SEMAPRO 2013 : The Seventh International Conference on Advances in Semantic Processing

Parallel Search Through Statistical Semantic Spacdsr Querying Big RDF Data

Alexey Cheptsov and Axel Tenschert

High Performance Computing Center Stuttgart,
University of Stuttgart
Stuttgart, Germany
e-mail: cheptsov@bhirs.de, tenschert@hlrs.de

Abstract—With billions of triples in the Linked Open Data
cloud, which continues to grow exponentially, chadinging tasks
start to emerge related to the exploitation and resoning of
Web data. A considerable amount of work has been de in
the area of using Information Retrieval (IR) method to
address these problems. However, although applied adels
work on the Web scale, they downgrade the semantics
contained in an RDF graph by observing each physita
resource as a 'bag of words (URIs/literals)’. Distibutional
statistic methods can address this problem by capting the
structure of the graph more efficiently. However, hese
methods are computationally expensive. In this pape we
describe the parallelization algorithm of one suchmethod
(Random Indexing) based on the Message-Passing Irfece

technology. Our evaluation results show super linea
improvement.
Keywords-Statistical Semantics; Random Indexing;

Parallelization; High Performance Computing; Message-Passing
Interface; JUNIPER.

l. INTRODUCTION

We live in a big data world, which is already estied to
be of the size of several Zetta)0Bytes. However, the
most considerable growth has seen the linked (odatg
domain. Recent years have seen a tremendous iacoéas
structured data on the Web with public sectors astyK
and USA governments opening their data to publig.(¢he
U.S.’s data.gov initiative [1]), and encouraging others to
build useful applications. At the same time, Link&gen
Data (LOD) [2] project continues stimulating creati
publication and interlinking the RDF graphs withosle
already in the LOD cloud. In March 2009, aroundilion
statements were available in Resource Descriptio
Framework (RDF) format [3], while in September 2Qh3
number increased to 25 billion, and continues twgevery
year exponentially. This massive amount of datauireg
effective exploitation and is now a big challengg only
because of the size but also due to the naturbisfdata.
Firstly, due to the varying methodologies used ¢negate
these RDF graphs there are inconsistencies, inatenass,
but also redundancies. These are partially addiesse
approaches for assessing the quality, such as ghrou
tracking the provenance [4]. Secondly, even ifdbality of
the data would be at a high level, exploring anarctdng
through large RDF graphs requires familiarity withe
structure, and knowledge of the used ontology sehem
Another challenge is reasoning over these vast atacof

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-293-6

n

data. The languages used for expressing formal rt@sa
(RDF etc.) use the logic that does not scale tatheunt of
information and the setting that is required fax Web. The
approach suggested by Fensel and van Harmelers [t] i
merge retrieval process and reasoning by meanslett®on
or subsetting: selecting a subset of the RDF gtthph is
relevant to a query and sufficient for reasoning.

A considerable amount of work has been done iratba
of using Information Retrieval (IR) methods for ttaesk of
selection and retrieval of RDF triples, and alsosfearching
through them. The primary intention of these apghea is
location of the RDF documents relevant to the given
keyword and/or a Unified Resource Identifier (URThese
systems are semantic search engines such as SwW6épgte
Sindice ([7], [8]). However, although these modetzk on
the Web scale, they downgrade the semantics cectanan
RDF graph by observing each physical resource’bagaof
words (URIs/literals)’. More sophisticated IR moglaetan
capture the structure more efficiently by modellmganing
similarities between words through computing the
distributional similarity over large amount of tefthese are
called statistical semantics methods and examplelside
Latent Semantic Analysis [9] and a more modernnigghe —
Random Indexing, which is based on the vector space
concept [10]. In order to compute similarities,shenethods
first generate a semantic space model. Both gengrttis
model, and searching through it (e.g., using cosine
similarity), are computationally expensive. Theshn feature
of searching through the large semantic space migdal
huge bottleneck: for the model representing 300ianil
documents calculating cosine similarity in order find
similar terms can take as long as several hourschwis
currently not acceptable for the problem domaircigtists.
In this paper, we describe a parallelization apgmo@r
the Random Indexing search algorithm, suggested by
Sahlgren [10]. We also discuss some techniquesattoated
us to reduce the execution time down to secondb®mvay
to achieving a Web scale. The paper is structuseidlbws.
In Section Il, we present the use cases in whichvibrk has
been applied. An explicit description about the ligp
parallelization strategy and the modifications madethe
Random Indexing algorithm are presented in Sectibn
Moreover, we give a thorough evaluation about the
algorithm’s performance and scalability on a distted
shared-memory system in Section IV. Finally, Sect\d
presents conclusions and discusses main outconveslless
future work directions.

