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Abstract—With billions of triples in the Linked Open Data 
cloud, which continues to grow exponentially, challenging tasks 
start to emerge related to the exploitation and reasoning of 
Web data. A considerable amount of work has been done in 
the area of using Information Retrieval (IR) methods to 
address these problems. However, although applied models 
work on the Web scale, they downgrade the semantics 
contained in an RDF graph by observing each physical 
resource as a ’bag of words (URIs/literals)’. Distributional 
statistic methods can address this problem by capturing the 
structure of the graph more efficiently. However, these 
methods are computationally expensive. In this paper, we 
describe the parallelization algorithm of one such method 
(Random Indexing) based on the Message-Passing Interface 
technology. Our evaluation results show super linear 
improvement. 

Keywords-Statistical Semantics; Random Indexing; 
Parallelization; High Performance Computing; Message-Passing 
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I.  INTRODUCTION 

We live in a big data world, which is already estimated to 
be of the size of several Zetta (1021) Bytes. However, the 
most considerable growth has seen the linked (open) data 
domain. Recent years have seen a tremendous increase of 
structured data on the Web with public sectors such as UK 
and USA governments opening their data to public (e.g., the 
U.S.’s data.gov initiative [1]), and encouraging others to 
build useful applications. At the same time, Linked Open 
Data (LOD) [2] project continues stimulating creation, 
publication and interlinking the RDF graphs with those 
already in the LOD cloud. In March 2009, around 4 billion 
statements were available in Resource Description 
Framework (RDF) format [3], while in September 2010 this 
number increased to 25 billion, and continues to grow every 
year exponentially. This massive amount of data requires 
effective exploitation and is now a big challenge not only 
because of the size but also due to the nature of this data. 
Firstly, due to the varying methodologies used to generate 
these RDF graphs there are inconsistencies, incompleteness, 
but also redundancies. These are partially addressed by 
approaches for assessing the quality, such as through 
tracking the provenance [4]. Secondly, even if the quality of 
the data would be at a high level, exploring and searching 
through large RDF graphs requires familiarity with the 
structure, and knowledge of the used ontology schema. 
Another challenge is reasoning over these vast amounts of 

data. The languages used for expressing formal semantics 
(RDF etc.) use the logic that does not scale to the amount of 
information and the setting that is required for the Web. The 
approach suggested by Fensel and van Harmelen [5] is to 
merge retrieval process and reasoning by means of selection 
or subsetting: selecting a subset of the RDF graph that is 
relevant to a query and sufficient for reasoning. 

A considerable amount of work has been done in the area 
of using Information Retrieval (IR) methods for the task of 
selection and retrieval of RDF triples, and also for searching 
through them. The primary intention of these approaches is 
location of the RDF documents relevant to the given 
keyword and/or a Unified Resource Identifier (URI). These 
systems are semantic search engines such as Swoogle [6] or 
Sindice ([7], [8]). However, although these models work on 
the Web scale, they downgrade the semantics contained in an 
RDF graph by observing each physical resource as a ’bag of 
words (URIs/literals)’. More sophisticated IR models can 
capture the structure more efficiently by modelling meaning 
similarities between words through computing the 
distributional similarity over large amount of text. These are 
called statistical semantics methods and examples include 
Latent Semantic Analysis [9] and a more modern technique – 
Random Indexing, which is based on the vector space 
concept [10]. In order to compute similarities, these methods 
first generate a semantic space model. Both generating this 
model, and searching through it (e.g., using cosine 
similarity), are computationally expensive. The linear feature 
of searching through the large semantic space model is a 
huge bottleneck: for the model representing 300 million 
documents calculating cosine similarity in order to find 
similar terms can take as long as several hours, which is 
currently not acceptable for the problem domain specialists. 

