SEMAPRO 2012 : The Sixth International Conference on Advances in Semantic Processing

Enabling High Performance Computing for Semantic Web Applications by Means of
Open MPI Java Bindings

Alexey Cheptsov
High Performance Computing Center Stuttgart (HLRS)
University of Stuttgart
70550 Stuttgart, Germany
Email: cheptsov@hlrs.de

Abstract—The volume of data available in the Semantic Web
has already reached the order of magnitude of billions of
triples and is expected to further grow in the future. The
availability of such an amount of data makes it attractive
for Semantic Web applications to exploit High Performance
Computing (HPC) infrastructures to effectively process such
data. Unfortunately, most Semantic Web applications are
written in the Java programming language, whereas current
frameworks that make the most out of HPC infrastructures,
such as the Message Passing Interface (MPI), only target C or
Fortran applications. Attempts to port existing parallelization
frameworks to the Java language prove to be very inefficient
in terms of the performance benefits for applications. This
paper presents an efficient porting based on the Open MPI
framework.

Keywords-High Performance Computing; Semantic Web;
Data-Centric Computing; Performance; Scalability; Message-
Passing Interface.

I. INTRODUCTION

The volume of data collected on the Semantic Web has
already reached the order of magnitude of billions of triples
and is expected to further grow in the future, which positions
this Web extension to dominate the data-centric computing
in the oncoming decade. Processing (e.g., inferring) such
volume of data, such as generated in the social networks like
Facebook or Twitter, or collected in domain-oriented knowl-
edge bases like pharmacological data integration platform
OpenPHACTS [1], is thus of a big challenge. Whereas there
is a number of existing highly-scalable software solutions for
storing data, such as Jena [2], the scalable data processing
constitutes the major challenge for data-centric applications.
The group of issues related to scaling the existing data
processing techniques to the available volumes is often
referred as the “Big Data” problem. Among those data-
centric communities that address the Big Data, the Semantic
Web enjoys a prominent position.

Semantic Data are massively produced and published at
the speed that makes traditional processing techniques (such
as reasoning) inefficient when applied to the real-scale data.
The data scaling problem in the Semantic Web is considered
in two its main aspects - horizontal and vertical scale.
Horizontal scaling means dealing with diverse, and often

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-240-0

unstructured data acquired from heterogeneous sources. The
famous LOD cloud diagram [3] consists of hundreds of
diverse data sources, ranging from geospatial cartographic
sources to governmental data, opened to the publicity, like
Open Government Data [4]. Vertical scaling implies scaling
up the size of similarly structured data. Along the open
government data spawns over 851,000 data sets across
153 catalogues from more than 30 countries, as estimated
in [5] at the beginning of 2012. Processing data in such an
amount is not straightforward and challenging for any of the
currently existing frameworks and infrastructures. Whereas
there are some known algorithms dealing with the horizontal
scaling complexity, such as identification of the information
subsets related to a specific problem, i.e., subsetting, the
vertical scaling remains the major challenge for all existing
algorithms. Another essential property of the Big Data is
the complexity. Semantic applications must deal with rich
ontological models describing complex domain knowledge,
and at the same time highly dynamic data representing
recent or relevant information, as produced by streaming or
search-enabled data sources. A considerable part of the web
data is produced as a result of automatic reasoning over
streaming information from sensors, social networks, and
other sources, which are highly unstructured, inconsistent,
noisy and incomplete.

The availability of such an amount of complex data makes
it attractive for Semantic Web applications to exploit High
Performance Computing (HPC) infrastructures to effectively
process Big Data. As a reaction on this challenge, a number
of major software vendors in the Semantic Web domain
have been collaborating with high performance computing
centers, and this trend is expected to grow in the near-
est future [6]. Both commodity and more dedicated HPC
architectures, such as the Cray XMT [7], have been in
focus of the data-intensive Web applications. The XMT
dedicated system, however, proved successful only for a
limited number of tasks so far, which is mainly due to the
complexity of exploiting the offered software frameworks
(mainly non-standard pragma-based C extensions. Unfortu-
nately, most Semantic Web applications are written in the
Java programming language, whereas current frameworks

11

SEMAPRO 2012 : The Sixth International Conference on Advances in Semantic Processing

that make the most out of HPC infrastructures, such as the
Message Passing Interface (MPI), only target C or Fortran
applications. MPI is a process-based parallelization strategy,
which is a de-facto standard in the area of parallel computing
for C, C++, and Fortran applications. Known alternative
parallelization frameworks to MPI that conform with Java,
such as Hadoop [8] or Ibis [9], prove to be scalable though
but are not even nearly as efficient or well-developed as
numerous open-source implementations of MPI, such as
MPICH or Open MPI [10]. We look at how to resolve the
above-mentioned issues in a way that leverages the advances
of the existing MPI frameworks.

