
An Approach for Generating Semantic Annotations in Telecommunication Services

Simeona Harahap Cruz Pellkvist
University of Applied Sciences Technikum Wien

Höchstädtplatz 5, A-1200 Vienna, Austria
simeona.pellkvist@technikum-wien.at

Peter Reichl, Anna Fensel, Joachim Zeiss
FTW Telecommunications Research Center Vienna

Donau-City-Str. 1, A-1220 Vienna, Austria
{reichl | fensel | zeiss}@ftw.at

Abstract— This paper describes the design and implementation
of the “Semantic Generator” engine, which is used to trans-
form and generate data from semantic formats, i.e., RDF,
OWL or N3, to semantic and non-semantic formats, i.e.,
RDF/XML or text. The proposed lightweight approach maxi-
mizes the reuse of existing, widespread technologies while also
allowing easy integration of new technologies. The generator
engine’s capacity is demonstrated and evaluated for two use
cases with different requirements. On the one hand, it per-
forms annotation generation of mobile service descriptions. On
the other hand, the engine is used for mapping SIP messages
from and to ontologies in real-time scenarios. In both cases,
information available in a semantic format is mapped to the
resulting semantic or non-semantic annotations and vice versa.

Keywords - Semantic annotation, mobile services, micro-
service description, Session Initiation Protocol, IP Multimedia
Subsystem.

I. INTRODUCTION

In the last years, semantic technologies have gained increas-
ing interest in various fields of IT (Information technology),
like Semantic Web and Business Process Management. Re-
cently, there are also ongoing research efforts and projects on
how these technologies can be leveraged in the field of tele-
communications [1]. In particular, ontologies in the knowl-
edge layers of telecommunication architectures play an in-
creasing role for service platforms and mobile communica-
tions. As the integration of Telco, Internet and the Web takes
place, in order to achieve interoperability, telecommunica-
tion systems and services tend to rely on knowledge repre-
sented with the use of shared schemata, i.e., on ontologies
similar to those envisioned in the Semantic Web [2]. For
example, when users move between different service do-
mains, service delivery platforms might be necessary to dy-
namically change the service resources in order to provide
the best user experience based on the context information or
user preferences, e.g., by switching from one network opera-
tor to another, or between similar service components pro-
vided by the different service providers. Given efficient in-
teroperability and semantic policies, it could be possible to
substitute one service with another, if they can be proven to
be sufficiently similar [3]. Therefore, as it is the case with
services in general, semantic annotations will facilitate accu-
rate service description, discovery and composition of tele-
communications network services.

Among the many research projects in the engineering
field using semantic technologies, we will focus on two par-
ticularly interesting ones, which are carried out at the Tele-

communications Research Centre Vienna (FTW), Austria,
i.e., m:Ciudad1 and BACCARDI2. m:Ciudad addresses the
question of how to create and share micro-services between
the users of the mobile devices, where services should be
created and shared to other users on the spot. In this project,
service descriptions are generated out of information, which
is available in semantic formats like RDF (Resource Descrip-
tion Framework) [4] and OWL (Web Ontology Language)
[5] on the Web. For testing purposes, the service descriptions
are generated automatically according to defined rules and
schemata; and the users could share their own set up services
to groups of friends or an organization. On the other hand,
BACCARDI is an application-oriented research project with
a broad focus on next generation fixed and wireless networks
based on the Session Initiation Protocol (SIP) and using IMS
(IP Multimedia Subsystem) as a testbed platform. One of the
tasks in this context is to lift the header information of SIP
INVITE and BYE messages to semantically described re-
sources (i.e., RDF/N3 (Notation 3)). Furthermore, the trans-
formation of semantically described resources to SIP route
headers should be enabled to make round trips possible.
Eventually, this allows for the execution of high-level poli-
cies on a technical level [6].

This paper is structured as follows: Section II presents
the problem statement and a brief survey on relevant related
work. Section III introduces our general approach and the
Semantic Generator engine as our proposal to solve the prob-
lem. Section IV discusses the application of our prototype for
the mentioned two case studies and presents results from our
evaluation. Section V summarizes and concludes the paper
with a brief outlook on the future work.