SEMAPRO 2013 : The Seventh International Conference on Advances in Semantic Processing

Il. USeECASES

In this section, we briefly describe two use cabes are
taking advantage of the parallelization of the wesi
similarity algorithm used by statistical semantiogthods,
which is the main topic of this paper. Cosine ity [10]
is a measure of similarity between two vectors of
dimensions, which is finding the cosine of the arfybtween
them. If the cosine is zero, the documents reptedehy
vectors are considered dissimilar, while one ingiga high
similarity. We present the query expansion use,caBieh is
used to improve the recall when searching, e.gkdd Life
Data (4 billion statements), followed by a subsetcenario
used to reduce the execution time when reasonieg e
FactForge repository [11], which contained 2 billion
statements at time of performing the experiment.

A. Query Expansion

Query expansion is used in Information Retrieval
extensively with the aim to expand the documenlectibn
that is returned as a result to a query. This ntethaploys
several techniques, such as including lemmas amohgyns
of the query terms, in order to improve precision aecall.
It works by expanding the initial query thus cownerilarger
portion of documents. In this context, finding sggms is a
very important step and one way to achieve thisys
employing statistical semantics methods. These odsth
operate on a set of documents and therefore, wd toee
lexicalise an RDF graph in a way that will presethe
semantics and “relatedness” of each node with thosts
neighbourhood, into an abstraction, which we calirtual
document.

n

done by adding terms that are similar to the givees in the
original query.

B. Subsetting

For reasoning at web-scale, subsetting becomesy,a ke
because most well-known reasoning algorithms caly on
operate on sets several orders of magnitude sntbfierthe
Web. Getting subsetting algorithms to work is tbéeapital
importance.

There is evidence that by sticking to smaller dzttgs
computer and cognitive scientists may be optimizihg
wrong type of models. Basically, there is no watyathat
the proven best performing model on thousands titiesis
also the best performing model when datasets areofaers
of magnitude larger [12].

I1l. BASICS OFPARALLEL RANDOM INDEXING

ALGORITHM

Random Indexing and other similar algorithms can be
broken down into two steps:
1) generating a semantic index (vectors), and
2) searching the semantic index.
Both parts are quite computationally expensive, dnew,
the first part is a one-off step, which does notehto be
repeated and the semantic index can be updatedlloovf
changes in the documents if they happen. The sestam
however, affects the end user, and therefore isuge h
bottleneck for real-time applications. Hence, oocus is
optimisation of the search part of the Random Iiugx
algorithm. Usually, search is performed over alttees in
the semantic index. Thereby the vectors are ardlyse

In order to generate virtual documents from an RDHFndependently of each other, i.e., in the arbitenger.

graph, we first select the relevant part of thejiogl graph
and subdivide it into a set of potentially overlagp
subgraphs. The next step is lexicalisation in otdecreate
virtual documents from these subgraphs. Finally,
generate the semantic index from the virtual documeérhe
details of how each of these steps is performeifgigntly
influences the final vector space model. For examipl the
selection and subdivision step, all or just a pafrtthe
ontology could be selected; the subgraphs could b
individual triples, or RDF molecules (the set oipl&s
sharing a specific subject node), or more complggéy
subgraphs. In the lexicalisation step, the URIlankinodes,
and literals from an RDF subgraph are convertedato
sequence of terms. When generating the semantix,ind
different strategies for creating tokens and penfog
normalisation have to be applied to typed literaing
literals with language tags, and URIs.

Once the semantic index has been generated, ibean
used to find similarities between URIs and literdée use
the ranked list of similar terms for URIs/literabsat occur in
certain kinds of SPARQL queries [5] to make the rgue
more generic and also return results for entitlest tare
semantically related to those used in the origijuary.