In this paper, we describe a parallelization approach for 
the Random Indexing search algorithm, suggested by 
Sahlgren [10]. We also discuss some techniques that allowed 
us to reduce the execution time down to seconds on the way 
to achieving a Web scale. The paper is structured as follows. 
In Section II, we present the use cases in which this work has 
been applied. An explicit description about the applied 
parallelization strategy and the modifications made to the 
Random Indexing algorithm are presented in Section III. 
Moreover, we give a thorough evaluation about the 
algorithm’s performance and scalability on a distributed 
shared-memory system in Section IV. Finally, Section V 
presents conclusions and discusses main outcomes as well as 
future work directions. 
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II. USE CASES 

In this section, we briefly describe two use cases that are 
taking advantage of the parallelization of the cosine 
similarity algorithm used by statistical semantics methods, 
which is the main topic of this paper. Cosine similarity [10] 
is a measure of similarity between two vectors of n 
dimensions, which is finding the cosine of the angle between 
them. If the cosine is zero, the documents represented by 
vectors are considered dissimilar, while one indicates a high 
similarity. We present the query expansion use case, which is 
used to improve the recall when searching, e.g., Linked Life 
Data (4 billion statements), followed by a subsetting scenario 
used to reduce the execution time when reasoning over the 
FactForge repository [11], which contained 2 billion 
statements at time of performing the experiment. 

A. Query Expansion 

Query expansion is used in Information Retrieval 
extensively with the aim to expand the document collection 
that is returned as a result to a query. This method employs 
several techniques, such as including lemmas and synonyms 
of the query terms, in order to improve precision and recall. 
It works by expanding the initial query thus covering larger 
portion of documents. In this context, finding synonyms is a 
very important step and one way to achieve this is by 
employing statistical semantics methods. These methods 
operate on a set of documents and therefore, we need to 
lexicalise an RDF graph in a way that will preserve the 
semantics and “relatedness” of each node with those in its 
neighbourhood, into an abstraction, which we call a virtual 
document. 

In order to generate virtual documents from an RDF 
graph, we first select the relevant part of the original graph 
and subdivide it into a set of potentially overlapping 
subgraphs. The next step is lexicalisation in order to create 
virtual documents from these subgraphs. Finally, we 
generate the semantic index from the virtual documents. The 
details of how each of these steps is performed significantly 
influences the final vector space model. For example, in the 
selection and subdivision step, all or just a part of the 
ontology could be selected; the subgraphs could be 
individual triples, or RDF molecules (the set of triples 
sharing a specific subject node), or more complex/bigger 
subgraphs. In the lexicalisation step, the URIs, blank nodes, 
and literals from an RDF subgraph are converted to a 
sequence of terms. When generating the semantic index, 
different strategies for creating tokens and performing 
normalisation have to be applied to typed literals, string 
literals with language tags, and URIs. 

Once the semantic index has been generated, it can be 
used to find similarities between URIs and literals. We use 
the ranked list of similar terms for URIs/literals that occur in 
certain kinds of SPARQL queries [5] to make the query 
more generic and also return results for entities that are 
semantically related to those used in the original query. 

Thus, the application of query expansion through the use 
of statistical semantics method is feasible for those SPARQL 
queries that are not returning all relevant hits. In other words, 
query expansion here is aimed to improve recall, which is 

done by adding terms that are similar to the given ones in the 
original query. 

B. Subsetting 

For reasoning at web-scale, subsetting becomes a key, 
because most well-known reasoning algorithms can only 
operate on sets several orders of magnitude smaller than the 
Web. Getting subsetting algorithms to work is then of capital 
importance. 

There is evidence that by sticking to smaller datasets, 
computer and cognitive scientists may be optimizing the 
wrong type of models. Basically, there is no warranty that 
the proven best performing model on thousands of entities is 
also the best performing model when datasets are four orders 
of magnitude larger [12]. 

III.  BASICS OF PARALLEL RANDOM INDEXING 

ALGORITHM 

Random Indexing and other similar algorithms can be 
broken down into two steps: 

1) generating a semantic index (vectors), and 
2) searching the semantic index. 
Both parts are quite computationally expensive, however, 

the first part is a one-off step, which does not have to be 
repeated and the semantic index can be updated to follow 
changes in the documents if they happen. The second step, 
however, affects the end user, and therefore is a huge 
bottleneck for real-time applications. Hence, our focus is 
optimisation of the search part of the Random Indexing 
algorithm. Usually, search is performed over all vectors in 
the semantic index. Thereby the vectors are analysed 
independently of each other, i.e., in the arbitrary order. 