II. PROBLEM STATEMENT AND RELATED WORK

The need for a transformation process that translates seman-
tic data to semantic or non-semantic formats (and vice versa)
with some rules set up in between is common to both pro-
jects. On a higher level, such processes are generally needed

1 m:Ciudad is a FP7 STREP that focuses on enabling end-user-generated

mobile services. The project is running from 2007 to 2010, the consor-
tium is comprised from 8 partners from several EU countries, coordi-
nated by Robotiker-Tecnalia, Spain.

 URI: http://www.mciudad-fp7.org.
2 BACCARDI (Beyond Architectural Convergence: Charging, Security,

Applications, Realization and Demonstration of IMS) is an Austrian
COMET project which has been carried out at the Telecommunications
Research Center Vienna from 2008 to 2010 in close collaboration with
Telekom Austria, mobilkom austria, Alcatel-Lucent Austria, Kapsch
CarrierCom and TU Vienna.

 URI: http://www.ftw.at/ftw/research/projects/ProjekteFolder/COM-4.

106

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

for automatic generation of semantic annotations and service
profiles, as well as for the purpose of testing and benchmark-
ing large-scale search mechanisms. As large amounts of se-
mantic annotations are time consuming and expensive to
produce by hand, the suggested service annotation generation
solution is of paramount importance, especially considering
the tremendous growth of the semantically annotated re-
sources. Thus, the main contribution of this work is an ap-
proach and a prototype providing a configurable and flexible
way to generate and transform telecommunication services
annotations.

Related work provides several frameworks and applica-
tions, developed and applied to transforming and generating
services using semantic technologies. In [7], an approach is
chosen to generate Web services automatically from a ser-
vice graph model. An abstract model of services is created,
and for this model a code generation is run to generate im-
plementation files. However, this approach does not use se-
mantic resources as an input. The approach chosen in [8]
makes use of software agents to parse HTML (Hyper Text
Markup Language) files and generates XML (eXtensible
Markup Language) from them, enriching them with specific
XML tags. Unfortunately it works on HTML only; therefore
this approach is not applicable to our problem as well. The
authors of [9] show how semantic data can be transformed to
non-semantic data exploiting the capabilities of Model
Driven Architecture in the domain of Business Process Engi-
neering.

While these approaches work well in their specific do-
mains, our goal is a more general solution, which can be
used for a broad scope of applications and facilitates building
user applications on proven traditional tools, while enabling
an easy integration of arbitrary semantic schemata. In our
solution, practically every semantic resource available on the
Web could serve as an input. This allows crawling and ex-
tracting relevant information from large volumes of inter-
linked ontologies and semantic annotation resources, particu-
larly, the whole Linked Open Data Cloud [10].

III. THE SEMANTIC GENERATOR ENGINE

A. Approach

While currently there are no ready to use applications avail-
able that can solve the entire transformation problem intro-
duced previously, there are at least some frameworks avail-
able, which can be leveraged to fulfill parts of the require-
ments. Therefore, we combine these frameworks in order to
use the advantages of each tool and integrate them to an en-
gine that produces the required results.

More specifically, the transformations addressed in our
work involve:

 Querying information from semantic resources,
 Querying information from SIP messages,
 Combining the data that has been extracted, and
 Formatting and splitting the data according to the re-

quirements.
The engine is required to be able to read the semantic re-

sources – in our case, RDF/XML, N3, and OWL – and also
to write, at least in RDF/XML format (for the m:Ciudad

case) and in text/N3 format (for the BACCARDI case).
Moreover, the tool must able to reformat and split combined
data according to given rules. In addition, querying should be
performed similar to the well-known and standard SQL syn-
tax in order for achieving an easy and familiar usage. The
extracted data should be able to be combined with or without
any repetition.

For an efficient employment of the available tools they
have to be combined using design patterns [11][12], which
are well known from software design. In general, a design
pattern is a template, which could be applied for several
situations in a certain condition in order to achieve a general
solution for a number of common problems, which happen
repeatedly. In order to achieve this we use “Pipes and Filters
Pattern” and “Adapter Pattern”.