The remainder of the paper is organized as follows.
Section 2 gives an overview of the related work. Section
3 discusses the data-centric parallelization model based on
MPI. Section 4 introduces our implementation of Java bind-
ings for Open MPI. Section 5 gives examples of successful
pilot scenarios implemented with our solution and discuss
future work in terms of the development, implementation,
and standardization activities.

II. RELATED WORK

There are only a few alternatives to MPI in introducing
the large-scale parallelism to Java applications. The most
promising among those alternatives in terms of the perfor-
mance and usability are solutions offered by IBIS/JavaGAT
and MapReduce/Hadoop.

IBIS [11] is a middleware stack used for running Java
applications in distributed and heterogeneous computing en-
vironments. IBIS leverages the peer-to-peer communication
technology by means of the proprietary Java RMI (Remote
Memory Invocation) implementation, based on GAT (Grid
Application Toolkit) [12]. The Java realization of GAT (Jav-
aGAT) is a middleware stack that allows the Java application
to instatiate its classes remotely on the network-connected
resource, i.e., a remote Java Virtual Machine. Along with the
traditional access protocols. e.g., telnet or ssh, the advanced
access protocols, such as ssh-pbs for clusters with PBS
(cluster Portable Batch System)-like job scheduling or gsissh
for grid infrastructures are supported. IBIS implements a
mechanism of multiple fork-joins to detect and decompose
the application’s workload and execute its parts concurrently
on distributed machines. While [9] indicates some suc-
cessful Java applications implemented with IBIS/JavaGAT
and shows a good performance, there is no clear evidence
about the scalability of this solution for more complex
communication patterns, involving nested loops or multiple
split-joins. Whereas IBIS is a very effective solution for the
distributed computing environments, e.g., Grid or Cloud, it
is definitively not the best approach to be utilized on the
tightly-coupled productional clusters.

MapReduce framework [8] and its most prominent imple-
mentation in Java, Hadoop, has got a tremendous popularity
in modern data-intensive application scenarios. MapReduce

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-240-0

L

‘\\wwkcrj
splitD —— © wite

; output

split 1 —= o
split2 |- rd "—}:"\. (4) local write

(. worker output
split 3 ~— file 1
split4

Cworker) [D
Input Map

files phase

Inkermediate files Reduce Output
(on local disks) phase files

Figure 1. MapReduce processing schema

is a programming model for data-centric applications ex-
ploiting large-scale parallelism, originally introduced by
Google in its search engine. In MapReduce, the application’s
workflow is divided into three main stages (see Figure 1):
map, process, and reduce. In the map stage, the input data
set is split into independent chunks and each of the chunks is
assigned to independent tasks, which are then processed in
a completely parallel manner (process stage). In the reduce
stage, the output produced by every map task is collected,
combined and the consolidated final output is then produced.

The Hadoop framework is a service-based implementa-
tion of MapReduce for Java. Hadoop considers a parallel
system as a set of master and slave nodes, deploying on
them services for scheduling tasks as jobs (Job Tracker),
monitoring the jobs (Task Tracker), managing the input and
output data (Data Node), re-executing the failed tasks, etc.
This is done in a way that ensures a very high service
reliability and fault tolerance properties of the parallel ex-
ecution. In Hadoop, both the input and the output of the
job are stored in a special distributed file-system. In order
to improve the reliability, the file system also provides an
automatic replication procedure, which however introduces
an additional overhead to the inter-node communication.
Due to this overhead, Hadoop provides much poorer perfor-
mance than MPI, however offering better QoS characteristics
related to the reliability and fault-tolerance. Since MPI and
MapReduce paradigms have been designed to serve different
purposes, it is hardly possible to comprehensively compare
them. However they would obviously benefit from a cross-
fertilization. As a possible scenario, MPI could serve a high-
performance communication layer to Hadoop, which might
help improve the performance by omitting the disk I/O usage
for distributing the map and gathering the reduce tasks across
the compute nodes.

12

SEMAPRO 2012 : The Sixth International Conference on Advances in Semantic Processing

III. DATA-CENTRIC PARALLELIZATION AND MPI

By “data-centric parallelization” we mean a set of tech-
niques for: (i) identification of non-overlapping application’s
dataflow regions and corresponding to them instructions; (ii)
partitioning the data into subsets; and (iii) parallel processing
of those subsets on the resources of the high performance
computing system. For Semantic Web applications utilizing
the data in such well-established formats as RDF [13],
parallelization relies mainly on partitioning (decomposing)
the RDF data set on the level of statements (triples), see
Figure 2a. The ontology data (also often referred as thox)
usually remains unpartitioned as its size is relatively small
as compared with the actual data (abox), so that it is just
replicated among all the compute nodes.

