
Data Types in UML and OWL-2

Jesper Zedlitz
Christian-Albrechts-Universität

Kiel, Germany
Email: jze@informatik.uni-kiel.de

Norbert Luttenberger
Christian-Albrechts-Universität

Kiel, Germany
Email: n.luttenberger@email.uni-kiel.de

Abstract—Both OWL-2 and UML static class diagrams lend
themselves very well for conceptual modeling of complex in-
formation systems. To ease the choice between either of these
languages it worthwhile to clarify the differences and similarities
in the representation of different kinds of datatypes (primitive
types, enumerations, complex datatypes, and generalization of
datatypes) in static UML data models and OWL-2 ontologies.
Where similarities allow a transformation of datatypes from one
language into the other, we describe a possible transformation.

Keywords—UML; OWL; datatypes; conceptual modeling

I. INTRODUCTION

Though nowadays the Web Ontology Language (OWL)
is mostly considered as a language for knowledge repre-
sentation, it can also be used as a language for conceptual
modeling of complex information systems, i.e., as a language
for representing the entities of a certain domain and for
expressing the meaning of various, usually ambiguous terms
and to identify the relationships between these. In this re-
spect, OWL can be seen as a direct “competitor” to static
Unified Modeling Language (UML) class diagrams, which
are—e.g., in the ISO 191xx series of standards—often used
for this purpose. Known approaches for UML-to-OWL (and
reverse) transformations having this “conceptual modeling
focus” mostly neglect the subtle problem of datatype mapping,
i.e., the mapping of the OWL type system to the UML type
system and reverse. This aspect should however not be ignored,
especially as OWL-2 comes with an elaborate support for
datatype properties. In this paper, we focus on these datatypes:
We highlight the different representation of datatypes in UML
and OWL-2 and present possibilities and limitation of trans-
forming datatype definitions written in language into the other
language.

The paper is organized as follows. We start with an
overview of existing approaches for transformations between
UML and OWL-2 that take datatypes into account. Section III
gives an general overview of different kind of datatypes. The
next section shows how these datatypes can be represented in
UML and OWL-2. In Section V, we present how datatypes
defined in one language can be transformed into the other
language. How we use the transformation described before is
shown in Section VI. Section VII concludes and points out
fields of future work.

II. RELATED WORK

Several publications discuss the relation of UML and OWL
in general [1] [2] and transformations of UML class diagrams
into OWL ontologies [3] [4]. The revision of OWL-2 made

it necessary to rework the transformations from UML to
OWL-2 [5] [6]. However, datatypes play only a minor role in
these publications. The approaches have in common that UML
attributes with a primitive type are transformed into OWL-2
data properties. Enumerations become enumerated datatypes
(owl:oneOf resp. DataOneOf) and vice versa.

Tschirner et al. [7] note that datatypes can be structured.
However, this fact and its impact on a transformation is not
further discussed in the article. It is noteworthy that—in dif-
ference to all other approaches—enumerations are transformed
into sets of individuals instead of set of literals.

A special kind of extensible enumeration defined in the
ISO 19103 standard “Codelist” and its transformation from
UML to OWL-2 has been discussed in [8].

III. INTRODUCTION TO DATATYPES

In general, a datatype consists of three components: the
value space, the lexical space, and a well-defined mapping
from the lexical into the value space. The value space is the—
possible infinite—set of values that can be represented by
the datatype. The lexical space describes the syntax of the
datatype’s values. The mapping is used to map syntactically
correct values to elements of the value spaces. It is possible
that—even infinite—many syntactically different values are
mapped to the same element of the values space.

Primitive datatypes do not have an internal structure.
Examples of primitive types are character strings, logical
values, and numbers.

Enumerations are a special kind of datatypes with no
internal structure. In contrast to general primitive types the
lexical space and the value space of an enumeration are equal-
sized, well-defined finite sets. The mapping from lexical to
value space is a one-to-one mapping. An example for an
enumeration datatype are the English names of the days of
the week which consist of seven possible values.