Thus, the application of query expansion throughutbe
of statistical semantics method is feasible fosth8PARQL
gueries that are not returning all relevant hitsother words,
query expansion here is aimed to improve recalichvlis

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-293-6

weomputation)

This basically means that the search can be effigie
improved, when performed on several computing nades
parallel instead of the “vector-by-vector” (i.eggsiential
processing in the current realisation.
Practically, the whole vector space domain is dgumsad
into sub-domains each of which is processed inparsée
block/program instance on a different machine. divéesion
of the vectors between the blocks is defined bydtwain
decomposition [13] (Figure 1). Depending on thdisaton,

a synchronisation is required among the blocks,, eéq
collect the partial outputs of each block and poedihe final
result. Generally, the synchronisation step is egpe, and
much attention should be paid to the correct impietation

of the synchronisation in order to ensure the mimm
overhead. In the next section, we describe the majo
parallelization strategies, enabling the full stlion of
multiple computing nodes as well as the optimal
synchronisation between the distributed tasks.

Although a simple multi-threading approach would be
extremely efficient in terms of the performance aady in
terms of the implementation efforts [14], it is reatfficient
for achieving the Web-scale due to the limited nambf
CPU cores/nodes interconnected by a shared-menusrinb
the currently available computing architectures rrént
shared-memory architectures offer a maximum of 8o
interconnected cores).

SEMAPRO 2013 : The Seventh International Conference on Advances in Semantic Processing

Problem domain (vector space) o Vet

EEEEEEEEOOOOOOAN
ENEEENEEERRO0O000000
EEEEEEEEEOOOOOO00

e | S . e o .

Computation of the Cosine| : Fomputation of the Cosine :

with the given vector :| with the given vector | :
' ¥

Selection of the vectors
with max. cosines

Selection of the vectars
with max. cosines

Figure 1. Domain decomposition based parallelisation of thaddm
Indexing algorithm.

Thus a distributed-memory parallelisation strategy
needed for Big Data. There are several parall@izat
strategies, differentiating in ways the synchraiisa
between the processes is implemented. The mostigimgm
for the Semantic Web in terms of performance gaires
however the Message-Passing Interface (MPI) [15] an
MapReduce [16].

IV. IMPLEMENTATION WITH THE MESSAGEPASSING

INTERFACE(MPI) AND EVALUATION

A. Paralldisation of Airhead Search

Airhead is an open source implementation of Random
Indexing in the S-Space package by University dff@aia
[17]. Parallelization of the search operation inh&iad was
performed by applying the domain decomposition tie t
semantic vector space, whereby number of domains
corresponds to the number of computing nodes the
application is running on. Thus, each process pado
computation only on a part (sub-domain) of the @espace
of size (m/n), where m is the size (dimensionalid§)the
vector space, and n is the number of processes qaind
domains, accordingly). The boundary elements ofviwtor
space to be computed by each process are calculated
dynamically based on the process rank and the notaber
of processes provided by MPI, as demonstratedgar&i2.

int
int
int

num_domains total_proc_num ;
vector_space_size = VS.size ():
sub_domain_size = vector_space_size / num_domains:

int
int

domain_bound_max
domain_bound_min

sub_domain_size % (my_rank+1):
sub_domain_size * (my_rank):

// main computation cycle
for (int i=domain_bound_min; i<domain_bound_max: i++) {
. // each process operates only on a sub—domain:
/7 VS[{domain_bound_min; domain_bound_max |

Figure 2. Specification of sub-domains. Each process calesilats
respective sub-domain of the vector space basedsoRank and the
number of processes in the group.

MPI is a wide-spread implementation standard for

parallel applications, implemented in many prograngm
languages, including Java. As the name suggestsMI

B. Performance Evaluation on Cluster

processes communicate by means of the messages For the evaluation, a testbed based on the BW-{&6H
transmitted between two (a so called “point-to-goin cluster (Intel Xeon CPU architecture, 2 Quad-CofeUE

communication) or among many (involving severakwen

all processes, i.e., a collective communicationjngote
nodes. Normally, one process is executed on a esing
computing node (however, the MPI standard doedimitt
the number of processes on one node). If any psatesds
to send/receive data to/from other processes, lis @
corresponding MPI function. Both point-to-point and
collective communications available for MPI proassre
documented in the MPI standard [15].