The Message-Passing Interface (MPI) is a process-based
standard for parallel applications implementation. MPI pro-
cesses are independent execution units that contain their
own state information, use their own address spaces, and
only interact with each other via interprocess communication
mechanisms defined by MPI. Each MPI process can be
executed on a dedicated compute node of the high perfor-
mance architecture, i.e., without competing with the other
processes in accessing the hardware, such as CPU and RAM,
thus improving the application performance and achieving
the algorithm speed-up. In case of the shared file system,
such as Lustre [14], which is the most utilized file system
standard of the modern HPC infrastructures, the MPI pro-
cesses can effectively access the same file section in parallel
without any considerable disk I/O bandwidth degradation.
With regard to the data decomposition strategy presented in
Figure 2a, each MPI process is responsible for processing
the data partition assigned to it proportionally to the total
number of the MPI processes (see Figure 2b). The position
of any MPI process within the group of processes involved
in the execution is identified by an integer R (rank) between
0 and N-1, where N is a total number of the launched
MPI processes. The rank R is a unique integer identifier
assigned incrementally and sequentially by the MPI run-
time environment to every process. Both the MPI process’s
rank and the total number of the MPI processes can be
acquired from within the application by using MPI standard
functions, such as presented in Listing 1. The typical data
processing workflow with MPI can be depicted as shown
in Figure 3. The MPI jobs are executed by means of the
mpirun command, which is an important part of any MPI
implementation. mpirun controls several aspect of parallel
program execution, in particular launches MPI processes
under the job scheduling manager software like OpenPBS
[15]. The number of MPI processes to be started is provided
with the -np parameter to mpirun. Normally, the number of
MPI processes corresponds to the number of the compute
nodes, reserved for the execution of parallel job. Once the
MPI process is started, it can request its rank as well as the

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-240-0

EEEEEOOOO) Input (RDF) data
EEEEROOOO0 decompossition
II EEEEOOO ||:|
:'""""*"""7 ¢ Network e
: i Interconnect ~ :
' £ i (Infiniband, | 3 i
i [Thread pool i TCPIR) : d pool | |
E ..i. E i .i. 2 b) Parallel processing
: = = E : = = 5 with MPI
- - -
Figure 2. Data decomposition and parallel execution with MPL.

total number of the MPI processes associated with the same
job. Based on the rank and total processes number, each MPI
process can calculate the corresponding subset of the input
data and process it. The data partitioning problem remains
beyond the scope of this work; particularly for RDF, there is
a number of well-established approaches discussed in several
previous publications, e.g., horizontal [16], vertical [17], and
workload driven [18] partitioning.

Since a single MPI process owns its own memory space
and thus can not access the data of the other processes
directly, the MPI standard foresees special communication
functions, which are necessary, e.g., for exchanging the
data subdomain’s boundary values or consolidating the final
output from the partial results produced by each of the
processes. The MPI processes communicate with each other
by sending messages, which can be done either in “point-to-
point”(between two processes) or collective way (involving
a group of or all processes).

import java.io.x;
import mpi.x;

class Hello {
public static void main(String[] args) throws
MPIException
{
int my_pe, npes;
processes
int N; // size of the RDF data set (number of
triples)

// rank and overall number of MPI

MPI.Init (args); // intialization of the MPI RTE

MPI.COMM_WORLD.Rank () ;
MPI.COMM_WORLD.Size () ;

my_pe
npes

"_out_of " + npes);
System.out.println("I'm_processing_the_ RDF_triples
from " + my_pe/npes + " _to " + (my_pe+l)/npes);

MPI.Finalize(); // finalization of the MPI RTE
}
}

System.out.println("Hello from_MPI _process" + my_pe +

Listing 1.
application

More details about the MPI communication can also be

Acquiring rank and total number of processes in a simple MPI

13

SEMAPRO 2012 : The Sixth International Conference on Advances in Semantic Processing

Input Data Set

[ompute] (Comput Compute
Node 1 Node 2 Node N

‘mpirun -np N}

\, MPI processes Iaunch and initializationj

Acqumng MPI processes information (Rank, Total) N
(an [ean] (

I

]

I

i

T 1
| Assigning data subsets to the ranks and processing
]

I

I

1

I

!
NN
I
]
|

o Imput | o nput o <y dnput
| []
1 Output "
Legenda: " Runtime |[MPI Application
Actions J Actions Code

Figure 3. Typical MPI data-centric application’s execution workflow

found in our previous publication [19].

IV. OPEN MPI JAVA BINDINGS
A. MPI bindings for Java

Although the official MPI standard’s bindings are limited
to C and Fortran languages, there has been a number of
standardization efforts made towards introducing the MPI
bindings for Java. The most complete API set, however, has
been proposed by mpiJava [20] developers.

There are only a few approaches to implement MPI
bindings for Java. These approaches can be classified in two
following categories:

o Pure Java implementations, e.g., based on RMI (Re-
mote Method Invocation) [21], which allows Java ob-
jects residing in different virtual machines to commu-
nicate with each other, or lower-level Java sockets API.

o Wrapped implementations using the native methods
implemented in C languages, which are presumably
more efficient in terms of performance than the code
managed by the Java run-time environment.