In contrast to primitive data types complex data types have
an internal structure. These are some examples for complex
data types:

• a person’s name consisting of given name and family
name

• a physical measurement consisting of value and unit
of measurement

• an address consisting of street name, house number,
postal code and city name

32Copyright (c) IARIA, 2013. ISBN: 978-1-61208-293-6

SEMAPRO 2013 : The Seventh International Conference on Advances in Semantic Processing

Generalization of datatypes can be defined similarly to
the generalization of element types. If a datatype A generalizes
a datatype B each date that is instance of B (i.e., its lexical
representation belongs to the lexical space of B and its value
belongs to the value space of B) is also instance of datatype
A. For example the integers generalize natural numbers. Each
natural number is also an integer.

IV. REPRESENTATION OF DATATYPES

A. Unified Modeling Language (UML)

Besides a few pre-defined primitive types UML allows
the definition of additional datatypes in class diagrams. These
can be primitive types, complex datatypes, and enumerations.
In UML, datatypes—similar to classes—can have owned at-
tributes (as well as operations which are not discussed here).
Therefore, they can be used to describe structure. Figure 1
shows examples for the three kind of datatypes.

Weekday
«enumeration»

Monday
Tuesday
Wednesday

Date
«primitive»Name

«datatype»

firstname : String
lastname : String

Fig. 1. Examples for datatypes in UML. Left: user-defined datatype with
two components. Center: user-defined primitive datatype. Right: Enumeration
with three allowed values.

In contrast to instances of classes “any instances of that
data type with the same value are considered to be equal
instances.”[9, p. 63] Although the graphical representations
of datatypes in general (instances of DataType) as well as
primitive types (instances of PrimitiveType and enumerations
(instances of Enumeration) in particular look similar to the
representation of classes (instances of Class) they are different
elements of the meta model as shown in Figure 2.

DataType

Classifier

Enumeration Class

EncapsulatedClassifier BehavioredClassifier

StructuredClassifier

PrimitiveType

Fig. 2. Extract from the UML meta model, showing the difference between
classes and datatypes.

In UML, generalizations are defined for Classifier and
therefore also for DataType. Thus inheritance/generalization
relations between datatypes can be defined in a UML class
diagram.

B. Web Ontology Language (OWL-2)

In OWL-2 three different kinds of datatypes can be distin-
guished:

1) rdfs:Literal as base datatype
2) datatypes of the OWL-2 datatype map, which is

basically a subset of the XML Schema datatypes [10].

3) datatypes that have been defined within an ontology
using DatatypeDefinition

The value space of the base datatype rdfs:Literal
is the union of the value spaces of all other datatypes.
The OWL-2 datatype map adopts the value space, lexical
space, and the restrictions for user-defined datatypes from
the XML Schema specification. Sets of values (instances of
datatypes)—so called Data Ranges—can be defined by com-
bining datatypes via common set-theoretic operations. A set of
values consisting exactly of a pre-defined list can be described
by using DataOneOf. A DatatypeRestriction allows
to define a set of values by restricting the value space of a
datatype with constraining facets. The OWL-2 datatype map
defines which restrictions are allowed. For example a number
datatype can be restricted by: less equal, greater equal, equal,
and greater.

An OWL-2 datatype is defined by assigning an Inter-
nationalized Resource Identifier (IRI) to a DataRange us-
ing a DatatypeDefinition axiom. According to the
OWL-2 DL specification this IRI must have been declared as
the name of a datatype.

Declaration

Axiom

1

Datatype

DatatypeDefinition

DataRange

datatype

entity

Entity
dataRange1 1

Fig. 3. Extract relevant for datatypes from the OWL-2 meta model.

The abstract syntax (see Figure 3) shows that a datatype
is linked indirectly (via an instance of DatatypeDefini-
tion) with its value space (an instance of a subclass of
DataRange. Therefore, it is possible to use a datatype with
no assigned values space. By definition this datatype has the
value space of rdfs:Literal.

Subclasses of DataRange (e.g., DataUnionOf) which
are used for the definition of value sets (and therefore
datatypes) have references to DataRange. Datatype is a
subclass of DataRange, too. Thus, arbitrarily nested con-
structions of datatype-defining elements are possible.