This basically means that the search can be efficiently 
improved, when performed on several computing nodes in 
parallel instead of the “vector-by-vector” (i.e., sequential 
computation) processing in the current realisation. 
Practically, the whole vector space domain is decomposed 
into sub-domains each of which is processed in a separate 
block/program instance on a different machine. The division 
of the vectors between the blocks is defined by the domain 
decomposition [13] (Figure 1). Depending on the realisation, 
a synchronisation is required among the blocks, e.g., to 
collect the partial outputs of each block and produce the final 
result. Generally, the synchronisation step is expensive, and 
much attention should be paid to the correct implementation 
of the synchronisation in order to ensure the minimum 
overhead. In the next section, we describe the major 
parallelization strategies, enabling the full utilisation of 
multiple computing nodes as well as the optimal 
synchronisation between the distributed tasks. 

Although a simple multi-threading approach would be 
extremely efficient in terms of the performance and easy in 
terms of the implementation efforts [14], it is not sufficient 
for achieving the Web-scale due to the limited number of 
CPU cores/nodes interconnected by a shared-memory bus in 
the currently available computing architectures (current 
shared-memory architectures offer a maximum of 8 to 16 
interconnected cores). 
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Figure 1.  Domain decomposition based parallelisation of the Random 
Indexing algorithm. 

Thus a distributed-memory parallelisation strategy is 
needed for Big Data. There are several parallelization 
strategies, differentiating in ways the synchronisation 
between the processes is implemented. The most promising 
for the Semantic Web in terms of performance gains are 
however the Message-Passing Interface (MPI) [15] and 
MapReduce [16]. 

MPI is a wide-spread implementation standard for 
parallel applications, implemented in many programming 
languages, including Java. As the name suggests, the MPI 
processes communicate by means of the messages 
transmitted between two (a so called “point-to-point” 
communication) or among many (involving several or even 
all processes, i.e., a collective communication) compute 
nodes. Normally, one process is executed on a single 
computing node (however, the MPI standard does not limit 
the number of processes on one node). If any process needs 
to send/receive data to/from other processes, it calls a 
corresponding MPI function. Both point-to-point and 
collective communications available for MPI processes are 
documented in the MPI standard [15]. 

MapReduce is another popular framework for processing 
big datasets on certain kinds of distributable problems, 
originally introduced by Google [16] and currently followed 
by Yahoo in its Hadoop implementation. MapReduce is a 
promising parallelisation model for data centric applications. 
However it is quite restrictive with regard to the range of 
applications that it can be applied to. In this publication, we 
are focusing on practical aspect of applying the MPI-based 
distributed memory parallelization for the Random Indexing 
search algorithm. Due to the algorithmic complexity of 
splitting the execution workflow according to the map and 
reduction operation, the MapReduce-based approach [16] 
will be presented in a separate publication. 

IV. IMPLEMENTATION WITH THE MESSAGE-PASSING 

INTERFACE (MPI) AND EVALUATION  

A. Parallelisation of Airhead Search 

Airhead is an open source implementation of Random 
Indexing in the S-Space package by University of California 
[17]. Parallelization of the search operation in Airhead was 
performed by applying the domain decomposition to the 
semantic vector space, whereby number of domains 
corresponds to the number of computing nodes the 
application is running on. Thus, each process performs 
computation only on a part (sub-domain) of the vector space 
of size (m/n), where m is the size (dimensionality) of the 
vector space, and n is the number of processes (and sub-
domains, accordingly). The boundary elements of the vector 
space to be computed by each process are calculated 
dynamically based on the process rank and the total number 
of processes provided by MPI, as demonstrated in Figure 2. 
 

 
 
Figure 2.  Specification of sub-domains. Each process calculates its 
respective sub-domain of the vector space based on its Rank and the 
number of processes in the group. 