In practice, none of the above-mentioned approaches
satisfies the contradictory requirements of the Web users
on application portability and efficiency. Whereas the pure
Java implementations, such as MPJ Express [22] or MPJ/Ibis
[9], do not benefit from the high speed interconnects, e.g.,
InfiniBand [23], and thus introduce communication bottle-
necks and do not demonstrate acceptable performance on the
majority of today’s production HPC systems [24], a wrapped
implementation, such as mpiJava [25], requires a native C
library, which can cause additional integration and interop-
erability issues with the underlying MPI implementation.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-240-0

In looking for a trade-off between the performance and
the usability, and also in view of the complexity of providing
Java support for high speed cluster interconnects, the most
promising solution seems to be to implement the Java
bindings directly in a native MPI implementation in C.

B. Native C Implementation

Despite a great variety of the native MPI implementations,
there are only a few of them that address the requirements
of Java parallel applications on process control, resource
management, latency awareness and management, and fault
tolerance. Among the known sustainable open-source imple-
mentations, we identified Open MPI [26] and MPICH?2 [27]
as the most suitable to our goals to implement the Java MPI
bindings. Both Open MPI and MPICH2 are open-source,
production quality, and widely portable implementations of
the MPI standard (up to its latest 2.0 version). Although
both libraries claim to provide a modular and easy-to-extend
framework, the software stack of Open MPI seems to better
suit the goal of introducing a new language’s bindings,
which our research aims to. The architecture of Open
MPI [26] is highly flexible and defines a dedicated layer
used to introduce bindings, which are currently provided for
C, F77, F90 and some other languages (see also Figure 5).
Extending the OMPI-Layer of Open MPI with the Java
language support seems to be a very promising approach
to the discussed integration of Java bindings, taking benefits
of all the layers composing Open MPI’s architecture.

C. Design and Implementation in Open MPI

We have based our Java MPI bindings on the mpiJava
code [28]. mpiJava provides a set of Java Native Interface
(JNI) wrappers to the native MPI v.1.1 communication
methods, as shown in Figure 4. JNI enables the programs
running inside a Java run-time environment to invoke native
C code and thus use platform-specific features and libraries
[29], e.g., the InfiniBand software stack. The application-
level API is constituted by a set of Java classes, designed in
conformance to the MPI v.1.1 and the specification in [20].
The Java methods internally invoke the MPI-C functions
using the JNI stubs. The realization details for mpiJava can
be obtained from [30][31].

Open MPI is a high performance, production quality, MPI-
2 standard compliant implementation. Open MPI consists
of three combined abstraction layers that provide a full
featured MPI implementation: (i) OPAL (Open Portable
Access Layer) that abstracts from the peculiarities of a
specific system away to provide a consistent interface adding
portability; (ii)) ORTE (Open Run-Time Environment) that
provides a uniform parallel run-time interface regardless
of system capabilities; and (iii) OMPI (Open MPI) that
provides the application with the expected MPI standard in-
terface. Figure 5 shows the enhanced Open MPI architecture,
enabled with the Java bindings support.

14

SEMAPRO 2012 : The Sixth International Conference on Advances in Semantic Processing

import mpi.*; Applications

Java wrappers

Java MPI bindings
JNI C Interface

Open MPI] MPICH

Figure 4. mpiJava architecture

Native (C) MPI
implementation

User Application J

{ T [I I
T
« :)

‘ OMPI
[ORTE
mpirun

OPAL
threads (OS), atomics (HW)

| |

OS (Linux, Windows, Macos) |
Hardware (CPU, RAM, Network Interconnect)

Figure 5. Open MPI architecture

The major integration tasks we performed were as fol-
lows:
o Extend the Open MPI architecture to support Java
bindings
« Extend the previously available mpiJava bindings to
MPI-2 (and possibly upcoming MPI-3) standard
o improve the native Open MPI configuration, build,
and execution system to seamlessly support the Java
bindings
o Redesign the Java interfaces that use JNI in order to
better conform to the native realization
« optimize the JNI code to minimize its invocation over-
head
« Create test applications for performance benchmarking
Both Java classes and JNI code for calling the native meth-
ods were integrated into Open MPI. However, the biggest
integration effort was required at the OMPI (Java classes,
JNI code) and the ORTE (run-time specific options) levels.
The implementation of the Java class collection followed
the same strategy as for the C++ class collection, for which
the opaque C objects are encapsulated into suitable class
hierarchies and most of the library functions are defined as

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-240-0

class member methods. Along with the classes implementing
the MPI functionality (MPI package), the collection includes
the classes for error handling (Errhandler, MPIException),
datatypes (Datatype), communicators (Comm), etc. More
information about the implementation of both Java classes
and JNI-C stubs can be found in previous publications
[30][24].