V. TRANSFORMATION OF DATATYPES

A. Primitive Types

Three cases have to be considered for the UML→ OWL-2
transformation of primitive types:

1) The datatype is one of the four pre-defined datatypes
“Boolean”, “Integer”, “String”, or “UnlimitedNatu-
ral”.

2) The datatype is one of the XML Schema datatypes.
3) The definition of the (user-defined) datatype is part

of the UML-model.

33Copyright (c) IARIA, 2013. ISBN: 978-1-61208-293-6

SEMAPRO 2013 : The Seventh International Conference on Advances in Semantic Processing

Since OWL-2 uses the datatype-definitions from XML
Schema a datatype in case (1) can be transformed into its
corresponding datatype from XML Schema. Primitive types
can be recognized by the fact that they are contained in a
packet “UMLPrimitiveTypes”.

The transformation in case (2) is even more obvious
because a datatype is used that is also present in OWL-2. The
name of the package containing the primitive types depends
on the UML type library used. A common package name is
“XMLPrimitiveTypes”. This name can be used to recognize
primitive types falling under case (2). The XML Schema
datatype can be referenced in the ontology by adding the XSD
namespace to the type’s name.

For user-defined datatypes in case (3) a new datatype is
defined in the ontology by using a Datatype axiom. OWL-2
datatypes—like all OWL-2 model elements—are identified by
unique IRIs. Therefore, an appropriate IRI must be gener-
ated during the transformation. In UML, elements (including
datatypes) are uniquely identified by their name and package
hierarchy. Therefore, a combination of package and datatype
name can be used for the IRI.

For the transformation OWL-2→ UML primitive types are
difficult. OWL-2 offers a variety of possibilities to define new
datatypes. However, some primitive types—and probably the
most common ones—can be transformed. The primitive types
of OWL-2 derive from the XML Schema datatypes. There are
established UML-libraries for the XML datatypes. Therefore,
it is sufficient to include such a library into the transformation
process. An instance of a primitive type contained in the library
can be looked up by the IRI of the OWL-2-datatype and
references as necessary.

B. Enumerations

As mentioned in Section II, several authors have already
discussed how to transform enumerations: In OWL-2 the data
range DataOneOf is suitable for defining a datatype with
a fixed pre-defined value space. Each lexical value of the
DataOneOf data range is transformed into an Enumera-
tionLiteral instance and vice-versa. OWL-2 as well as UML
support the specification of datatypes for the elements of
an enumeration: An OWL-2 Literal instance has a datatype
attribute, an UML EnumerationLiteral instance has a classifier
attribute referencing the datatype.

Declaration(DataType(:Weekday))

DatatypeDefinition(
 :Weekday
 DataOneOf("Monday" "Tuesday" "Wednesday")
)

Weekday
«enumeration»

Monday
Tuesday
Wednesday

Fig. 4. Example for the transformation of an enumeration.

For the transformation OWL-2→ UML one has to consider
the fact that in OWL-2 the data range DataOneOf can be used
without a DatatypeDefinition which assigns a name to
it. Since an UML Enumeration necessarily needs a name it
can be generated based on the literals contained in the data
range.

C. Complex Data Types

OWL-2 datatypes consist of exactly one literal and are
therefore not further structured. Since OWL-2 is built upon
the Resource Description Framework (RDF) there is the theo-
retical possibility to use a blank node and the RDF-instruction
parseType="Resource" to implement complex data as
shown in this listing:

<rdf:RDF xml:base="http://example.com/persons/"
xmlns="http://example.com/persons/"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<owl:Ontology rdf:about="http://example.com/persons/"/>

<owl:Class rdf:about="Person" />

<owl:NamedIndividual rdf:about="Timmi">
<rdf:type rdf:resource="Person"/>
<hasName rdf:parseType="Resource">

<first>Timmi</first>
<last>Tester</last>

</hasName>
</owl:NamedIndividual>

</rdf:RDF>

However, neither the OWL-1 nor the OWL-2 specification
mention parseType="Resource". Therefore, it is proba-
bly not a valid construct for OWL-2. Even if this notation was
valid for OWL-2 and an element type could be assigned to such
an anonymous individual, the definition of the element type
would be indistinguishable from the definition of a “normal”
element type.