B. Performance Evaluation on Cluster 

For the evaluation, a testbed based on the BW-Grid [18] 
cluster (Intel Xeon CPU architecture, 2 Quad-Core CPUs 
and 16 GB RAM per computing node), provided by the High 
Performance Computing Center Stuttgart, was used. 
Configuration of 1, 2, 4, 8, and 16 computing nodes were 
benchmarked to evaluate the scalability of the developed 
algorithms on the target architecture. In our tests, we mainly 
considered two different datasets coming from well-known 
semantic repositories (see test sets’ parameters in Table I): 

a) Linked Life Data (LLD) repository: a large 
integrated repository, which contains over 4 billion RDF 
statements from various sources covering the biomedical 
domain. We investigated two subsets of the LLD that 
contain major terms (for pharmacological scenarios) and 
relations between them. 

b) FactForge repository: contains schemata and 
ontologies from DBPedia, lingvoj, the CIA Factbook, 
Wordnet, Geonames, Freebase and musicbrainz. After full 
materialisation, it contains 404 million resources. We used 
the DBpedia/Wikipedia section of this space (we will refer 
to it as Wikipedia from now on, since they are parallel and 
have the same number of concepts at around 4 M). After 
filtering out redundant concepts, we kept only 1M 
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documents. After some parameter exploration, we settled on 
n=1000. That is, the random vectors are 1000-dimensional. 

TABLE I.  BENCHMARKED DATASETS. 

 
 
As the first step, we investigated the scalability and 

stability of the parallelised algorithm on the cluster, 
increasing the number of nodes involved in the computation, 
for different problem (dataset) sizes. The time for loading the 
datasets from the disk (i.e., the whole vector file has to be 
loaded into the memory of each node), the actual search 
operation as well as the overhead of the inter-node 
communication was in the focus of our measurements            
(Table II). 

The evaluation reveals that our concern about the large 
impact for loading file from the disk time on the overall 
application performance was feasible. For all investigated 
use cases, the load time was considerably higher than the 
search time. Providing the bad scale of the load operation, 
the maximum speed-up achieved on 16 clusters computing 
nodes was only 1.29. Moreover, the experiments with the 
largest available semantic space (Wiki2) were impossible to 
be conducted due to exceeding the available RAM on the test 
bed. For the first test case, although the parallelization has 
been properly implemented, its usability for datasets with the 
large number of referenced documents and small amount of 
dependencies has not been proved. This is because the 
amount of computation for the search operation was 
relatively small as compared with the total execution time. 
Nevertheless, the second variant based on the split of 
datasets (Figure 1), demonstrated its value in terms of both 
performance and scalability for the diverse problem sizes 
(Table III). The LLD1 set has been excluded because of its 
small size.  

Despite the increasing communication overhead (caused 
by MPI operations), which is due to more complex 
communication pattern (as described in the previous 
publication [21]), the evaluation reveals a significant 
performance improvement for both load and search 
operations (see Figure 3). Generally, the use cases taking 
advantage of the dataset fragmentation show an 
improvement in time of approximately 85% (i.e., and 
average speed-up of approx. 7.0 has been achieved) over the 
non-parallel realisation. This clearly shows that our 
parallelization technique can be used to benefit Random 
Indexing applications significantly. Moreover, the technique 
facilitates applying Random Indexing for the datasets that 

have not been analysed before due to the limitations of non-
parallel test beds. 

TABLE II.   PERFORMANCE CHARACTERISTICS GROUPED BY 
DATASET AND NUMBER OF COMPUTING NODES. 

 

TABLE III.  PERFORMANCE CHARACTERISTICS FOR 
FRAGMENTED DATASETS, THE NUMBER OF FRAGMENTS 
CORRESPONDS TO THE NUMBER OF COMPUTING NODES. 

 

C. Discussion and Future Directions 

As described in the previous section, the performance of 
the complex search algorithm greatly benefits from the 
“correct” implementation of the corresponding 
parallelization paradigm. Correct, here, does not solely mean 
that MPI has been successfully applied to the Random 
Indexing search algorithm in order to enable usage of large 
shared-memory systems, but rather that the algorithm itself 
has been modified in order to obtain highest performance 
and scalability - the concept of domain decomposition [13] 
has been applied to the algorithm to allow the processing  

4Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-293-6

SEMAPRO 2013 : The Seventh International Conference on Advances in Semantic Processing



 
Figure 3.  Performance results for decomposed datasets. 

of large vector space files (>= 16 GB) and (2) to obtain 
scalable computation through processing (i.e., the search and 
in particular the load operation) of smaller subsets of the 
vector space file concurrently, i.e., distributing the 
processing to multiple nodes. However, there are other 
factors, which do influence the overall performance of a 
parallel application, too. 

