
Light-weight Ontology Versioning with Multi-temporal RDF Schema

Fabio Grandi
Dipartimento di Elettronica, Informatica e Sistemistica

Alma Mater Studiorum – Università di Bologna
Bologna, Italy

Email: fabio.grandi@unibo.it

Abstract—In this paper, we present a multi-temporal RDF
data model, which can be used to support RDF(S) light-weight
ontology versioning. The data model is equipped with ontology
change operations, which are defined in terms of low-level
updates acting on RDF triples. As a result, the operational
semantics of a complete set of primitive ontology changes has
been formalized, taking care of preservation of class/property
hierarchies and typing constraints. When used within the trans-
action template, which has also been introduced, the proposed
ontology changes allow knowledge engineers or maintainers of
semantics-based Web resources to easily define and manage
temporal versions of an RDF(S) ontology.

Keywords-ontology; versioning; temporal data; RDF(S).

I. INTRODUCTION

In some application domains, when an ontology is
changed, the past version is required to be kept in addition
to the new version (e.g., to maintain compatibility with
applications and resources referencing the past one), giving
rise to multi-version ontologies. Agents in such domains
may often have to deal with a past perspective, like a Court
having to judge today on a fact committed several years
ago in the legal domain, where ontologies must evolve as a
natural consequence of the dynamics involved in normative
systems [9]. Moreover, several time dimensions are usually
important for computer applications in such domains.

In this vein, we previously considered in [9] ontologies
encoded in OWL/XML format and defined a temporal data
model for the storage and management of multi-version
ontologies in such a format. In [5], [6], we indeed considered
ontologies serialized as RDF graphs [19], and introduced a
multidimensional temporal data model and query language
for the storage and management of multi-version ontologies
in RDF format. In particular, since the triple store technology
[20] for RDF is supposed to provide scalability for querying
and retrieval, the temporal RDF data model we introduced
in [5] is aimed at preserving the scalability property of
such an approach as much as possible also in the temporal
setting. This has been accomplished through the adoption
of temporal elements [4], [12] as timestamps and a careful
definition of the operational semantics of modification state-
ments, which prevents the proliferation of value-equivalent
triples even in the presence of multiple temporal dimensions.

In this work, we further focus on light-weight ontologies

expressed with RDF(S), that is based on the vocabulary
defined in RDF Schema [18], which are widespread and
present a fast sharing rate in the loosely controlled and
distributed environment of the Web and Web 2.0 [15].
Relying on the data in [3], Theoaris et al. estimate that
85.45% of the Semantic Web schemas are expressed in
RDF(S) [14]. Hence, we will introduce in Sec. II a multi-
temporal data model and an operation set, which can be
used to support temporal versioning of RDF(S) ontologies.
In particular, valid and transaction time dimensions and
the types of ontology versioning, which stem from their
adoption, are presented in Sec. II-A, the adopted underlying
temporal RDF data model is briefly sketched in Sec. II-B,
a comprehensive model for temporal RDF(S) ontology ver-
sioning is introduced in Sec. II-C and the definition of a
complete set of ontology change primitives is provided in
Sec. II-D. Conclusions will be finally found in Section III.

II. A MULTI-TEMPORAL RDF(S) DATA MODEL FOR
LIGHT-WEIGHT ONTOLOGY VERSIONING

As RDF Schemas are quite similar to the type system of
an object-oriented langauge and, thus, an ontology definition
via RDFS closely resembles an object-oriented database
schema, one could think to apply temporal schema ver-
sioning techniques like those in [8] to ontology versioning.
However, there are two main differences between such two
worlds, which make this application non straightforward.
The first difference is that properties are first-class objects in
RDFS and, thus, they cannot be dealt with as components of
a class type, like in an object-oriented schema, but must be
managed independently. The link between classes and prop-
erties is supplied by a sort of third-party tool, represented
by domain and range definitions. The second difference is
that, whereas in object-oriented databases we can separate
the intensional (schema change) and the extensional (change
propagation) aspects, in RDF(S) ontologies the two aspects
are strictly related, since instances are part of the ontologies
themselves and, thus, some ontology changes cannot be
performed without affecting instances [16]. However, we
will see in Sec. II-C that, with the proposed approach, both
these aspects will turn into an advantage.

