lodlive [8] is
somehow similar. This system allows the the user to choose
one instance as a starting point, and then to explore the RDF
graph by navigating one of the relations the chosen item is
involved in.

Somehow similar is gFacet [9]. It also provides the
possibility of navigating the data, but the starting point is
now a class instead of an instance. The starting class can be
selected by writing a text (part of its name); all classes which
contain as a substring in their name the text provided by the
user will be shown, and the user will select one. At this point
the list of instances is presented to the user. Through class
relations, the user can then select a second class, which is
linked to the one that was chosen in first place. Selecting an
instance in the second class will put a restriction on the first,
implicitly solving a query. As an example, if the first class is
“Italian Actors” and the relation is “birth place”, by choosing
Rome in the second class, the box of first class will show all
the Italian actors, which were born in Rome. Further
restrictions can then be added.

DBpedia mobile [10] takes a different approach, since it
starts from a query based on the context. Given the user
location, it searches entities, which are nearby geo-located,
and shows them on map to the (mobile) user. It is not meant

9Copyright (c) IARIA, 2014. ISBN: 978-1-61208-355-1

SEMAPRO 2014 : The Eighth International Conference on Advances in Semantic Processing

to explore the whole set of data, but it is rather aimed at
providing a location-aware service.

Sgvizler [11] looks at the last part of the process of data
retrieval. It provides a way to present the results of a query in
graphical form.

Faceted Wikipedia Search (FWS) [12] adopted a faceted
search paradigm. This approach enabled users to compose
complex questions step by step using facets. A facet is a
component shown in the user interface for refining user
searches. Facets exploited the properties of an entity to refine
the result of a user query. Unfortunately FWS, which had
one of the most interesting approaches among the DBpedia-
based applications, is now dead since Neofonie, where it was
deployed, stopped maintaining the server.

Other (more specific) DBpedia-based applications are
listed on a dedicated page on the DBpedia web site [13].

IV. SPACETIME
Spacetime is a tool that aims at making easy for the end

user to run a certain subset of queries on the DBKB, and
presents the results in graphical form. It considers all the
resources in the DBpedia dataset that have at least one spatial
and one temporal attribute. This approach allows
overcoming the ontology complexity, even though it limits
the set of queries that can be formulated. Our requirements
for the application were quite simple. We wanted it to be
graphically simple and pretty, to be intuitive and simple to
use, and able to minimize the knowledge required to the user
and its effort in dealing with the interface.

The interface is composed of a control panel for
specifying the query parameters, and for saving and loading
the resulting maps; a map for visualising the locations of the
events found through a search; a timeline for showing the
events on the temporal axis (see Figs. 1 and 2).

Figure 1. The Spacetime user interface.

To formulate the query, the user has to select “Where”,
“When” and “What”. The “What” comes in the form of what
we call “the Spacetime Categories” (SC), i.e., the set of
classes that have among their attributes some spatial and
temporal data. SC are a (hierarchical) subset of the DBpedia
ontology. They are composed of six “top” categories:
Organisation, Person, Event, Place, Species and Work. Each
of them contains numerous subclasses.

The user starts browsing the SC tree. The user interface is
shown in Fig. 1. As it can be seen, there are three sections:
Category, Where and When. Once the user selects the
suitable class in the upper part, the following sections auto-
adapt showing those properties, which have a spatial and
temporal dimension. The user can select among those, and
put a restriction indicating a geographical place and a time
window. When the user fires the request, a SPARQL query
is generated and run against the DBKB. The results are
rendered on the map in different ways, according to the
specific user request, as we shall discuss later.

Behind the scenes, the system performs three types of
queries: filter queries, search queries and resources queries.

 Filter queries provide the data for the space and time
filters in the user interface of the application. These filters
are the ones that allow presenting to the user the selectable
properties along the space and time dimensions. The time
filter selects those attributes which are of data type xsd:date.
The space filter selects DBpedia properties having a
correspondence in latitude and longitude in the Basic Geo
(WGS84 lat./long.) Vocabulary. Filter queries are performed
as soon as the user selects a category.

Search queries compose the information provided by the
user (selected category and properties, and filtering values).
An approximation is done in this phase. In fact, the user
selects a geographical region by specifying its name, being
helped by an auto completion feature. However,
geographical data are identified by their coordinates, rather
then by logically (or politically) belonging to a geographical
entity. Hence, what we do is to use the bounding box of the
geographical region specified by the user as a matching filter
for the location-dependent properties. This has an obvious
problem in terms of precision of the supplied results, as it
may include some data belonging to (logically or politically)
neighbouring regions.

Figure 2. A detail of the shown result set, with a pop-up.

Resource queries are composed in the last phase. Results

are graphically shown in a variety of ways. The simplest one
(shown in Fig. 2) is in the form of “pins” appearing on the

10Copyright (c) IARIA, 2014. ISBN: 978-1-61208-355-1

SEMAPRO 2014 : The Eighth International Conference on Advances in Semantic Processing

map, and of dots shown on a timeline. At this point the user
can investigate the details; selecting a pin or a dot,
information about that specific element of the result set is
shown in a pop up.