In software engineering, Pipes and Filters usually mean
that the output or result of one application is used as input for
another one. The Pipes and Filters pattern in our case repre-
sents an architectural pattern for the overall application. Dif-
ferent forms of the inputs are passed to the first filter and are
processed there. This result is transferred to the second filter
for which it represents the input. This process repeats to the
next filter and so on. Therefore, this method is suitable to
transform the semantic data, in our case into an RDF/XML..

The Adapter pattern is also known as wrapper pattern (or
wrapper) and describes a technique used to make classes,
which have different interfaces that are compatible to each
other. An adapter may also be used to convert data to a suit-
able format. In our case, the adapter is used to wrap external
resources; in our case, XSLT (eXtensible Stylesheet Lan-
guage Transformation) and SPARQL (SPARQL Protocol
and RDF Query Language).

B. Main Engine

The main generator engine is the core integration layer built
upon the Pipes and Filters and the Adapter pattern. It repre-
sents an abstraction mechanism for the other frameworks,
provided they have serializable input and output, and rules
for controlling this transformation. This is achieved by im-
plementing the common Filter interface. Fig. 1 shows the
important core classes of the generator, specifically the filter
interface that is implemented for example by the SPARQL
filter and the XSLT filter.

Figure 1. Class diagram (excerpt)

107

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

1) Semantic Query Filter
Two semantic query filters have been implemented: the
SPARQL filter based on ARQ [13] using the Jena [14] tool-
kit, and a SeRQL (Sesame RDF Query Language) based
filter using the Sesame [15] toolkit. The SPARQL based
filter is our main filter for querying semantic resources in
this engine, whereas the SeRQL based filter is provided for
comparison to the SPARQL based filter, playing an impor-
tant role for the engine has and involving three main steps:

 First, the filter takes the semantic files, such as RDF
file, N3 file, OWL file, as the input.

 Using specific sets of rules, the input files are then
stored where the query is stored, either in SPARQL
or in SeRQL.

 Finally, the output is an XML file from the results of
the SPARQL and SeRQL query language. Both of
them use the XML result format from SPARQL such
that they can be easily replaced by each other.

2) SIP Query Filter
In this filter, the engine is assigned to separate the SIP mes-
sages into different fields for reasoning purpose. The input of
the SIP query filter consists of SIP messages, which are in
text format. The algorithm translates the SIP messages into
N3 serialization to be passed to a reasoner, which is sup-
posed to infer information over semantically annotated data,
based on logical rules. In our engine, this serialization can
theoretically be set to another format file, depending on
which rule is set. The input is read from the InputStream
and saves the result as a string. JAIN API [16] is used to
parse the string into a SIP message, before the default Jena
model is initialized. The filter is set to find out if the SIP
message is a SIP request or a SIP response. When the mes-
sage is already defined, its content then is separated to differ-
ent fields as Subject - Predicate - Object "sentences" in the
Jena model under the condition that the related field is not
null. The message is handled differently according to the SIP
request or SIP response. The result is written to an Output-
Stream.

3) Combining Filter
The purpose of this filter is to combine the queried output
results from the semantic filter. The input for this filter con-
sists of the output results that are written in an XML file
format from a semantic query filter. This filter has different
sets of rules for different purposes of output result; the rules
can be defined as requested. The filter combines the rules
and orders the elements, generates a maximum of results and
optionally considers uniqueness. The output of this filter is in
XML file format. The filter reads the config file, where it can
be specified if every input shall only be used once. Further-
more, this filter will take care of randomizing the results. The
output will be written as a result in XML.

4) Formatting Filter
The output result of the previous filter is not formatted yet
with respect to the user’s design, hence this procedure is
done in this filter. Two formatting filters have been imple-

mented: one based on XSLT, another one based on XQuery
(XML Query Language).

IV. CASE STUDIES

Having outlined our general approach in Section III, we will
now discuss two case studies where the suggested transfor-
mation approach has been applied, i.e., the research projects
m:Ciudad project and BACCARDI.

A. m:Ciudad

As already mentioned earlier, the m:Ciudad case study is
focusing on semantic descriptions of mobile micro-services.
For this purpose, a tool is required, which is able to trans-
form available semantic data written in RDF or OWL file
form to XML file form.