42Copyright (c) IARIA, 2011. ISBN: 978-1-61208-175-5

SEMAPRO 2011 : The Fifth International Conference on Advances in Semantic Processing

A. Multitemporal Ontology Versioning
In the temporal database literature, two time dimensions

are usually considered: valid time (concerning the real
world) and transaction time (concerning the computer
life) [12]. With these time dimensions, likewise schema
versioning in databases [2], [8], three kinds of temporal
versioning can also be considered for ontology versioning:
• Transaction-time ontology versioning allows on-time

ontology changes, that is ontology changes that are
effective when applied. In this case, the management
of time is completely transparent to the user: only the
current ontology can be modified and ontology changes
are effected in the usual way, without any reference
to time. However, support of past ontology versions is
granted by the system non-deletion policy, so that the
user can always rollback the full ontology to a past
state of its life.

• Valid-time ontology versioning is necessary when
retroactive or proactive modifications [2] of an ontol-
ogy have to be supported and it is useful to assign a
temporal validity to ontology versions. With valid-time
ontology versioning, multiple ontology versions, valid
at different times, are all available for reasoning and
for accessing and manipulating instances. The newly
created ontology version can be assigned any validity
by the designer, also in the past or future to effect retro-
or pro-active ontology modifications, respectively. The
(portions of) existing ontology versions overlapped by
the validity of the new ontology version are overwritten.

• Bitemporal ontology versioning uses both time di-
mensions, that is retro- and pro-active ontology updates
are supported in addition to transaction-time ontol-
ogy versioning. With respect to valid-time ontology
versioning, the complete history of ontology changes
is maintained as no ontology version is ever dis-
carded (overlapped portions are “archived” rather than
deleted). In a system where full auditing/traceability of
the maintenance process is required, only bitemporal
ontology versioning allows verifying whether an on-
tology version was created by a retro- or pro-active
ontology change.

Other time dimensions can also be considered as further
(orthogonal) versioning dimensions [5] in special application
domains, like efficacy or applicability time in the legal or
medical domains [7], [9].

B. A multi-temporal RDF database model
We briefly recall here the base definitions of the multi-

temporal RDF database model [5] underlying our proposal,
starting from an N -dimensional time domain:

T = T1 × T2 × · · · × TN
where Ti = [0, UC]i is the i-th time domain. Right-unlimited
time intervals are expressed as [t, UC], where UC means

“Until Changed”, though such a symbol is often used in
temporal database literature [12] for transaction time only
(whereas, e.g., “forever” or ∞ is used for valid time). Such
naming choice refers to the modeling of time-varying data,
which are potentially subject to change with respect to all the
considered time dimensions. Then, a multi-temporal RDF
triple is defined as (s, p, o |T), where s is a subject, p is a
property, o is an object and T ⊆ T is a timestamp assigning
a temporal pertinence to the RDF triple (s, p, o). We will
also call the (non-temporal) triple (s, p, o) the value or the
contents of the temporal triple (s, p, o |T). The temporal
pertinence of a triple is a subset of the multidimensional
time domain, which is represented by a temporal element
[12], that is a disjoint union of multidimensional temporal
intervals, each one obtained as the Cartesian product of one
time interval for each of the supported temporal dimensions.
A multi-temporal RDF database is defined as a set of
timestamped RDF triples:

RDF-TDB = { (s, p, o |T) | T ⊆ T }

with the integrity constraint:

∀(s, p, o |T), (s′, p′, o′ |T ′) ∈ RDF-TDB:
s = s′ ∧ p = p′ ∧ o = o′ =⇒ T = T ′

which requires that no value-equivalent distinct triples exist.
The adoption of timestamps made-up of temporal elements
instead of (multi-temporal) simple intervals avoids the du-
plication of triples in the presence of a temporal pertinence
with a complex shape [5].

In practice, we store different triple versions only once
with a complex timestamp rather than storing multiple copies
of them with a simple timestamp as in other RDF temporal
extensions [10], [17], [23]. The memory saving we obtain
grows with the dimensionality of the time domain but
could be relevant also with a single time dimension [5].
Moreover, since temporal elements are closed under set
union, intersection and complementation operations, they
lead to query languages that are more natural [4].

The data model is equipped with three modification opera-
tions —INSERT, DELETE and UPDATE— with a SQL-like
syntax also inspired by the SPARQL/Update proposal [22],
and whose semantics has been defined in [5] in such a way,
that the integrity constraints concerning temporal elements
and the controlled growth of value-equivalent triples made
possible by temporal elements are automatically maintained.
This fact ensures that, in a temporal setting and compatibly
with the growth of the number of versions, unlike other
approaches, the scalability property of the triple storage
technology is preserved.