MapReduce is another popular framework for proogssi
big datasets on certain kinds of distributable [mols,
originally introduced by Google [16] and currentbflowed
by Yahoo in its Hadoop implementation. MapReduce is
promising parallelisation model for data centriplagations.
However it is quite restrictive with regard to threnge of
applications that it can be applied to. In this lmattion, we
are focusing on practical aspect of applying thel-btsed
distributed memory parallelization for the Randamdexing
search algorithm. Due to the algorithmic complexdl
splitting the execution workflow according to theamnand
reduction operation, the MapReduce-based approa6h [
will be presented in a separate publication.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-293-6

and 16 GB RAM per computing node), provided bylHtigh
Performance Computing Center Stuttgart, was used.
Configuration of 1, 2, 4, 8, and 16 computing nodese
benchmarked to evaluate the scalability of the kbpesl
algorithms on the target architecture. In our tests mainly
considered two different datasets coming from \etwn
semantic repositories (see test sets’ parametdiatite 1):

a) Linked Life Data (LLD) repository: a large
integrated repositorywhich contains over 4 billion RDF
statements from various sources covering the bidakd
domain. We investigated two subsets of the LLD that
contain major terms (for pharmacological scenariasyl
relations between them.

b) FactForge repository: contains schemata and
ontologies from DBPedia, lingvoj, the CIA Factbook,
Wordnet, Geonames, Freebase and musicbrainz. Aiter
materialisation, it contains 404 million resourcége used
the DBpedia/Wikipedia section of this space (we vafer
to it as Wikipedia from now on, since they are parand
have the same number of concepts at around 4 Mgr Af
filtering out redundant concepts, we kept only 1M

SEMAPRO 2013 : The Seventh International Conference on Advances in Semantic Processing

documents. After some parameter exploration, widesedtn have not been analysed before due to the limitat@dmon-

n=1000. That is, the random vectors are 1000-diifnank parallel test beds.
TABLE I. BENCHMARKED DATASETS. TABLE 1. PERFORMANCECHARACTERISTICSGROUPEDBY
DATASET AND NUMBER OF COMPUTINGNODES.
Dataset Nr. of Nr. of Size on Description _ _
documents terms disk Dataset Nr. of Time (s) Speed-
LLDI 0.064M | 042 M | 0.0S2GB | Subset of nodes [Load [Search | MPT | Total | up
LLD i 0.8 0.0 3.4 .0
LLD2 05 M I7M | 0.65GB | Subset of 2 0.6 0.025 | 3.1 I.1
LLD LLDI 4 2.0 0.5 0.027 3.0 .13
Wiki term 1.OM 03 M 1.6 GB Subset of 8 0.42 0.031 3.0 113
space Wikipedia 16 0.3 0.034 | 29 B 17
(Wikil)
Wiki TOM | 03M | 16GB | Subset o ’ 47 | 00 [0] 10
document Wikipedia - 2.8 0.025 18.0 116
T LLD2 4 14.7 1.7 0.027 17.0 .21
space
Wiki2) 8 2| 0031 | 164 | 1.08
16 1.0 0.034 16.3 1.29
As the first step, we investigated the scalabibiyd i L 0.0 f”'*‘ |
s .) 2 T4 0.025 | 301 101
stability of the parallelised algorithm on the ¢ars Wikil 7)85 0840007 T 30.0 07
increasing the number of nodes involved in the astatpon, g o 07 T 0037 297 103
for different problem (dataset) sizes. The timeléading the 6 06 0034 | 295 [_1.03
datasets from the disk (i.e., the whole vector fiites to be 1 o
loaded into the memory of each node), the actuaftcke 2 Tests could not be conducted due to
operation as well as the overhead of the inter-nod| wiki2 1 memory (RAM) limitation on the
communication was in the focus of our measurement 8 computing nodes
(Table II). 16
The evaluation reveals that our concern about ahgel
impact for loading file from the disk time on theerall FEAA%'-I\EE':\'I-TEDDPETTS%F%ﬁﬁ%%g@géggi@g;g\%ﬁ?g
application performan(_:e was fea3|b!e. For aII_ itigased CORRESPONDSO THE NUMBER OF COMPUTINGNODES,
use cases, the load time was considerably higlaar the
search time. Providing the bad scale of the loagraifon, Dataset | NE of Time (s) Speed-
the maximum speed-up achieved on 16 clusters cangput nodes | Load | Search | MPI | Total up
nodes was only 1.29. Moreover, the experiments with | 14.7 4.7 Do | 218 1.0
largest available semantic space (Wiki2) were irsjtis to ; 2 77 48 | MEE | W8 | 28
be conducted due to exceeding the available RAMherest LLD2 4 4.1 1.4 0.20 6.2 34
- L 8 2.3 0.9 0.22 3.8 5:5
bed. For the first test case, although the paizdiébn has I6 61T 065 10375 23 TS
been properly implemented, its usability for datasgth the - 7é = ']' s 00 q:(fﬁ I';)
large number of referenced documents and small atrafu - 54 099 10077 169 I3
dependencies has not been proved. This is becdmgse f T 7 076 10039 07 37
amount of computation for the search operation wa 3 a4 06 0.4 55 56
relatively small as compared with the total exemutiime. 16 20 0.54 0.64 39 73
Nevertheless, the second variant based on the eplit 1 na.
datasets (Figure 1), demonstrated its value ingesfrboth) 81.0 18 0.35 | S0l 1.0
performance and scalability for the diverse problsiaes Wiki2 4 67.0 2.7 028 | 71.0 1.75
(Table 1lI). The LLD1 set has been excluded becanfsies 8 33.3 1i5 022 | 35.0 2:5
small size. 16 16.8 0.9 0.20 18.4 4.8