During the transformation, the data of semantic descrip-
tions in the form of RDF or OWL should be extracted, com-
bined/integrated, and reformatted to different RDF formats
according to the requirements. As input and output formats
may change, the transformation should be able to be adapted
in a flexible way.

In order to create mobile service descriptions, RDF and
OWL files constitute the input for our engine. These inputs
are queried and combined using the SPARQL filter over the
Linked Open Data Clouds [17], and the result is persisted to
an XML file. The output file of the first filter then becomes
the input file for the XSLT filter, which has again XML files
as output. This process could be developed to filters that are
piped, to support additional input or transformations, i.e., the
parsing/writing of SIP messages or replacing XSL transfor-
mations by another XML transformation language.

The implementation of this engine, which queries RDF-
and OWL-based knowledge bases, generates any required
number of various service annotation datasets required for
our testing and benchmarking purposes. These datasets are
compliant with the m:Ciudad’s schemata of the Service Pro-
file, i.e., the basic annotation of a service, and the Service
Capability, i.e., annotation of basic service behavior and re-
quirements. Each element has been formulated in different
fields according to what has been set on the rule. The number
of created datasets is large enough to be used, particularly,
for performance evaluation of the micro-service employment
algorithms.

Figure 2. and the subsequent listings illustrate the
m:Ciudad solution in more detail. Listing 1 represents one of
the input files, i.e., the bloggers.rdf, which is an RDF store
conforming to the FOAF (Friend of a Friend) ontology.
Listing 2 shows the configuration file that drives the transfor-
mation process. Listing 3 shows the configuration rule for the
first filter in the pipe, i.e., the SPARQL filter. An SQL-like
query asks the name from the FOAF ontology. In this query,
abbreviations for namespaces are defined using the keyword
’PREFIX’. Variables begin with a ’?’. The query listed
here basically translates to: Find an entity x that has a
foaf:name, bind this name to the variable Capabili-
tyName and return it. Listing 4 shows the intermediate result
for the capability name. Listing 5 shows the configuration file
of the combining filter as a result of the SPARQL query

108

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

above. In order to reformat the information and structure it
according to a service profile, an XSL stylesheet is used,
which is shown in Listing 6. As the intermediate result con-
tains all the result rows in one file, it is necessary to split
them in different files; this is achieved using a Xalan specific
instruction (xalan:write) for every sparql:result ele-
ment. For every sparql:binding, one element is created in the
example. E.g., if the binding is for CapabilityName, a
udlcp:Capability element is created. An attribute is
created for it, which has an attribute datatype, whose
value is set to string (using the corresponding XML schema
datatype). The value of the sparql:literal or
sparql:uri element in the input is put as content of the
created element. Finally, Listing 7 shows the resulting service
capability. The capability name derives from the foaf:name
in the foaf ontology.

Figure 2. mCiudad solution

<foaf:Agent rdf:nodeID="ni93487857">
<foaf:name> Pasta N Pizzor </foaf:name>
<foaf:weblog>
 <foaf:Document
rdf:about="http://www.example.com/pastapizzor">..

Listing 1. Input file: Friend-of-a-Friend (FOAF) RDF

<generatorConfiguration>
<workflow name="CapabilityWF">
<filter class="id.shc.genie.SparqlFilter">
<input>http://danbri.org/foaf.rdf</input>
<output>../work/CapabilityName.xml</output>
<rule>../etc/CapabilityName.sparql</rule>
</filter>...

Listing 2. Transform: Workflow Configuration file

PREFIX foaf : <http://xmlns.com/foaf/0.1/>
SELECT ? CapabilityName
WHERE { ?x foaf :name ?CapabilityName . }

Listing 3. SPARQL filter configuration

<sparql>
<head> <variable name="CapabilityName"/> </head>
<results><result>
<binding name="CapabilityName">
<literal xml:lang="en"> Pasta N Pizzor </literal>
</binding></result>...

Listing 4. SPARQL Profile result

COMBINE 100 :
CapabilityID unique
CapabilityName

CapabilityDescription
...