C. Temporal Versioning of Light-weight RDF(S) Ontologies
The signature of a Light-weight RDF(S) Ontology [15]

can be defined as follows:

O = (C,HC , IC ,P,HP , IP ,DP ,RP)

43Copyright (c) IARIA, 2011. ISBN: 978-1-61208-175-5

SEMAPRO 2011 : The Fifth International Conference on Advances in Semantic Processing

where C is the set of classes, HC is the class hierarchy, and
IC is the set of class instances; P is the set of properties,
HP is the property hierarchy, and IP is the set of property
instances; finally DP and RP are, respectively, the set of
property domain and range definitions. Hence, a Multi-
temporal Light-weight RDF(S) Ontology can be defined as
a multi-temporal RDF database as:

O :=

{(C,rdf:type,rdfs:Class |T) |C ∈ C, T ⊆ T }∪
{(C,rdfs:subClassOf, C′ |T) | (C,C′) ∈ HC , T ⊆ T }∪
{(x,rdf:type, C |T) |C(x) ∈ IC , T ⊆ T }∪
{(P,rdf:type,rdf:Property |T) |P ∈ P, T ⊆ T }∪
{(P,rdfs:subPropertyOf, P ′ |T) | (P, P ′) ∈ HP , T ⊆ T }∪
{(x, P, y |T) |P (x, y) ∈ IP , T ⊆ T }∪
{(P,rdfs:domain, C |T) |dom(P,C) ∈ DP , T ⊆ T }∪
{(P,rdfs:range, C |T) | range(P,C) ∈ RP , T ⊆ T }

This definition is useful to understand how ontology
changes will be mapped onto manipulation of temporal
triples. The general template, which can be used for a trans-
action which creates a new ontology version, is exemplified
in Fig. 1. Such a transaction needs two temporal parameters
as inputs: the ontology selection validity and the ontology
change validity (corresponding to schema selection validity
and schema change validity in databases [8]). The former
(OS Validity) is a valid-time point and is used to select
the ontology version —not necessarily the present one—
chosen as the starting base, to which ontology changes are
applied to produce the new version; the latter (OC Validity)
is a valid-time element, that is a disjoint union of valid-
time intervals, representing the validity to be assigned to
new version resulting form the application of the ontology
changes. As far as transaction time is concerned, default
conditions are used, since only current ontology versions
can be chosen as modification base and the new version
must be assigned a [NOW,UC] pertinence.

In Fig. 1, statements 1 and 7 are SQL-like syntactic
delimiters for the transaction body. As a first operation
(2), a temporary (non-temporal) RDF graph is created to
be used as work version of the ontology. Such graph
is then populated (3) with the RDF triples making up
the work version, extracted as a snapshot query from
the temporal ontology (i.e., the triples whose temporal
pertinence contains OS Validity×{NOW}, with the times-
tamp projected out). Then, the required sequence of (non-
temporal) ontology changes is applied to the work ver-
sion. When the new ontology version is ready, it must
be loaded into the temporal ontology with the desired
time pertinence OC Validity×[NOW,UC]. To this end, the
contents of the temporal ontology within the time window
OC Validity×[NOW,UC] are deleted (4), in order to make
room for the new version in the time domain, and the triples
making up the work version are inserted as temporal triples
into the temporal ontology with the assigned timestamp

OC Validity×[NOW,UC] (5). After that, the temporary work
version is no longer necessary and can be discarded (6).
Notice that, whereas statements 2 and 6 are “standard” (i.e.,
non-temporal) SPARQL/Update instructions [22], statements
3, 4 and 5 are temporal T-SPARQL operations as defined in
[5], [6].

Adopting the template in Fig. 1, schema changes are
applied on the work version, which is a traditional (non-
temporal) RDF(S) ontology and, thus, there is no need to
introduce temporal schema change operations. Hence, as a
set of possible schema changes, we could even consider the
operations made available by an existing ontology editor
[21]. Differently from other approaches with a strong logic-
based ground (e.g., [11], [13]), our choice is to follow
the simpler approach previously used for database schema
versioning (e.g., [1], [8]) by considering the set of schema
changes in Tab. I: the proposed operations are primitive, as
each of them acts on a single element of an RDFS ontology
and none of them can be decomposed in terms of the others,
and make up a complete set. Completeness can easily be
checked by verifying that any arbitrarily complex RDFS
ontology can be built from scratch (or completely destroyed)
via the execution of a suitable sequence of ontology change
primitives.