The UML→ OWL-2 transformation of complex datatypes,
i.e., datatypes with owned attributes, is similar to the transfor-
mation of UML classes with owned attributes into OWL-2
classes and properties. There are two characteristics of UML
datatypes that have to be considered:

1) Values do not have an identity.
2) Every value exists only once.

Since the transformation is similar to the transformation of
classes the instances of the resulting element in the ontology
will be individuals. In OWL-2 every (typed) individual must
have a name. Therefore, the semantics for characteristic (1)
is changed: In UML, the instance of the datatype does not
have an identity. The corresponding individual in OWL-2 is
assigned with an IRI by which it can be referenced (and also
identified).

Characteristic (2) requiring that every value must exist not
more than once can be ensured by using HasKey axioms.
For every UML datatype D with owned attributes a1 . . . an
that is transformed into a OWL-2 class C with data property
dp1 . . . dpn the following axiom is added to the ontology:

HasKey(C () (dp1 . . . dpn))

This axiom ensures that every occurrence of an individual with
the same values for dp1 . . . dpn is one and the same individual.

D. Generalization of datatypes

In general, the transformation of a datatype generalization
in a UML class diagram is not possible since OWL-2 has
no support for inheritance/generalization of datatypes. In the
special case of a complete generalization of datatypes with

34Copyright (c) IARIA, 2013. ISBN: 978-1-61208-293-6

SEMAPRO 2013 : The Seventh International Conference on Advances in Semantic Processing

Declaration(Class(:Name))

Declaration(DataProperty(:Name_firstname))
DataPropertyDomain(:Name_firstname :Name)
DataPropertyRange(:Name_firstname xsd:string)

Declaration(DataProperty(:Name_lastname))
DataPropertyDomain(:Name_lastname :Name)
DataPropertyRange(:Name_lastname xsd:string)

HasKey(:Name () (:Name_firstname :Name_lastname))

Name

firstname : String
lastname: String

«datatype»

Fig. 5. Example for the transformation of a complex datatype.

no internal strcuture (e.g., enumerations) a transformation is
possible: While the generalization of UML classes can be
transformed into an OWL-2 ObjectUnionOf class expres-
sion this is not possible for datatypes. As the name suggest,
an ObjectUnionOf can only be used for classes. Instead
an instance of DataUnionOf is used. The sub-datatypes
combined in the DataUnionOf constitute a new data range.
Using a DatatypeDefinition axiom a name is assigned
to this set of datatypes. This name is the name of the super-
datatype from UML. Figure 6 shows an example for such a
transformation.

Declaration(Datatype(:Weekday))
Declaration(Datatype(:WeekdayDE))
Declaration(Datatype(:WeekdayEN))

DatatypeDefinition(:WeekdayDE
 DataOneOf("Montag" "Dienstag" "Mittwoch" ...)
)

DatatypeDefinition(:WeekdayEN
 DataOneOf("Monday" "Tuesday" "Wednesday" ...)
)

DatatypeDefinition(
 :Weekday
 DataUnionOf(:WeekdayDE :WeekdayEN)
)

WeekdayDE

Montag
Dienstag
Mittwoch
…

«enumeration»
WeekdayEN

Monday
Tuesday
Wednesday
…

«enumeration»

Weekday
«datatype»

{complete}

Fig. 6. Example for the transformation of a generalization relation between
datatypes.

VI. IMPLEMENTATION

We have implemented the transformations presented in this
paper as part of two model-to-model transformations written in
Meta Object Facility (MOF) 2.0 Query/View/Transformation
(QVT) Relations language [11]. In contrast to other approaches
working on transfer formats (e.g., XML Metadata Exchange
(XMI) and a XML-based syntax for OWL-2) our transforma-
tion is specified using the meta-models of UML and OWL-2
only. Therefore, the transformation is independent of any
concrete syntax.