Typically, the name of the corresponding Wikipedia page
is shown, together with the relevant space and time
information. Optionally also a short abstract from the
corresponding Wikipedia page can be shown. Also links of
the resource to Wikipedia and DBpedia are provided, in case
the user wishes to obtain additional and more specific
information. All this is retrieved by a “resource query”,
which is a simple SPARQL query asking the DBKB to
provide the needed information and the matching abstract,
which can be obtained in multiple languages.

Apart of running a query and inspecting the results, the
user can save, load, and modify a map. Maps can be saved
locally so as to be able to later import them in external
resources such as, e.g., a multimedia presentation. Saved
maps can be later reimported – e.g., to modify them so as to
create a join between the results of two different queries, as
we will discuss later.

As we mentioned, Spacetime provides also other types of
visualizations. It is possible to create time-sliding
animations. Instead of showing all the results at the same
time, it is possible to have them ordered along the time axis,
and to let them appear in a temporal sequence. As an
example, this might show how civilization spread by
showing a set of cities in the order in which they were
founded.

A second type of presentation shows the events in form
of “heat-maps” instead as individual pins (see Fig.3). This is
useful in the case one has to show many events: they appear
as a density map rather than individually.

Figure 3. The Europe density map of the military conflict during the
Second World War.

Presentations of these two types can be combined, having
a density map evolving in time in an animation. One such
example is among the demos of the system, which can be
seen on the Spacetime web site [13]. It is a query about the
battles, which took place during the Second World War. It
asks about “the military conflicts occurring in the world
between 1939 and 1945 (inclusive)”. The density map allows

following the evolution of the Second World War, clearly
showing how the conflict spread and moved in the world, or,
by zooming, in a particular geographical area.

Pin customization allows creating easy-to-understand
maps. Pins can be customized by numbering them (in the
order they are generated) or by choosing icons among eight
categories: colours, numbers, letters, people, culture, events,
transportation and sports. Icon colours can also be selected.

Map aggregation allows the creation of more complex
maps that include different DBpedia categories. In fact, it is
possible to render a map containing resources from
categories such as Writer and Book, or different historical
events like Election, Military Conflict, and Convention, or to
define the historical context when a certain person was born
just by aggregating on the map of person birth also a set of
historical events. Moreover, the possibility of modifying the
icon markers of the resources, allows making the map better
in term of meaning and clearness.

An example of pin customization in an aggregated map is
shown in Fig.4, which displays the career of the soccer
player Zinedine Zidane. Different icons mark the place
where he was born, the towns hosting the soccer teams he
was playing for, and the places where he won cups. The map
is an aggregation of the results of multiple queries.

Figure 4. A map, built as aggregation of the results of multiple queries,
shows the career of the soccer player Zinedine Zidane.

All these functionalities were introduced in view of the
actual use of the search results: we thought of Spacetime as a
tool, which could be used, e.g., when teaching or studying.
Hence, it was necessary to think how the user might need to
clarify some points, for instance when using those (probably
precompiled) results during a lecture, or to incorporate them
in a homework.

From a technical point of view, the application is based
on five pillars:

• DBpedia: the repository where the knowledge base is
kept;

• SPARQL: the query language used for interrogating
DBpedia and retrieving the data through a SPARQL
endpoint;

11Copyright (c) IARIA, 2014. ISBN: 978-1-61208-355-1

SEMAPRO 2014 : The Eighth International Conference on Advances in Semantic Processing

• Google Maps: the rendering engine for showing the
retrieved data;

• JavaScript: it is at the core of Spacetime, and it contains
its application logic. It is responsible of all the interactions
between the application components;

• HTML: defines the graphical structure of the Spacetime
and the dynamic content of the application.

In more detail, the used technologies are:
•SPARQL Query Language for RDF. Queries are

composed by the Javascript engine, and are executed through
the SPARQL endpoint;

• JavaScript Object Notation (JSON): the results of the
SPARQL queries are produced in this format, which is used
for managing the results of the query and for the saving and
loading maps;

• Google Maps JavaScript API v.3: the Google Maps API
are used for populating a map with the data extracted in the
JSON file returned by the SPARQL endpoint;

• JavaScript and JQuery library: the scripting language
and its library define a set of functions that are the core of
the application. In particular the JQuery library allows the
creation of animations inside Spacetime;

•Asynchronous JavaScript and XML (AJAX): this
technology is used to have a responsive user interface
compliant with the Rich Internet Application paradigm;

• Cascading Style Sheets (CSS): the style sheets language
is used for designing the graphical aspect of Spacetime;

• HyperText Markup Language 5 (HTML5): the markup
language is used for developing certain part of the
application, such as the map saving operation, implemented
via the Blob object, and some graphical feature, such as the
rounded corners.