Listing 5. Combining filter configuration

<stylesheet version="1.0"
 extension−element−prefixes="xalan"
...
<output method="xml" encoding="ISO−8859−1" in-
dent="yes" />
...
<template match="sparql:result">
<xalan:write se-
lect="concat(’capability−’,position(),’.rdf’)">
<udlcp:Capability> <apply−templates />
</udlcp:Capability>
</xalan:write>
</template>

<template match="sparql:binding">
<if test="@name = ’CapabilityName ’">
<udlcp:CapabilityName>
<attribute name="datatype"namespace="&rdf;#">
&xsd;#string
</attribute>
<value−of select="sparql:literal|sparql:uri"/>
</udlcp:CapabilityName>
</if>
...

Listing 6. Formatting filter configuration: XSL Stylesheet

<udlcp:Capability
xmlns:udlcp="http://www.mciudad-
fp7.org/schemas/udlcp#">
 <udlcp:CapabilityID>59</udlcp:CapabilityID>
 <udlcp:CapabilityName>Pasta N Piz-
zor</udlcp:CapabilityName>
 ...

Listing 7. Output file: Service Capability RDF/XML

Summarizing, the engine supports two different lan-
guages for semantic queries, based on two different frame-
works and two different XML transformation languages, in
order to investigate how the flexibility of the engine is able
to cope with different applications.

B. BACCARDI

In the BACCARDI use case, semantic web based policy
definitions are enabled, which compose and control applica-
tion services hosted in an IMS core network. In the
BACCARDI Service Oriented Data-driven Architecture
(BACCARDI SODA) working group, a N3-based semantic
reasoner, the so-called “policy engine” [17][18], is used to
make semantic policy-based decisions on how to combine or
modify behavior of application services, which communicate
via SIP or ISC (IMS Service Control), respectively (ISC is
an extension of SIP for call and service control purposes in
IMS). Instead of talking to the application services directly,
the SODA architecture proposes to intercept SIP INVITE
and BYE messages to cancel, redirect or manipulate message
information based on policy decisions of the reasoner, and
thus to compose and control service behavior in real time.

In the BACCARDI case, SIP messages have to be trans-
formed to N3 statements, which are subsequently sent to the
reasoner over HTTP. The answers received from the rea-

109

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

soner in terms of N3 have to be parsed, and accordingly SIP
headers are manipulated.

For this purpose, SIP messages have to be intercepted by
a SIP proxy servlet. These messages have to be translated to
N3, for which a special filter is needed. As this is the only
transformation step, it shall be able to directly embed the
filter into the corresponding servlet, without having to use
the engine for setting up the transformation. Figure 3. depicts
the basic solution for the BACCARDI case, while Figure 4.
shows how servlet container, SIP proxy servlet, SIP2N3 fil-
ter and the reasoner service work together.

Figure 3. BACCARDI solution

Figure 4. Setup for Baccardi

For the BACCARDI use case, the result has been applied
to different scenario episodes. The result is shown in log
files, demonstrating the reaction of the engine to the scenar-
ios that have been set up. As a specific example, we now
consider the “Forward” scenario, which is applied to check
when the SIP user agent makes a call and this call is then
forwarded to another participant. Suppose the caller is de-
fined as Alice and the callee is defined as Bob, while Charlie
is define as the one whom the call shall be forwarded to.
Listing 8 shows how the original log file of the SIP INVITE
message looks like. This SIP request is translated to N3
when passing the engine, and forwarded to the reasoner. As
we can see in Listing 9, the SIP INVITE message has been
translated to N3 for reasoning purposes. The reasoner an-
swers with "FORWARD" using Charlie’s username/number.
Listing 10 shows the response of the reasoner mock, and Listing

11 shows the modified forward SIP INVITE message, where

Bob’s phone doesn’t ring, instead Charlie gets Alice’s calls.
Charlie answers the call and the answer 200 OK message
from the forward number, see Listing 12.

During our practical experiments, we observed that the
engine gives proper response and translates the original mes-
sages to N3 for reasoning purposes. In the BACCARDI
SODA case, the implementation of this engine has success-
fully transformed the header information from SIP INVITE
and BYE messages to semantic annotated data instances ac-
cording to the BACCARDI SODA ontology. The header
information from SIP INVITE and BYE messages are trans-
formed to N3; also SIP route headers can be manipulated,
based on the results of the N3 based reasoner according to
the BACCARDI SODA ontology, in order to send, cancel or
forward SIP messages to other application servers.