Despite the increasing communication overhead éhus . . L
by MPI operations), which is due to more complexC' Dlscussgn anq FutureDlrect|ons)
communication pattern (as described in the previous As described in the previous section, the perfocaanf
publication [21]), the evaluation reveals a sigmifit the complex search algorithm greatly benefits freme
performance improvement for both load and searchcorrect” implementation of the corresponding
operations (see Figure 3). Generally, the use cadasg Parallelization paradigm. Correct, here, (_joes olelg mean
advantage of the dataset fragmentation show afhat MPI has been successfully applied to the Rando
improvement in time of approximately 85% (i.e., and!ndexing search algorithm in order to enable ussfgarge
average speed-up of approx. 7.0 has been achievedthe shared-memory systems, but rather that the algoritbelf
non-parallel realisation. This clearly shows thaur o has been modified in order to obtain highest peréorce
parallelization technique can be used to benefind@en and scalability - the concept of domain decompusifil3]
Indexing applications significantly. Moreover, trechnique has been applied to the algorithm to allow the gssing
facilitates applying Random Indexing for the dataghat

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-293-6 4

SEMAPRO 2013 : The Seventh International Conference on Advances in Semantic Processing

100

90

N

. \ - - - .LLDZ: loading
o . — =— LLDZ: search

&0 \ LLD2: total
= '\ = = = \Wiki1: loading
£ &0 = — — Wiki1: search

= \ Wiki1 - tatal
40 : - - - .WikiZ: loading
a0 \ — — Wiki2: search

I \ Wikiz: total

CPU nodes (8 cores per node)

Figure 3. Performance results for decomposed datasets.

of large vector space files (>= 16 GB) and (2) tmam
scalable computation through processing (i.e.stech and
in particular the load operation) of smaller subset the
vector space file concurrently, i.e., distributinthe
processing to multiple nodes. However, there aifgerot
factors, which do influence the overall performarafea
parallel application, too.

Developers can also tune their applications atimenby
using advanced settings for the Java Virtual MaeliitvM)
[19]. For this reason, we have also experimenteth wi
different settings for the JVM during our tests. Wave
performed 30 runs of the parallel Airhead searcimgu$®
different JVM settings (each setting has been tepe&
times) to estimate the optimal configuration forrou
machines. Due to the fact that all our machinesgreépped
with equivalent hardware and software, the expltests
were solely carried out on one particular node whbk
assumption that the settings are optimal for dieotnodes
within the cluster, too. A summary of our test ram the
speed-ups achieved is provided in the Table IV.

TABLE IV. PERFORMANCE RESULTS FOR PARALLEIAIRHEAD SEARCH
ALGORITHMWITH VARYING JVM SETTING ONWIKI1 DATASET.