Developers can also tune their applications at runtime by 
using advanced settings for the Java Virtual Machine (JVM) 
[19]. For this reason, we have also experimented with 
different settings for the JVM during our tests. We have 
performed 30 runs of the parallel Airhead search using 6 
different JVM settings (each setting has been repeated 5 
times) to estimate the optimal configuration for our 
machines. Due to the fact that all our machines are equipped 
with equivalent hardware and software, the explicit tests 
were solely carried out on one particular node with the 
assumption that the settings are optimal for all other nodes 
within the cluster, too. A summary of our test runs and the 
speed-ups achieved is provided in the Table IV. 

TABLE IV.  PERFORMANCE RESULTS FOR PARALLEL AIRHEAD SEARCH 
ALGORITHMWITH VARYING JVM SETTING ON WIKI1 DATASET. 

 

As shown in Table IV, a properly configured JVM 
significantly improves the overall performance of an 
application. In our scenario, we could optimize the 
performance of the parallelized application for 
approximately 40% using the proper JVM settings. Based on 
these tests, we were also able to determine the best suited 
JVM configuration for our environment as well as learned 
more about the optimal values for individual JVM 
parameters(e.g., the total amount of heap size, the number of 
threads used for garbage collection, etc.), which can be used 
for other Java applications as well.  

An alternative promising approach is suggested by the 
JUNIPER (”Java platform for hIgh PErformance and 
Realtime large scale data management”) project [20]. 
JUNIPER is an EU-FP7 project that aims to establish a 
development platform for new-generation data-demanding 
applications. The JUNIPER approach is to exploit synergies 
between all major parallelization technologies (such as MPI, 
MapReduce, COMPSs, etc.) and elaborate new paradigms in 
data centric parallel processing that will balance flexibility 
and performance of data processing applications in 
heterogeneous computing architectures. A possibility to 
combine diverse parallelization technology within a single 
application, as offered by JUNIPER, would also be of a huge 
advantage for Random Indexing algorithms, e.g., to 
implement the semantic space generation with MapReduce 
and the search with MPI. In our following research, we are 
going to investigate the benefits of this “heterogeneous” 
approach for the Airhead package. 

V. CONCLUSION AND FUTURE WORK 

This paper presented an evaluation of our approaches to 
parallelize the Airhead library for Random Indexing, which 
can be used to significantly improve information retrieval 
methods, in particular those that use the cosine similarity for 
searching a large vector space model. We use an effective 
parallel programming paradigm, namely MPI, to exploit 
parallelism for the RI algorithm in order to take advantage of 
large-scale distributed shared-memory systems and thus to 
improve its performance. We evaluated the parallelized 
algorithm on different hardware and software configurations 
(i.e., we varied the amount of computational nodes as well as 
the input datasets) with promising results. The algorithm 
improves performance in all of the presented experiments. 
However, if each process (i.e., node) has to load the full 
dataset at once, the overall speed-up is relatively small and 
the algorithm does not scale very well while increasing the 
number of machines. For this reason, we implemented a way 
to split the input dataset into smaller junks, which can be 
independently and concurrently processed by each node. 
This feature significantly decreased the processing time of 
the load operation and thus improved the overall 
performance. Moreover, we are now able to process datasets 
with billions of statements because we are not directly 
limited by the system’s memory anymore. In addition, we 
experimented with different Java Virtual Machine settings in 
order to optimize and fine-tune the application for the given 
runtime environment. Most importantly, these results suggest 
that we need both parallel algorithms and Java Virtual 
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Machine optimizations to effectively utilize machines (not 
necessarily parallel systems but any common personal 
computer) for our Semantic Web applications. Finally, we 
demonstrated the effectiveness of the parallelized algorithm 
and its usage and benefits within an interesting for 
biomedical domain application scenario. In the future, we 
will investigate further possibilities to optimize our code 
(e.g., using a different MPI implementation for Java) as well 
as compare the actual MPI-based parallelization with the 
MapReduce implementation. In particular, methods to cross-
fertilize the advantages of diverse programming models in a 
common application workflow will be explored. Data 
modelling techniques, investigated by the JUNIPER platform 
[22], will be the major technology to enable such across-
fertilization of the parallelization technologies. The new 
technologies that JUNIPER works out will be applied to the 
most challenging Big Data domains, in particular to 
Semantic Web. 
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