D. Performance

In order to evaluate the performance of our implementa-
tion, we prepared a set of Java benchmarks based on those
well-recognized in the MPI community, e.g., NAS [32].
Based on those benchmarks, we compared the performance
of our implementation based on Open MPI and the other
popular implementation (MPJ Express) that follows a “native
Java” approach. Moreover, in order to evaluate the JNI
overhead, we reproduced the benchmarks also in C and ran
them with the native Open MPI. Therefore, the following
three configurations were evaluated:

« ompiC - native C implementation of Open MPI (the
actual trunk version), built with the GNU compiler
(v.4.6.1),

« ompiJava - our implementation of Java bindings on top
of ompiC, running with Java JDK (v.1.6.0), and

o« mpj - the newest version of MPJ Express (v.0.38),
a Java native implementation, running with the same
JDK.

We examined two types of communication: point-to-point
(between two nodes) and collective (between a group of
nodes), varying the size of the transmitted messages. We did
intentionally not rely on the previously reported benchmarks,
e.g. [33], in order to eliminate the measurement deviations
that might be caused by running tests in a different hardware
or software environment. Moreover, in order to ensure a fair
comparison between all these three implementations, we ran
each test on the absolutely same set of compute nodes.

The point-to-point benchmark implements a “ping-pong”
based communication between two single nodes; each node
exchanges the messages of growing sizes with the other
node by means of blocking Send and Receive operations.
As expected, our ompiJava implementation was not as
efficient as the underlying ompiC, due to the JNI function
calls overhead, but showed much better performance than
the native Java based mpj (Figure 6). Regardless of the
message size, ompiJava achieves around eight times higher
throughput than mpj (see Figure 7).

The collective communication benchmark implements a
single blocking message gather from all the involved nodes.
Figure 8 shows the results collected for P = 2% (where k=2-
7) nodes, with a varying size of the gathered messages. The
maximal size of the aggregated data was 8 GByte on 128
nodes. Figure 9 demonstrates the comparison of collective
gather performance for all tested implementations on the
maximal number of the available compute nodes (128).

15

SEMAPRO 2012 : The Sixth International Conference on Advances in Semantic Processing

Pointto-Point Communication (2 nodes via
Infiniband)
120000
100000 -/
-
1
é HOO .00 ’/;/o-o/' ——ompidava
= oo —=—ompiC
E oom # il
. 7.
200,00
Aok B ook B gk P g @6@@
P Y T P?;\ &Q’
Message Size, Bytes
Figure 6. Message rate for the point-to-point communication
Point-to-Point Communication (2 nodes via
Infiniband) for low message sizerange (upto
1024K)
70,00
60,00 /
@
.ﬂ"i 50,00 /
g 40,00 / —e—ompidava
¢ 30,00 7 mpj
@ 20,00
10,00 M/
O,DU L | T 1 1 r=r T -7 1
NG xR A R \qu(f;h%,\w\&m
Message Size, Bytes
a)
Point-to-Point Communication (2 nodes via
Infiniband) for high message size range (larger than
1024K)
900,00 4
,, 800,00 ——
£ 700,00 —
3 60000 //
= 500,00 —e—ompiava
< 400,00 mni
£ 30010 g A
200,00
100,00 et
000 +————— — T T T T T T T
‘f‘@&%@@/\@egg’é\wx @é\m
S A A & &&P\Q@
Message Size, Bytes
b)
Figure 7. Comparison of the message rate for ompiJava and mpj for a)

low and b) high message size range

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-240-0

Collective Communication (Gather) viaInfiniband
12000,00
10000,00 f
/ —e—4 nodes
z 8000,00 /’ —=—3 nodes
d—; 5000 00 16 nodes
£ ./ /x 32 nodes
= 4p00,00 /-/{ —+—B4 nodes
2000 00 —— 128 nodes
0,00 —W
Nk B & o
S
Message Size, Bytes
Figure 8. Collective gather communication performance of ompiJava
Collective Communication (Gather) on 128 nodes via
Infiniband
25000000
20000000
% 150000 00 —+—ompilava
o —a—ompiC
= 100000 00 mpj
5000000
000 4= e el
L @ o
N o {ﬁ; \Q{]! @C@ \‘é’;%b‘ @@@
Message Size, Bytes
Figure 9. Collective gather communication performance on 128 nodes

Whereas the InfiniBand-aware ompiJava and ompiC scaled
quite well, the native Java based mpj has shown very poor
performance; for the worst case (on 128 nodes) a slow-down
up to 30 times compared with ompiJava was observed.

V. MPI IMPLEMENTATION OF RANDOM INDEXING

Random indexing [34] is a word-based co-occurrence
statistics technique used in resource discovery to improve
the performance of text categorization. Random indexing
offers new opportunities for a number of large-scale Web
applications performing the search and reasoning on the Web
scale [35].