With this approach, we remit in fact the management
of the resulting ontology version validity to the responsi-
bility of the designer. For instance, the validity rule R8
enforced by the approach in [13], stating that “the domain
of a property is unique”, would be too limiting and, thus,
unacceptable with respect to the requisites of several appli-
cation domains. Notice that, in the formalization of some
real world component, which is fruit of some human (i.e.,
arbitrary or at least non completely rational) activity, like
the legal domain, a correctly designed ontology could even
be logically inconsistent. For example, in several countries,
the primary function of the Supreme/Constitutional Court is
to rule conflicts between ordinary norms and constitutional
laws. As long as such conflicts exist, the whole corpus of
regulations is in fact logically inconsistent and as such must
be modelled.

The semantics of the primitives in Tab. I will be defined in
the next section, taking care of preservation of class/property
hierarchies and typing constraints (like in an object-oriented
database schema). Moreover, since instances are part of the
ontology definition, we do not have in this framework to
deal with the interaction between versioning at intensional
and extensional levels, extensively discussed in [8, Sec. 4],
arising in databases where schemata and data are possibly
versioned along different time dimensions.

We underline that, whereas the proposed operation set
could also be used for ontology evolution in a non-temporal
setting, where only the current version of the ontology is
retained, their usage within the template in Fig. 1 gives rise
to full-fledged temporal ontology versioning.

44Copyright (c) IARIA, 2011. ISBN: 978-1-61208-175-5

SEMAPRO 2011 : The Fifth International Conference on Advances in Semantic Processing

1. BEGIN TRANSACTION ;
2. CREATE GRAPH <http://example.org/workVersion> ;
3. INSERT INTO <http://example.org/workVersion> { ?s ?p ?o }

WHERE { TGRAPH <http://example.org/tOntology> { ?s ?p ?o | ?t } .
FILTER(VALID(?t) CONTAINS OS Validity && TRANSACTION(?t) CONTAINS fn:current-date()) } ;

⇒ a sequence of ontology changes acting on the (non-temporal) workVersion graph goes here

4. DELETE FROM <http://example.org/tOntology> { ?s ?p ?o } VALID OC Validity ;
5. INSERT INTO <http://example.org/tOntology> { ?s ?p ?o } VALID OC Validity

WHERE { GRAPH <http://example.org/workVersion> { ?s ?p ?o } } ;
6. DROP GRAPH <http://example.org/workVersion> ;
7. COMMIT TRANSACTION

Figure 1. Template for a transaction implementing the derivation of a new ontology version.

Changes to the class collection
CREATE_CLASS(NewClass)
DROP_CLASS(Class)
RENAME_CLASS(Class, NewName)

Changes to the property collection
CREATE_PROPERTY(NewProperty)
DROP_PROPERTY(Property)
RENAME_PROPERTY(Property, NewName)

Changes to the class and property hierarchies
ADD_SUBCLASS(SubClass, Class)
DELETE_SUBCLASS(SubClass, Class)
ADD_SUBPROPERTY(SubProperty, Property)
DELETE_SUBPROPERTY(SubProperty, Property)

Changes to the property domain and range definitions
ADD_DOMAIN(Property, NewDomain)
ADD_RANGE(Property, NewRange)
DELETE_DOMAIN(Property, Domain)
DELETE_RANGE(Property, Range)
CHANGE_DOMAIN(Property, Domain, NewDomain)
CHANGE_RANGE(Property, Range, NewRange)

Table I
LIST OF PRIMITIVE RDFS ONTOLOGY CHANGES.

D. Definition of RDF(S) Ontology Changes

In this section, we show how the primitive ontology
change operations in Tab. I can be defined in terms of manip-
ulation operations acting on the RFD(S) contents of the work
version. An SQL-like syntax (which seems a bit more intu-
itive than SPARQL/Update [22] for SQL-acquainted readers)
is used to express INSERT, DELETE and UPDATE state-
ments acting on RDF triples. In the following definitions, for
the sake of simplicity, although non explicitly written all the
manipulation operations are supposed to work on the named
graph <http://example.org/workVersion> when
embedded into the transaction template of Fig. 1.