) Time (s) Speed-
VM. optiens Load | Search | Total pup
[-Xms4000M -Xms4000M [40] 22 [#H2] 10]
[-Xms8000M -Xms8000M [430] 21 T[40] 109 |
[-XmsI2000M -XmsI2000M [37.0 [1.8 [388 [127 |
-Xms[2000M -XmsI12000M | 30.3 1.6 31.9 1.54
-XX:+AggressiveOpts
-Xms12800M -Xms12800M | 29.0 1.5 30.5 1.61
-XX:+AggressiveOpts
-XX:+UseParallelGC -
XX:ParallelGCThreads=16
-XmsI2800M -XmsI2800M | 285 1.5 30.0 1.64

-XX:+AggressiveOpts
-XX:+UseParallelGC
-XX:ParallelGCThreads=16
-XX:MaxPermSize=256M
-Xmn5120M

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-293-6

As shown in Table IV, a properly configured JVM
significantly improves the overall performance oh a
application. In our scenario, we could optimize the
performance of the parallelized application for
approximately 40% using the proper JVM settingssesbon
these tests, we were also able to determine thieshésd
JVM configuration for our environment as well asrleed
more about the optimal values for individual JVM
parameters(e.g., the total amount of heap sizenuhwer of
threads used for garbage collection, etc.), wharh lee used
for other Java applications as well.

An alternative promising approach is suggestedHey t
JUNIPER ("Java platform for hlgh PErformance and
Realtime large scale data management”) project . [20]
JUNIPER is an EU-FP7 project that aims to estabdish
development platform for new-generation data-derimand
applications. The JUNIPER approach is to exploitesgies
between all major parallelization technologies fsas MPI,
MapReduce, COMPSs, etc.) and elaborate new paradigm
data centric parallel processing that will balafiegibility

and performance of data processing applications in
heterogeneous computing architectures. A possibiiit
combine diverse parallelization technology withirsiagle
application, as offered by JUNIPER, would also ba buge
advantage for Random Indexing algorithms, e.g., to

implement the semantic space generation with Mapé&ed
and the search with MPI. In our following researale, are
going to investigate the benefits of this “hetercemus”
approach for the Airhead package.

V. CONCLUSION AND FUTURE WORK

This paper presented an evaluation of our appreaithe
parallelize the Airhead library for Random Indexinghich
can be used to significantly improve informationrieval
methods, in particular those that use the cosiméasity for
searching a large vector space model. We use anctigt
parallel programming paradigm, namely MPI, to eiplo
parallelism for the RI algorithm in order to talgvantage of
large-scale distributed shared-memory systems lansl to
improve its performance. We evaluated the paraédli
algorithm on different hardware and software camnfigions
(i.e., we varied the amount of computational naaesvell as
the input datasets) with promising results. Theotigm
improves performance in all of the presented erpenis.
However, if each process (i.e., node) has to Ided full
dataset at once, the overall speed-up is relatiselgll and
the algorithm does not scale very well while insieg the
number of machines. For this reason, we implemeatedy
to split the input dataset into smaller junks, Wwhian be
independently and concurrently processed by eaate.no
This feature significantly decreased the processimg of
the load operation and thus improved the overall
performance. Moreover, we are now able to procatassdts
with billions of statements because we are notctire
limited by the system’s memory anymore. In additiore
experimented with different Java Virtual Machindtisgs in
order to optimize and fine-tune the application tfog given
runtime environment. Most importantly, these resaliggest
that we need both parallel algorithms and Javau€irt

SEMAPRO 2013 : The Seventh International Conference on Advances in Semantic Processing

Machine optimizations to effectively utilize machs (not

necessarily parallel systems but any common peksona

computer) for our Semantic Web applications. Finalie
demonstrated the effectiveness of the parallel@gdrithm
and its usage and benefits within an interesting
biomedical domain application scenario. In the rfefuve
will investigate further possibilities to optimizeur code
(e.g., using a different MPI implementation for dpas well
as compare the actual MPI-based parallelizatiorn e
MapReduce implementation. In particular, methodertss-
fertilize the advantages of diverse programming el®dh a

fo

common application workflow will be explored. Data

modelling techniques, investigated by the JUNIP ERf@rm
[22], will be the major technology to enable sudrtoas-
fertilization of the parallelization technologie$he new
technologies that JUNIPER works out will be appliedhe
most challenging Big Data domains, in particular
Semantic Web.