INVITE sip:Bob@128.131.202.184:22244 SIP/2.0
Max-Forwards: 70
Content-Length: 255
To: "Bob"<sip:Bob@128.131.202.184:22244>
Contact: <sip:Alice@128.131.202.184:62901>
Cseq: 1 INVITE
Content-Type: application/sdp
From: "Alice"<sip:Alice@test.com>;tag=684e0942...

Listing 8. Scenario Forward: Original SIP invite message

<request> sip:contact
"<<sip:Alice@128.131.202.184:62901>>" .
<request> sip:cSeq 1 .
<request> sip:protocol "SIP/2.0" .
<request> sip:content_type "application/sdp" .
<request> sip:request_url
"<sip:Bob@128.131.202.184:22244>" .
<request> sip:max_forwards 70 .
<request> sip:to
"sip:Bob@128.131.202.184:22244" .
<request> sip:content_length 255 .
<request> sip:from "sip:Alice@test.com" .
<request> a sip:INVITE .
...
{<response> soda:action ?a} => [] .
{<response> soda:add_header ?b} => [] .
{<response> soda:delete_header ?c} => [] .
{<response> soda:append_value ?d} => [] .

Listing 9. Scenario Forward: SIP invite message translated to N3

<response> soda : action soda : forward . <re-
sponse> soda:forward_address
"sip:Charlie@128.131.202.184:51267".

Listing 10. Scenario Forward: Reasoner answer

INVITE sip:Charlie@128.131.202.184:51267 SIP/2.0
Max-Forwards: 70
Content-Length: 255
To: "Bob"<sip:Bob@128.131.202.184:22244>
Contact: <sip:Alice@128.131.202.184:62901>
Cseq: 1 INVITE
Content-Type: application/sdp
From: "Alice"<sip:Alice@test.com>;tag=684e0942...

Listing 11. Scenario Forward: Modified SIP invite message

SIP/2.0 200 OK
Record-Route:
<sip:128.131.202.184:5060;lr;fid=server_1>
Content-Length: 253

110

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

To:
"Bob"<sip:Bob@128.131.202.184:22244>;tag=126fb82d
Contact: <sip:Charlie@128.131.202.184:51267>
Cseq: 1 INVITE
Content-Type: application/sdp
From: "Alice"<sip:Alice@test.com>;tag=684e0942...

Listing 12. Scenario Forward: 200 OK message

An emulation of the reasoner has been developed to test
if the SIP proxy servlet and filter reacts properly to the SIP
messages. It is implemented as an HTTP servlet, and allows
the configuration for different scenarios, i.e., the unchanged
forwarding or redirection of a SIP message, the cancellation
of the related SIP dialog or the manipulation of header files
in the SIP message based on the response of the reasoner.
Both, the SIP proxy servlet and the BACCARDI SODA
“policy engine” represent a semantic IMS SCIM (Service
Capability Interaction Manager), which controls services
across application servers in the IMS network.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have demonstrated how to successfully ap-
ply semantic technologies for scalable and flexible data
transformation and generation within a single prototypical
engine, i.e., the Semantic Generator. The chosen approach
and the corresponding solution has been validated and tested
in two different case studies from two ongoing telecommuni-
cations industrial projects.

For the m:Ciudad case, we have successfully queried se-
mantic resources from the Web, aggregated and combined
the results, and transformed them, thus generating mobile
service descriptions according to different configurable set of
rules. The engine was able to successfully generate 10,000+
datasets of service profiles and capabilities. In the
BACCARDI case, we have transformed the different SIP
messages to N3 for reasoning purposes. The developed filter
has been embedded in a SIP proxy servlet, and this approach
has been evaluated for different test scenarios. The results
have been documented by screen capturing and log files,
which show that the chosen approach and the developed so-
lution fulfill the requirements concerning functionality.

It could be argued if the development of a common archi-
tecture has really been necessary, or if two different architec-
tures for solving the two problems should be preferred.
While it is not necessary to use the same architecture, this
approach has certain advantages, for example it extends
maintainability and enables combination of filters. For in-
stance, the SIP2N3 filter cannot only be used in a real-time
scenario like in the BACCARDI project, but also to enable
lifting of information from log files for enabling reasoning or
for providing input to service generation. Further, it allows a
step-by-step and bottom-up style of development, thus reduc-
ing the entry barrier to semantic technologies for users who
are currently using traditional technologies. The generator
engine enables them to continue to use their proven tools
while facilitating and promoting the use of semantic tech-
nologies.