The CREATE_CLASS primitive adds a new class to the
set of classes C and can simply be defined as:

CREATE_CLASS(NewClass) :=
INSERT { NewClass rdf:type rdfs:Class }

The DROP_CLASS primitive eliminates a class from the on-

tology. This means that the class must be removed from the
set C and from the class hierarchy HC , all the domain and
range definitions having the class as target must be removed
from DP and RP , respectively, and all the instances of the
class must also be removed from IC . Thus, it can be defined
as follows:

DROP_CLASS(Class) :=
DELETE { Class rdf:type rdfs:Class } ;
INSERT { ?C rdfs:subClassOf ?D } ;

WHERE { ?C rdfs:subClassOf Class .
Class rdfs:subClassOf ?D } ;

DELETE { Class rdfs:subClassOf ?C } ;
DELETE { ?C rdfs:subClassOf Class } ;
DELETE { ?P rdfs:domain Class } ;
DELETE { ?P rdfs:range Class } ;
DELETE { ?X rdf:type Class }

Notice that, before Class can be removed from HC , if
{(C,Class), (Class, D)} ⊆ HC , an explicit inheritance
link (C,D) must be added to HC in order to maintain
the continuity of the inheritance hierarchy. We assume the
relation rdfs:subClassOf is not interpreted here as
transitive (i.e., it only matches explicitly stored triples), so
that only one explicit link is added. In this way, we also
produce a consistent state without explicitly computing the
transitive closure of the inheritance relation, which would
increase the number of stored triples in the work version.

The RENAME_CLASS primitive changes the name of a
class in the ontology. This means that the name must be
changed wherever the class occurs, that is in C, HC , DP ,
RP and IC . The primitive can be defined as follows:

RENAME_CLASS(Class, NewName) :=
UPDATE { Class rdf:type rdfs:Class }

SET { NewName rdf:type rdfs:Class } ;
UPDATE { Class rdfs:subClassOf ?C }

SET { NewName rdfs:subClassOf ?C } ;
UPDATE { ?C rdfs:subClassOf Class }

SET { ?C rdfs:subClassOf NewName } ;
UPDATE { ?P rdfs:domain Class }

SET { ?P rdf:domain NewName } ;
UPDATE { ?P rdfs:range Class }

SET { ?P rdf:range NewName } ;
UPDATE { ?X rdf:type Class }

45Copyright (c) IARIA, 2011. ISBN: 978-1-61208-175-5

SEMAPRO 2011 : The Fifth International Conference on Advances in Semantic Processing

SET { ?X rdf:type NewName } ;

Obviously, the execution of

RENAME_CLASS(ex:C,ex:D)

is not equivalent to the sequence:

DELETE_CLASS(ex:C) ;
CREATE_CLASS(ex:D)

because, in the former case, the instances of class ex:C
are preserved and assigned to ex:D (and also instances of
properties having ex:C as domain or range are preserved),
whereas, in the latter, instances are discarded.

The CREATE_PROPERTY primitive adds a new class to
the set of properties P and can simply be defined as:

CREATE_PROPERTY(NewProperty) :=
INSERT { NewProperty rdf:type rdf:Property }

The DROP_PROPERTY primitive eliminates a property from
the ontology. This means that the property must be removed
from the set P and from the property hierarchy HP , all the
domain and range definitions having the property as source
must be removed from DP and RP , respectively, and all
the instances of the property must also be removed from
IP . Thus, it can be defined as follows:

DROP_PROPERTY(Property) :=
DELETE { Property rdf:type rdf:Property } ;
INSERT { ?P rdfs:subPropertyOf ?Q }

WHERE { ?P rdfs:subPropertyOf Property .
Property rdfs:subPropertyOf ?Q } ;

DELETE { Property rdfs:subPropertyOf ?P } ;
DELETE { ?P rdfs:subPropertyOf Property } ;
DELETE { Property rdfs:domain ?C } ;
DELETE { Property rdfs:range ?C } ;
DELETE { ?X Property ?Y }

As for classes, the deletion of the property in the middle of
a inheritance path requires the insertion of a new explicit
inheritance link to HP before the property is removed, in
order not to break the path into two stumps (we also assume
the relation rdfs:subPropertyOf is not interpreted
here as transitive, so that only one explicit link is added).