The main challenges of the random indexing algorithms
lay in the following:

« Huge and high-dimensional vector space. A typical ran-
dom indexing search algorithm performs traversal over
all the entries of the vector space. This means, that the
size of the vector space to the large extent determines
the search performance. The modern data stores, such
as Linked Life Data or Open PHACTS consolidate
many billions of statements and result in vector spaces

16

SEMAPRO 2012 : The Sixth International Conference on Advances in Semantic Processing

Problem domain (vectorspace) — e vector

IIIIIIIIDDDDDDDD
ENEEEEEEROOOOOOOO0
EEEEEEEEEOOOOOOO

perssnan s * presnensanensaneas *
! bomputation of the Cosine : bomputation of the Cosine| :
with the given vector : 1| with the given vector
T P T
Selection of the vectors | : | Selection of the vectors
with max. cosines with max. cosines

Parallel
! black 1

1IIIDDD|

| Syncronisation |

mam

Figure 10. MPI-based parallel implementation of Airhead Search

of a very large dimensionality. Performing Random
indexing over such large data sets is computationally
very costly, with regard to both execution time and
memory consumption. The latter poses a hard constraint
to the use of random indexing packages on the serial
mass computers. So far, only relatively small parts
of the Semantic Web data have been indexed and
analyzed.

o High call frequency. Both indexing and search over the
vector space is highly dynamic, i.e., the entire indexing
process repeats from scratch every time new data is
encountered.

In our previous work [36], we have already reported on the
efforts done on parallelizing Airhead - an open source Java
implementation of Random Indexing algorithm. Our MPI
implementation of the Airhead search is based on a domain
decomposition of the analyzed vector space and involves
both point-to-point and collective gather and broadcast MPI
communication (see the schema in Figure 10). In our current
work, we evaluated the MPI version of Airhead with both
ompijava and mpj implementations.

We performed the evaluation for the largest of the avail-
able data sets reported in [36] (namely, Wiki2), which com-
prises 1 Million of high density documents and occupies 16
GByte disk storage space. The overall execution time (wall
clock) was measured. Figure 11a shows that both ompijava
and mpj scale well until the problem size is large enough
to saturate the capacities of a single node. Nevertheless, our
implementation was around 10% more efficient over mpj
(Figure 11b).

VI. FUTURE WORK

Our future work will concentrate on promoting both MPI
standard and our ompiJava implementation to Semantic Web

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-240-0

Airhead Search Application Performance

18000
16000 +—
14000

—a— ompidava
cormmunication

12000
10000
a000
B000

—=—mpj communication

Time, ms

rnain algorithm

4000

2000

0+ =
12 4 8 16 32

Compute nodes

aj

MPI communication overhead for Airhead Search

G00

500 /
400

—e— ompidava

—a— mp]j communication

300 //‘//‘

Time, ms

200 /'/
100 /
] -/.//

1 2 4 g 16 32

Compute nodes

b}

Figure 11. Airhead performance with ompiJava and mpj

applications as well as improving the current realization of
the Java bindings in Open MPI. With regard to promotion
activities, we will be introducing our data-centric and MPI-
based parallelization approach to further challenging data-
intensive applications, such as Reasoning [37]. Regarding
this application, there are highly successful MPI imlemen-
tations in C, e.g., the parallel RDFS graph closure material-
ization presented in [38], which are indicatively much more
preferable over all the existing Java solutions in terms of
performance. Our implementation will allow the developed
MPI communication patterns to be integrated in existing
Java-based codes, such as Jena [2] or Pellet [39], and thus
drastically improve the competitiveness of the Semantic Web
application based on such tools.

The development activities will mainly focus on extend-
ing the Java bindings to the full support of the MPI-3
specification. We will also aim at adding Java language-
specific bindings into the MPI standard, as a reflection of
the Semantic Web importance in supercomputing.

17

SEMAPRO 2012 : The Sixth International Conference on Advances in Semantic Processing

VII. CONCLUSION

High Performance Computing is relatively a new trend for
the Semantic Web, which however has gained a tremendous
popularity thanks to the recent advances in developing data-
intensive applications.

The Message Passing Interface seems to provide a very
promising approach for developing parallel data-centric ap-
plications. Unlike its prominent alternatives MapReduce and
IBIS, the MPI functionality is delivered on the library-level,
and thus does not require any considerable development
efforts in order to be implemented in the existing serial
applications. Using MPI, the Semantic Web applications
can take full advantage of modern parallel computing re-
sources. For the RDF processing algorithms, MPI allows
for achieving higher scalability and eliminates the need of
approximation and dependency minimization in partitioning
the work load, used in the previous known implementations
as a workaround to overcome the performance limitations
on the serial hardware.