Summarizing, the proposed approach has been success-
fully evaluated for different applications. The developed

engine is flexible, and its behavior can be changed easily by
adapting configuration files. Furthermore, the extensible
architecture of the engine also allows the user to create their
own filters according to their needs with reasonable effort,
which underlines once more the efficiency of our solution.

ACKNOWLEDGMENT

Part of this research has been funded by the Austrian Gov-
ernment and the City of Vienna within the competence cen-
ter program COMET.

REFERENCES
[1] A. V. Zhdanova, N. Li, and K. Moessner: Semantic Web in

Ubiquitous Mobile Communications. The Semantic Web for
Knowledge and Data Management (Ed.: Ma, Z.), IGI Global, August
2008.

[2] S. Tarkoma, C. Prehofer, A.V. Zhdanova, K. Moessner, and E.
Kovacs: SPICE: Evolving IMS to next generation service platforms.
In: Proceedings of the 3rd Workshop on Next Generation Service
Platforms for Future Mobile Systems (SPMS 2007) at the 2007
International Symposium on Applications and the Internet, IEEE
Computer Society Press, 2007.

[3] T. van Do and I. Jorstad: A service-oriented architecture framework
for mobile services. In: Proceedings of Advanced Industrial
Conference on Telecommunications/Service Assurance with Partial
and Intermittent Resources Conference/E-Learning on
Telecommunications Workshop AICT/SAPIR/ ELETE, 17-20 July
2005, pp. 65 – 70.

[4] http://www.w3c.org/RDF, 2009-08-24, 2010-02-09.

[5] G. Antoniou and F. van Harmelen. Web Ontology Language: OWL.
Springer-Verlag, 2003.

[6] A. V. Zhdanova, J. Zeiss, A. Dantcheva, R. Gabner, and S. Bessler: A
Semantic Policy Management Environment for End-Users and its
Empirical Study. Volume 221/2009 of Studies in Computational
Intelligence. Springer Berlin / Heidelberg, 2009.

[7] E. Cho, S. Chung, and D. Zimmerman. Automatic Web Services
Generation. In HICSS, pages 1–8. IEEE Computer Society, 2009.

[8] D. Camacho and M. D. R-Moreno: Web Data Extraction using
Semantic Generators. In: International e-Conference of Computer
Science (IeCCS 2006), LNCS, pp. 34–38, 2007.

[9] C. Blamauer and D. M. R. Lintner: Integrating Semantic Business
Process Management and Viewbased Modelling. Master’s thesis,
Vienna University of Technology, 2009.

[10] C. Bizer, T. Heath, and T. Berners-Lee: Linked Data - The Story So
Far. International Journal on Semantic Web and Information Systems,
Special Issue on Linked Data, 2009.

[11] E. Gamma, R. Helm, J. Vlissides, and I. R. Johnson: Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[12] F. Buschmann, R. Meunier, H. Rohnert, and P. Sommerlad: Pattern-
oriented Software Architecture - A System of Patterns. J. Wiley and
Sons Ltd., 1996.

[13] http://jena.sourceforge.net/ARQ/documentation.html, 2010-02-04.

[14] http://jena.sourceforge.net/, 2010-02-04.

[15] http://www.openrdf.org/doc/sesame2/2.3.1/users/index.html, 2010-
02-09.

[16] https://jain-sip.dev.java.net/, 2010-01-08.

[17] J. Zeiss and O. Jorns: Using Semantic Reasoning and Privacy Policies
in Ubiquitous Envi- ronments. UBICOM2007 Workshop: First
International Workshop on Security for Spontaneous Interaction,
IWSSI 2007, Innsbruck, Austria, 16th September, 2007.

[18] S. Bessler and J. Zeiss: Using Semantic Policies to reason over User
Availability. Second International Workshop on Personalized
Networks, Pernets’07, Philadelphia 2007.

111

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