The RENAME_PROPERTY primitive changes the name of
a property in the ontology. This means that the name must
be changed wherever the property occurs, that is in P , HP ,
DP , RP and IP . The primitive can be defined as follows:

RENAME_PROPERTY(Property, NewName) :=
UPDATE { Property rdf:type rdf:Property }

SET { NewName rdf:type rdf:Property } ;
UPDATE { Property rdfs:subPropertyOf ?P }

SET { NewName rdfs:subPropertyOf ?P } ;
UPDATE { ?P rdfs:subPropertyOf Property }

SET { ?P rdfs:subPropertyOf NewName } ;
UPDATE { Property rdfs:domain ?D }

SET { NewName rdfs:domain ?D } ;
UPDATE { Property rdfs:range ?D }

SET { NewName rdfs:range ?D } ;

UPDATE { ?X Property ?Y }
SET { ?X NewName ?Y }

The ADD_SUBCLASS primitive is used to add a new in-
heritance link to the class hierarchy HC and can simply be
defined as:

ADD_SUBCLASS(SubClass, Class) :=
INSERT { SubClass rdfs:subClassOf Class }

The DELETE_SUBCLASS primitive is used to remove an
inheritance link from the class hierarchy HC and can simply
be defined as:

DELETE_SUBCLASS(SubClass, Class) :=
DELETE { SubClass rdfs:subClassOf Class }

The ADD_SUBPROPERTY primitive is used to add a new
inheritance link to the property hierarchyHP and can simply
be defined as:

ADD_SUBPROPERTY(SubProperty, Property) :=
INSERT
{ SubProperty rdfs:subPropertyOf Property }

The DELETE_SUBPROPERTY primitive is used to remove
an inheritance link from the property hierarchy HP and can
simply be defined as:

DELETE_SUBPROPERTY(SubProperty, Property) :=
DELETE
{ SubProperty rdfs:subPropertyOf Property }

The ADD_DOMAIN primitive is used to add a new domain
relationship to DP and can be defined as:

ADD_DOMAIN(Property, NewDomain) :=
INSERT { Property rdfs:domain NewDomain } ;
INSERT { ?X rdf:type NewDomain }

WHERE { ?X Property ?Y }

Notice that, in accordance to [18], properties are allowed to
have multiple domains and the resources denoted by subjects
of triples with predicate Property must be instances of all
the classes stated by the rdfs:domain properties. Hence,
a new instance NewDomain(x) must be added to IC for
each instance Property(x, y) ∈ IP .

The ADD_RANGE primitive is used to add a new range
relationship to RP and can be defined as:

ADD_RANGE(Property, NewRange) :=
INSERT { Property rdfs:range NewRange } ;
INSERT { ?Y rdf:type NewRange }

WHERE { ?X Property ?Y }

Notice that, in accordance to [18], properties are allowed to
have multiple ranges and the resources denoted by objects
of triples with predicate Property must be instances of all
the classes stated by the rdfs:range properties. Hence,
a new instance NewRange(y) must be added to IC for each
instance Property(x, y) ∈ IP .

46Copyright (c) IARIA, 2011. ISBN: 978-1-61208-175-5

SEMAPRO 2011 : The Fifth International Conference on Advances in Semantic Processing

The DELETE_DOMAIN primitive is used to remove a
domain relationship of a property. This means that the
domain must be removed from DP together with all the
instances of the property referencing the domain, which must
be removed from IP . The operation can then be defined as:

DELETE_DOMAIN(Property, Domain) :=
DELETE { Property rdfs:domain Domain } ;
DELETE { ?X Property ?Y }

WHERE { { ?X rdf:type Domain }
UNION
{ ?C rdfs:subClassOf Domain .
?X rdf:type ?C }

}

In this case, we assume the relation rdfs:subClassOf
is interpreted as transitive during the evaluation of the state-
ment, as we must delete all the instances Property(x, y) ∈
IP , where x is a member of Domain or of any of its
subclasses along the inheritance hierarchy.

Similarly, the DELETE_RANGE primitive is used to re-
move a range relationship of a property. This means that
the range must be removed from RP together with all the
instances of the property referencing the range, which must
be removed from IP . The operation can be defined as:

DELETE_RANGE(Property, Range) :=
DELETE { Property rdfs:range Range } ;
DELETE { ?X Property ?Y }

WHERE { { ?Y rdf:type Range }
UNION
{ ?C rdfs:subClassOf Range .
?Y rdf:type ?C }

}

Also in this case, we assume the relation
rdfs:subClassOf is interpreted as transitive, as
we must delete all the instances Property(x, y) ∈ IP , where
y is a member of Range or of any of its subclasses along
the inheritance hierarchy.