QVT-Relations is a declarative model-to-model transfor-
mation language. In addition to a textual syntax it also has a
visual syntax. An example of the visual syntax is shown in
Figure 7. During a transformation execution so called trace
classes and their instances are automatically created to record
what occurred that execution. These characteristics of QVT-
Relations make it possible to analyze the transformation easily.
Additional to manual/visual automated tests can be performed
since the output of one transformation is again a model that
can serve as the input of the other transformation.

VII. CONCLUSION AND FUTURE WORK

In this paper we have focused on the datatypes of static
data models—often neglected when working on transformation

where

C E

owl : OWL uml : UML

LiteralToEnumerationLiteral

DataTypeToDataType(odt, udt)

«domain»
lit:Literal

lexicalForm = stringValue

odt:DataType

«domain»
elit:EnumerationLiteral

name = stringValue

udt:DataType

Fig. 7. Example of a QVT-Relations rule from the OWL-2 → UML
transformation that maps OWL-2 Literals to UML EnumerationLiterals.

between UML and OWL-2. We showed differences and simi-
larities in the representation of datatypes in UML and OWL-2.
Where similarities allow a transformation of datatypes from
one language into the other we have described a possible trans-
formation and highlighted the tricky points and/or limitations.

REFERENCES

[1] G. Schreiber, “A UML Presentation Syntax for OWL Lite,” 2002.
[Online]. Available: http://www.swi.psy.uva.nl/usr/Schreiber/docs/owl-
uml/owl-uml.html

[2] K. Kiko and C. Atkinson, “A Detailed Comparison of UML and OWL,”
Mannheim, 2008, technical report.

[3] L. Hart, P. Emery, B. Colomb, K. Raymond, S. Taraporewall a,
D. Chang, Y. Ye, E. Kendall, and M. Dutra, “OWL
Full and UML 2.0 Compared,” 2004. [Online]. Available:
http://www.omg.org/docs/ontology/04-03-01.pdf

[4] OMG, “Ontology Definition Metamodel,” Object Management Group,
2009. [Online]. Available: http://www.omg.org/spec/ODM/1.0/

[5] S. Höglund, A. Khan, Y. Liu, and I. Porres, “Representing and
Validating Metamodels using the Web Ontology Language OWL 2.
TUCS Technical Report No. 973,” Turku 2010. [Online]. Available:
http://tucs.fi/publications/attachment.php?fname=TR973.full.pdf

[6] J. Zedlitz, J. Jörke, and N. Luttenberger, “From UML to OWL 2,” in
Proceedings of Knowledge Technology Week 2011, D. Lukose, A. R.
Ahmad, and A. Suliman, Eds., Berlin/Heidelberg, 2012, pp. p. 154–163.

[7] S. Tschirner, A. Scherp, and S. Staab, “Semantic access to INSPIRE,”
in Terra Cognita 2011. Proceedings of the Terra Cognita Workshop
on Foundations, Technologies and Applications of the Geospatial Web,
R. Grütter, D. Kolas, M. Koubarakis, and P. D., Eds., 2011, pp. p. 75–
87. [Online]. Available: http://ceur-ws.org/Vol-798/proceedings.pdf

[8] J. Zedlitz and N. Luttenberger, “Transforming Between UML
Conceptual Models and OWL 2 Ontologies,” in Proceedings of
the Terra Cognita Workshop on Foundations, Technologies and
Applications of the Geospatial Web, in conjunction with the 11th
International Semantic Web Conference (ISWC 2012), D. Kolas,
M. Perry, R. Grütter, and M. Koubarakis, Eds., 2012, pp. p. 15–26.
[Online]. Available: http://ceur-ws.org/Vol-901/paper2.pdf

[9] OMG, “Unified Modeling Language, Superstructure Version 2.4,” 2011.
[Online]. Available: http://www.omg.org/spec/UML/2.4/Superstructure

[10] XMLSchema-2, “XML Schema Part 2: Datatypes,” 2004. [Online].
Available: http://www.w3.org/TR/xmlschema-2/

[11] OMG, “Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification Version 1.1,” 2011. [Online]. Available:
http://www.omg.org/spec/QVT/1.1/PDF/

35Copyright (c) IARIA, 2013. ISBN: 978-1-61208-293-6

SEMAPRO 2013 : The Seventh International Conference on Advances in Semantic Processing