ACKNOWLEDGMENT

to[

This research has been supported in part by thePEUF
project JUNIPER. We would like to thank the main

developer of the Airhead library - David Jurgendor
offering a use case and his great support.

REFERENCES

U.S.’s data.gov intiative website. [Online]. httaww.data.gov/.
[retrieved: April, 2013].
Linked Data project website.
[retrieved: April, 2013].
C. Bizer, T. Heath, and T. Berners-Lee, “Linkedadathe story so

far”, International Journal on Semantic Web anainfation Systems
(1IISWIS), 5(3), 2009, pp. 1-22.

O. Hartig and J. Zhao, “Using web data provenarare quality
assessment”, in Int. Workshop on Semantic Web amdeRance
Management, Washington D.C., USA, 2009, pp. 29-34.

D. Fensel and F. van Harmelen, “Unifying reasoramgl search to
web scale”, IEEE Internet Computing, vol. 11(2002, pp. 95-96.

L. Ding et al., “Swoogle: a search and metadatainendor the
semantic web”, in Proc. the thirteenth ACM interoa&l conference
on Information and knowledge management CIKM '0&wNYork,

NY, USA, 2004, pp. 652-659.

G. Tummarello, R. Delbru, and E. Oren, “Sindice.cd&eaving the

open linked data”, in Proc. the 6th Internationanfantic Web

Conference, Busan, Korea, 2007, pp. 552-565.

E. Oren et al., “Sindice.com: A document-orientedkuip index for

open linked data”, International Journal of Metagd&emantics and

Ontologies, vol. 3, 2008, pp. 37-52.

T. K. Landauer, P. W. Foltz, and D. Laham, “Introtion to latent

semantic analysis”, Discourse Processes, vol. 283,1pp. 259-284.

M. Sahlgren, “An introduction to random indexingiih Proc.

Methods and Applications of Semantic Indexing Wodgs at the 7th

International Conference on Terminology and Knowked

Engineering, TKE 2005, 2005, pp. 1-8.

[11] Fact Forge semantic repository website. [Onlinth:Hfactforge.net/.
[retrieved: April, 2013].

[12] A. Halevy, P. Norvig, and F. Pereira, “The unreada effectiveness

of data”, IEEE Intelligent Systems, vol. 24, 20pp, 8-12.

[13] T. F. Chan and T. P. Mathew, “Domain decompositdgorithms”,
Acta Numerica, vol. 3, 1994, pp. 61-143.

(1]

[2] [Online]. http://lirdaata.org.

(3]

[4]

(5]

(6]

(71

(8]

[9]

(10]

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-293-6

[14] S. Akhter and J. Roberts, “Multi-core programmingcreasing
performance through software multi-threading”, InBress, Santa
Clara, Tech. Rep., 2006.

W. Gropp and A. S. E. Lusk, Eds., Using MPI: PodaBarallel
Programming with the Message-Passing Interface.b@idge: MIT
Press, 1994.

R. Lammel, “Google’s mapreduce programming modevisited”,
Science of Computer Programming, vol. 70,1, 20981g30.

D. Jurgens, “The S-Space package: An open sourt@ge for word
space models”, in Proc. the ACL 2010 System Dematishs, 2010,
pp. 30-35.

High Performance Computing Center Stuttgart's BVid@fuster
description. [Online].
https://wickie.hlrs.de/dgrid/index.php/Hardwaretfreved: April,
2013].

J. Shirazi, Ed., Java Performance Tuning. Sebast@p®&eilly &
Associates, Inc, 2002.

20] Juniper project website. [Online]. Available: hitpniperproject.org.
[retrieved: April, 2013].

A. Cheptsov and M. Assel, “Distributed Paralleliaatof Semantic
Web Java Applications by Means of the Message-Rgdsterface”,
M. Resch et al. (eds.), High Performance Computimg Vector
Systems 2011, Springer Verlag Berlin Hedelberg 20p251-64.

A. Cheptsov and B. Koller, “JUNIPER takes aim ag Hbata”,
inSIiDE - Journal of Innovatives Supercomputing euschland, vol.
11, No. 1, Spring 2011, pp. 68-69.

[15]

[16]

[17]

(18]

[19]

[21]

[22]