The CHANGE_DOMAIN primitive is used to change a
property domain definition in DP and can be defined as:

CHANGE_DOMAIN(Property, Domain, NewDomain) :=
UPDATE { Property rdfs:domain Domain }

SET { Property rdfs:domain NewDomain }

Analogously, the CHANGE_RANGE primitive to be used to
change a property range definition in RP can be defined as:

CHANGE_RANGE(Property, Range, NewRange) :=
UPDATE { Property rdfs:range Range }

SET { Property rdfs:range NewRange }

In the last two definitions, we assumed instances
of Property are not affected by the domain or
range changes. If this is not the case, suitable con-
version functions must be supplied, as defined in a
given namespace, to correctly propagate the change
to instances (e.g., cfn:DomainToNewDomain and

cfn:RangeToNewRange for literal data). For instance, in
the case of CHANGE_RANGE, this can be done as follows:

PREFIX cfn: <http://example.org/conv_funct#>
UPDATE { ?X Property ?Y }

SET { ?X Property cfn:RangeToNewRange(?Y) }
WHERE { { ?Y rdf:type Range .

FILTER(isLiteral(?Y) &&
cfn:RangeToNewRange(?Y))!="") }

UNION
{ ?C rdfs:subClassOf Range .
?Y rdf:type ?C .
FILTER(isLiteral(?Y) &&
cfn:RangeToNewRange(?Y))!="") }

} ;
DELETE { ?X Property ?Y }

WHERE { { ?Y rdf:type Range .
FILTER(isLiteral(?Y) &&
cfn:RangeToNewRange(?Y))="") }

UNION
{ ?C rdfs:subClassOf Range .
?Y rdf:type ?C .
FILTER(isLiteral(?Y) &&
cfn:RangeToNewRange(?Y))="") }

}

If the conversion function is able to produce a significant
value (i.e., a non-empty string), the new value is used to up-
date the property instances, also involving range subclasses.
Otherwise, the property instances, which cannot be con-
verted, are discarded. This correspond, in the terminology of
schema evolution, to a combined deployment of the coercion
and filtering techniques [8]. Notice that, for instance, the
execution of:

CHANGE_DOMAIN(ex:P,ex:C,ex:D)

is not equivalent to the sequence:

DELETE_DOMAIN(ex:P,ex:C) ;
ADD_DOMAIN(ex:P,ex:D)

because, in the former case, the instances of property ex:P
are preserved, if domains ex:C and ex:D are compatible or
a conversion function exists, whereas, in the latter, instances
are in any case discarded.

III. CONCLUSION AND FUTURE WORKS

In this work, we added another piece to our proposal,
already including [5], [6], [9], which involves the extension
to the Semantic Web of temporal data models and query
languages developed in decades of temporal database re-
search, by focusing on temporal versioning of light-weight
ontologies expressed in RDF(S). To this end, we showed
how the multi-temporal RDF data model [5] can easily
be used to support RDF(S) ontology versioning. The data
model has been equipped with a complete set of primitive
ontology change operations, defined in terms of low-level
modifications acting on RDF triples. Sequences of such on-
tology changes can simply be embedded into the transaction

47Copyright (c) IARIA, 2011. ISBN: 978-1-61208-175-5

SEMAPRO 2011 : The Fifth International Conference on Advances in Semantic Processing

template we proposed, to be used by knowledge engineers
or maintainers of semantics-based Web resources in order
to support full-fledged temporal ontology versioning.

In future research, we will consider the design and
prototyping of a query engine supporting the execution
of T-SPARQL manipulation operations, which implement
the ontology change primitives described in this paper. We
will also consider the adoption of suitable multidimensional
index and storage structures to efficiently support temporal
versioning of light-weight ontologies expressed in RDF(S).

REFERENCES

[1] J. Banerjee, W. Kim, H.-J. Kim, and H. F. Korth. Semantics
and Implementation of Schema Evolution in Object-Oriented
Databases. In Proc. of SIGMOD Conference, ACM Press,
1987, pp. 311–322.

[2] C. De Castro, F. Grandi, and M. R. Scalas. Schema Versioning
for Multitemporal Relational Databases. Information Systems,
vol. 22:5, 1997, pp. 249–290.

[3] L. Ding and T. W. Finin. Characterizing the Semantic Web
on the Web. In Proc. of ISWC Conference, Springer-Verlag,
LNCS No. 4273, 2006, pp. 242–257.