V. CONCLUSION
We presented Spacetime, a Rich Internet Application,

which deploys the power of Linked Data, and in particular
those data, which the DBpedia project gathers from
Wikipedia. Our solution does not fully solve the difficult
problem of allowing a non-technical user to perform generic
queries on the data. However, it provides an easy-to-use
interface for a subset of the possible queries. It has been
designed to make it possible for a generic user to obtain
results that can be embedded in a presentation, or to prepare
catching animations.

Spacetime has some limitations. As we mentioned, the
geographic selection is made through a bounding box, which
might end up in retrieving some data, which are not pertinent
to the query. It obviously reflects the weaknesses of
Wikipedia and DBpedia in terms of missing information and
misclassifications, as discussed in section IV.

The SPARQL endpoint that is used constitutes a single
point of failure. If the endpoint has a problem, users cannot
perform a search, but they can only load their own maps and
work on them. Sometimes errors are generated by the
endpoint, as it runs out of its memory pool size. We try to
catch these anomalies and to warn the user, but it is not

always possible. Unfortunately, the class of problems related
to the SPARQL endpoint is out of our control possibilities.

In summary, we think that Spacetime shows in practice
the potential of Linked Data, and provides an original
solution to part of the problem of building a good and simple
interface for the user. Unfortunately, we did not have the
time (yet) to run a validation study to support our claims
about ease of use and user friendliness.

REFERENCES
[1] S. Auer et al. "Dbpedia: A nucleus for a web of open data."

In The semantic web, Springer Berlin Heidelberg, 2007, pp.
722-735.

[2] G. Eason, C. Bizer, T. Heath and T. Berners-Lee, “Linked
Data - the story so far.” International Journal on Semantic
Web and Information Systems, 5, (3), 1-22, 2009.
doi:10.4018/jswis.2009081901
http://dx.doi.org/10.4018/jswis.2009081901 Retrieved Apr,
2014

[3] S. Auer, and J. Lehmann, "What have Innsbruck and Leipzig
in common? Extracting semantics from wiki content." In The
Semantic Web: Research and Applications, Springer Berlin
Heidelberg, 2007, pp. 503-517.

[4] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, U. Becker, R.
Cyganiak and S. Hellmann, "DBpedia-A crystallization point
for the Web of Data." Web Semantics: Science, Services and
Agents on the World Wide Web 7, no. 3, 2009, pp.154-165.

[5] Fei Wu and D. S. Weld, “Automatically refining the
wikipedia infobox ontology”. In Proceedings of the 17th
international conference on World Wide Web (WWW '08).
ACM, New York, NY, USA, 2008, pp. 635-644
DOI=10.1145/1367497.1367583
http://doi.acm.org/10.1145/1367497.1367583 Retrieved Apr,
2014

[6] S. Harris and A. Seaborne, “SPARQL 1.1 Query Language -
W3C Recommendation 21 March 2013”. Retrieved April,
2014 from http://www.w3.org/TR/sparql11-query/

[7] P. Heim, S. Hellmann, J. Lehmann, S. Lohmann and T.
Stegemann, "RelFinder: Revealing relationships in RDF
knowledge bases." In Semantic Multimedia, Springer Berlin
Heidelberg, 2009, pp. 182-187.

[8] D. V. Camarda, S. Mazzini and A. Antonuccio, "LodLive,
exploring the web of data." In Proceedings of the 8th
International Conference on Semantic Systems, ACM, 2012,
pp. 197-200.

[9] P. Heim, J. Ziegler and S. Lohmann, "gFacet: A Browser for
the Web of Data." In Proceedings of the International
Workshop on Interacting with Multimedia Content in the
Social Semantic Web (IMC-SSW’08), vol. 417, 2008, pp. 49-
58.

[10] B. Becker and C. Bizer, “DBpedia Mobile: A Location-
Enabled Linked Data Browser”. 1st Workshop about Linked
Data on the Web (LDOW2008), Beijing, China, April 2008.

[11] M. J. Skjæveland, “Sgvizler: A JavaScript Wrapper for Easy
Visualization of SPARQL Result Sets”. In: 9th Extended
Semantic Web Conference (ESWC 2012), workshop and
demo proceedings. Heraklion, Crete, Greece, 2012.

[12] R. Hahn et al. "Faceted wikipedia search." In Business
Information Systems, Springer Berlin Heidelberg, 2010, pp.
1-11.

[13] Spacetime. Retrieved Apr, 2014 from
http://latemar.science.unitn.it/spacetime/spacetime.html, also
reachable from the “DBpedia applications” web site,
http://wiki.dbpedia.org/Applications, demos visible from
http://latemar.science.unitn.it/spacetime/usecase.htm

12Copyright (c) IARIA, 2014. ISBN: 978-1-61208-355-1

SEMAPRO 2014 : The Eighth International Conference on Advances in Semantic Processing