We introduced a new implementation of the Java bindings
for MPI that is integrated in one of the most popular
open source MPI-2 libraries nowadays - Open MPIL. The
integration allowed us to deliver a unique software envi-
ronment for flexible development and execution of parallel
MPI applications, integrating the Open MPI framework’s
capabilities, such as portability and usability, with those of
mpiJava, such as an extensive set of Java-based API for
MPI communication. We evaluated our implementation for
Random Indexing, which is one of the most challenging
Semantic Web applications in terms of the computation
demands currently. The evaluation has confirmed our initial
considerations about the high efficiency of MPI for paral-
lelizing Java applications. In the following, we are going
to investigate further capabilities of MPI for improving the
performance of data-centric applications, in particular by
means of MPI-IO (MPI extension to support efficient file
input-output). We will also concentrate on promoting the
MPI-based parallelization strategy to the other challenging
and performance-demanding applications, such as Reason-
ing. We believe that our implementation of Java bindings of
MPI will attract Semantic Web development community to
increase the scale of both its serial and parallel applications.
The successful pilot application implementations done based
on MPI, such as materialization of the finite RDFS closure
presented in [38], offer a very promising outlook regarding
the future perspectives of MPI in this community.

ACKNOWLEDGMENT

The author would like to thank the Open MPI consortium
for the support with porting mpiJava bindings as well as
the EU-ICT Project LarKC [40], partly funded by the
European Commission’s ICT activity of the 7th Framework
Programme (ICT-FP7-215535), for the provided pilot use
case.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-240-0

(1]

(2]

(3]

(4]

(3]

[6]

(71

(8]

(9]

[10]

(11]

[12]

[13]

[14]

REFERENCES

Openphacts eu project website. [Online]. Available:

http://www.openphacts.org [retrieved: June, 2012]

P. McCarthy. Introduction to jena.
IBM developerWorks. [Online]. Available:
http://www.ibm.com/developerworks/xml/library/j-jena
[retrieved: June, 2012]

Lod cloud diagram. [Online]. Available:

http://richard.cyganiak.de/2007/10/1od/ [retrieved: June, 2012]

Open government data website. [Online]. Available:
http://opengovernmentdata.org/ [retrieved: June, 2012]

R. Gonzalez. (2012) Closing in on a mil-
lion open government data sets. [Online].
Available: http://semanticweb.com/closinginona-millionopen-
governmentdatasets_b29994 [retrieved: June, 2012]

A. Cheptsov and M. Assel, “Towards high performance
semantic web experience of the larkc project,” inSiDE -
Journal of Innovatives Supercomputing in Deutschland, vol.
9(1), pp. 569-571, Spring 2011.

E. Goodman, D. J. Haglin, C. Scherrer, D. Chavarria,
J. Mogill, and J. Feo, “Hashing strategies for the cray xmt,”
in Proc. 24th IEEE Int. Parallel and Distributed Processing
Symp., 2010.

J. Dean and S. Ghemawat, “Mapreduce- simplified data pro-
cessing on large clusters,” in Proc. OSDIO4: 6th Symposium
on Operating Systems Design and Implementation, 2004.

M. Bornemann, R. van Nieuwpoort, and T. Kielmann,
“Mpj/ibis: A flexible and efficient message passing platform
for java,” Concurrency and Computation: Practice and Ex-
perience, vol. 17, pp. 217-224, 2005.

(1995) Mpi: A message-passing interface standard.
Message Passing Interface Forum. [Online]. Avail-
able: http://www.mcs.anl.gov/research/projects/mpi/mpi-

standard/mpi-report-1.1/mpi-report.htm [retrieved: June,

2012]

R. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman,
C. Jacobs, T. Kielmann, and H. Bal, “Ibis: a flexible and
efficient java based grid programming environment,” Concur-
rency and Computation: Practice and Experience, vol. 17, pp.
1079-1107, June 2005.

R. van Nieuwpoort, T. Kielmann, and H. Bal, “User-friendly
and reliable grid computing based on imperfect middleware,”
in Proc. ACM/IEEE Conference on Supercomputing (SC’07),
November 2007.

framework
Available:

(2004, February) Resource description
(RDF). RDF Working Group. [Online].
http://www.w3.0rg/RDF/ [retrieved: June, 2012]

“Lustre file system - high-performance storage architecture
and scalable cluster file system,” White Paper, SunMicrosys-
tems, Inc., December 2007.

18

SEMAPRO 2012 : The Sixth International Conference on Advances in Semantic Processing

[15]

[16]

[17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

Copyright (c) IARIA, 2012.

Portable batch systems. [Online]. Available:
http://en.wikipedia.org/wiki/Portable_Batch_System [re-
trieved: June, 2012]

A. Dimovski, G. Velinov, and D. Sahpaski, “Horizontal
partitioning by predicate abstraction and its application to data
warehouse design,” in ADBIS, 2010, pp. 164-175.

D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach,
“Scalable semantic web data management using vertical par-
titioning,” in Proc. The 33rd international conference on Very
large data bases (VLDB’07)).