[4] S. Gadia. A Homogeneous Relational Model and Query
Language for Temporal Databases. ACM Transactions on
Database Systems, vol. 13:3, 1998, pp. 418–448.

[5] F. Grandi. Multi-temporal RDF Ontology Versioning. In Proc.
of IWOD Workshop, CEUR-WS, 2009.

[6] F. Grandi. T-SPARQL: a TSQL2-like Temporal Query Lan-
guage for RDF. In Proc. of GraphQ Workshop, CEUR-WS,
2010, pp. 21–30.

[7] F. Grandi. A Personalization Environment for Multi-Version
Clinical Guidelines. In A. Fred, J. Filipe, and H. Gamboa,
editors, Biomedical Engineering Systems and Technologies
2010, Springer-Verlag, CCIS No. 127, 2011, pp. 57–69.

[8] F. Grandi and F. Mandreoli. A Formal Model for Temporal
Schema Versioning in Object-Oriented Databases. Data &
Knowledge Engineering, vol. 46:2, 2003, pp. 123–167.

[9] F. Grandi and M. R. Scalas. The Valid Ontology: A
Simple OWL Temporal Versioning Framework. In Proc. of
SEMAPRO Conference, IEEE Computer Society, 2009, pp.
98–102.

[10] C. Gutierrez, C. A. Hurtado and A. A. Vaisman. Introducing
Time into RDF. IEEE Transactions on Knowledge and Data
Engineering, vol. 19:2, 2007, pp. 207–218.

[11] C. Gutierrez, C. A. Hurtado, and A. A. Vaisman. RDFS Up-
date: From Theory to Practice. In Proc. of ESWC Conference,
Springer-Verlag, LNCS No. 6644, 2011, pp. 93–107.

[12] C. S. Jensen, C. E. Dyreson (eds.), et al. The Consensus
Glossary of Temporal Database Concepts - February 1998
version. In O. Etzion, S. Jajodia, and S. Sripada, editors,
Temporal Databases — Research and Practice, Springer-
Verlag, LNCS No. 1399, 1998, pp. 367–405.

[13] G. Konstantinidis, G. Flouris, G. Antoniou, and
V. Christophides. A Formal Approach for RDF/S Ontology
Evolution. In Proc. of ECAI Conference, IOS Press, 2008,
pp. 70–74.

[14] Y. Theoharis, Y. Tzitzikas, D. Kotzinos, and V. Christophides.
On Graph Features of Semantic Web Schemas. IEEE Trans-
actions on Knowledge and Data Engineering, vol. 20:5, 2008,
pp. 692–702.

[15] P. Mika and H. Akkermans. Towards a New Synthesis of On-
tology Technology and Knowledge Management. Knowledge
Engineering Review, vol. 19:4, 2004, pp. 317–345.

[16] N. F. Noy and M. C. A. Klein. Ontology Evolution: Not
the Same as Schema Evolution. Knowledge and Information
Systems, vol. 6:4, 2003, pp. 428–440.

[17] A. Pugliese, O. Udrea, and V. S. Subrahmanian. Scaling RDF
with Time. In Proc. of WWW Conference, ACM Press, 2008,
pp. 605–614.

[18] RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Consortium, http://www.w3.org/TR/rdf-schema/ [re-
trieved 2011-09-10].

[19] Resource Description Framework. W3C Consortium, http:
//www.w3.org/RDF/ [retrieved 2011-09-10].

[20] K. Rohloff, M. Dean, I. Emmons, D. Ryder and J. Summer.
An Evaluation of Triple-store Technologies for Large Data
Stores. In Proc. of OTM Workshops, Springer-Verlag, LNCS
No. 4806, 2007, pp. 1105–1147.

[21] Semantic Web Tools. W3C Consortium, http://www.w3.org/
2001/sw/wiki/SemanticWebTools [retrieved 2011-09-10].

[22] SPARQL Update. W3C Consortium, http://www.w3.org/
Submission/SPARQL-Update/ [retrieved 2011-09-10].

[23] J. Tappolet, and A. Bernstein. Applied temporal RDF: Ef-
ficient Temporal Querying of RDF Data with SPARQL. In
Proc. of ESWC Conference, Springer-Verlag, LNCS No. 5554,
2009, pp. 302–322.

48Copyright (c) IARIA, 2011. ISBN: 978-1-61208-175-5

SEMAPRO 2011 : The Fifth International Conference on Advances in Semantic Processing