C. Curino, E. P. C. Jones, S. Madden, and H. Balakrishnan,
“Workload-aware database monitoring and consolidation,” in
SIGMOD Conference, 2011, pp. 313-324.

A. Cheptsov, M. Assel, B. Koller, R. Kbert, and G. Gallizo,
“Enabling high performance computing for java applications
using the message-passing interface,” in Proc. The Second
International Conference on Parallel, Distributed, Grid and
Cloud Computing for Engineering (PARENG’2011).

B. Carpenter, G. Fox, S.-H. Ko, and S. Lim, “mpiJava 1.2: Api
specification,” Northeast Parallel Architecture Center. Paper
66, 1999. [Online]. Available: http:/surface.syr.edu/npac/66
[retrieved: June, 2012]

T. Kielmann, P. Hatcher, L. Boug, and H. Bal, “Enabling
java for high-performance computing: Exploiting distributed
shared memory and remote method invocation,” Communica-
tions of the ACM, 2001.

M. Baker, B. Carpenter, and A. Shafi, “MPJ Express: Towards
thread safe java hpc,” in Proc. IEEE International Conference
on Cluster Computing (Cluster’2006), September 2006.

R. K. Gupta and S. D. Senturia, “Pull-in time dynamics as
a measure of absolute pressure,” in Proc. IEEE International
Workshop on Microelectromechanical Systems (MEMS’97),
Nagoya, Japan, Jan. 1997, pp. 290-294.

G. Judd, M. Clement, Q. Snell, and V. Getov, “Design issues
for efficient implementation of mpi in java,” in Proc. the 1999
ACM Java Grande Conference, 1999, pp. 58—65.

B. Carpenter, V. Getov, G. Judd, A. Skjellum, and G. Fox,
“MPJ: Mpi-like message passing for java,” Concurrency and
Computation - Practice and Experience, vol. 12(11), pp.
1019-1038, 2000.

E. G. et al, “Open MPIL: Goals, concept, and design of a
next generation MPI implementation,” in Proc., 11th Euro-
pean PVM/MPI Users’ Group Meeting, Budapest, Hungary,
September 2004, pp. 97-104.

Mpich2 project website. [Online]. Available:
http://www.mcs.anl.gov/research/projects/mpich2/ [retrieved:
June, 2012]

mpijava website. [Online]. Available:
http://sourceforge.net/projects/mpijava/ [retrieved: June,
2012]

S. Liang, Ed., Java Native Interface: Programmer’s Guide
and Reference. Addison-Wesley, 1999.

ISBN: 978-1-61208-240-0

(30]

(31]

(32]

(33]

[34]

(35]

[36]

(37]

(38]

[39]

[40]

M. Baker, B. Carpenter, G. Fox, S. Ko, and S. Lim, “mpi-
Java: An object-oriented java interface to mpi,” in Proc.
International Workshop on Java for Parallel and Distributed
Computing IPPS/SPDP, San Juan, Puerto Rico, 1999.

M. Vodel, M. Sauppe, and W. Hardt, “Parallel high-
performance applications with mpi2java - a capable java
interface for mpi 2.0 libraries,” in Proc. The 16th Asia-
Pacific Conference on Communications (APCC), Nagoya,
Japan, 2010, pp. 509-513.

Nas parallel benchmark website.
http://sourceforge.net/projects/mpijava/
2012]

[Online]. Available:
[retrieved: June,

[Online]. Available:
[retrieved: June,

Mpj express benchmarking results.
http://mpj-express.org/performance.html
2012]

M. Sahlgren, “An introduction to random indexing,” in Proc.
Methods and Applications of Semantic Indexing Workshop
at the 7th International Conference on Terminology and
Knowledge Engineering (TKE) 2005, 2005, pp. 1-9.

D. Jurgens, “The S-Space package: An open source package
for word space models,” in Proc. the ACL 2010 System
Demonstrations, 2010, pp. 30-35.

M. Assel, A. Cheptsov, B. Czink, D. Damljanovic, and
J. Quesada, “Mpi realization of high performance search for
querying large rdf graphs using statistical semantics,” in Proc.
The 1st Workshop on High-Performance Computing for the
Semantic Web, Heraklion, Greece, May 2011.

D. Fensel and F. van Harmelen, “Unifying reasoning and
search to web scale,” IEEE Internet Computing, vol. 11(2),
pp. 95-96, 2007.

J. Weaver and J. A. Hendler, “Parallel materialization of the
finite rdfs closure for hundreds of millions of triples,” in Proc.
International Semantic Web Conference (ISWC) 2009, A. B.
et al., Ed., 2009.

E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur,
and Y. Katz. Pellet: a practical owl-dl reasoner.
Journal of Web Semantics. [Online]. Available:
http://www.mindswap.org/papers/PelletJWS.pdf [retrieved:

June, 2012]

Eu-fp7 project large knowledge collider (larkc). [Online].
Available: http://www.larkc.eu [retrieved: June, 2012]

19

