
Towards Dynamic Ontology

Integrating Tools of Evolution and Versionning in Ontology

Perrine Pittet, Christophe Cruz, Christophe Nicolle

LE2I, UMR CNRS 5158

University of Bourgogne - Dijon, France

{perrine.pittet, christophe.cruz, christophe.nicolle}@u-bourgogne.fr

Abstract—Since Gruber’s definition, a lot of works focused on

evolution or versioning issues. Not much attention has been

paid to integrated solutions which resolve both these two

purposes. In this paper we present a new semantic architecture

that combines versioning tools with the evolution process. This

architecture called VersionGraph is integrated in the source

ontology since its creation in order to make it possible to evolve

and to be versioned.

Keywords-evolution; versioning; Versiongraph; ontology

lifecycle;change operations;

I. INTRODUCTION

Many works have been published about the definition of
ontology to bridge the gap of semantic heterogeneity.
Literature now generally agrees on the Gruber’s terms to
define an ontology: explicit specification of a shared
conceptualization of a domain [1]. The domain is the world
that the ontology describes. It can be a general domain or a
more specific one. This description uses a vocabulary of
concepts which is understandable and agreed by people of
the domain; here is the meaning of “shared
conceptualization”. The ontology can be implemented in
several languages with a different level of formalization and
expressivity, with no ambiguity that’s why ontology is an
“explicit specification”. The development of ontology is
becoming a common task and an inescapable supportfor
information systems interoperability [2]. This research
domain is mature and the first feedbacks arise. New
scientific deadlocks are identified concerning the lifecycle of
ontology especially the evolution phase. Discussing about
those issues leads us to first ask what part of the ontology
definition is concerned by this lifecycle and where the
evolution can be situed. Regarding to [3] Ontology lifecycle
depends from changes occurring in the domain,
conceptualization and/or specification of the ontology.
Moreover, as depicted in Figure 1 (red dotted arrows), a
change on one of this identified sources can impact a change
in the other sources. Figure 1 shows the causes of changes
related to the domain (a), the conceptualization (b) and the
specification (c). We can notice that a change cause in (a)
and (b) can have a change consequence in (b) and (c).
Proposition a new classification of the identified changes in
the state of art of [26] we have identified two types of change
interaction:

Firstly, the domain can impact conceptualization. These
changes are similar to changes in database schemas [5]. For
example new concepts/relationships must be considered or

existing concepts/relationships must be improved or deleted.
That’s the role of Domain Evolution [6] or Domain Fusion
(Ontology Integration [7], Ontology Merging [8]) proposals.
The domain can also affectspecification. For example a
complete translation to a new specification corresponds to
Ontology Translation_1[9] proposals.

Secondly, the conceptualization can impact the
specification. For instance new models in the domain are
introduced and require a change in the concept/relationships
organization, formalization and expressivity. That’s the
purpose of Conceptualization Evolution [10] and Conceptual
Revision (Ontology Debugging [11]) proposals.
Nevertheless, we note that four types of change, used to
resolve conceptual heterogeneity (conceptualization part),
don’t impact the ontology itself: Ontology Mapping [12],
Ontology Matching [13], Ontology Articulation [13] and
Ontology Morphism [14]. These last ones add an external
mapping to bridge the semantic gap. We argue that a change
in the specification doesn’t impact the conceptualization or
the domain when the specification language is enough rich to
express this change. It’s the case of Description Logics
languages[15] whichdisplay different levels of expressivity
by holding different ontology constructors.So, we can choose
one of them depending on the level of expressivity we need.

From this discussion, we deduce that the evolution phase
concerns the domain and the conceptualization of the
ontology. The Conceptualization Evolution is a direct
consequence of the Domain Evolution. The new research
area which aims at resolving the impact of change
management on ontology is known as Ontology Dynamics
[16] Ontology Dynamics deals with all issues concerning
changes impacting the ontology (change of the domain,
change in the conceptualization, or change in the
specification), especially maintenance and evolution. The
ontology development is a dynamic and incremental process
starting with the creation of a brute ontology which has to be
revised, refined and populated [17]. In the literature, a lot of
papers have addressed the problem of managing the lifecycle
of the existing ontology [18]. Most of them propose tools
dealing with the different causes of change as depicted in
figure 1. The major part put the emphasis on the
evolutionissues [19]. Some articles cope with versioning
solutions to handle different versions of evolved ontologies
[20]. Nevertheless not much attention has been paid to the
characterization of an ontology which integrates in its
definition the mechanisms to evolve and being versioned.
We can cite the proposition of [40,41], which approach is
quite similar to ours but differs in its final solution.

25

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

This paper focuses on a generic architecture make it possible
to combine the definition of ontology withevolution and
versioning operators. This architecture can be used with any
type of ontology based on description logics and especially
OWL-DL formalism [21]. An implementation of this
architecture is presented at the end of this paper. It is an
extension of the Jena’s library [22] by override ofthe existing
ontology handling operators.
This paper is articulated in three parts. The first part presents
a background on ontology evolution and versioning. The
second part describes the VersionGraph Architecture. The
last part is an example of evolution versioning based on the
Wine Ontology [23].

II. EVOLUTION AND VERSIONNING BACKGROUND

According to [24], ontology lifecycle is divided in seven

steps: needs detection, conception, management and

planning, evolution, diffusion, use, and evaluation.The

needs detection phase starts witha detailed inventory of the

domain and the various purposes.Like evolution phase,

conception phase needs: knowledge acquisition, shared

conceptualization building, formalization (Semantic Web

formalisms[25]…) and integration of the existing resources

(other ontology, applications…).The phase of management

and planning underlines the importance of having a constant

monitoring and a global policy to detect or initiate, prepare

or evaluate the lifecycle iterations. This work intends to

guarantee that an iteration of the lifecycle is activatedwhen

an evolution is ready to be completed. The management step

requires tools not only to prepare the ontology to adapt the

domain changes but also to keep trace of the previous

versions of the ontology. These goals can be reached with a

versioning system [26].Diffusion phase deals with the

deployment of the ontology. The use phase encloses all the

activities related to the access of the ontology. Finally, the

evaluation phase aims at evaluating the ontology state.

Moreover, like the needs detection phase,it collects

beforehand the knowledge of the domain and can also rely

on previous studies or feedbacks. Except for the evolution

and management phases, all the steps described can be

considered as mature domains. Furthermore, this description

of the lifecycle shows that evolution and

managementremains the most complex phases. Evolution is

the backbone of the lifecycle iterations. Therefore, the

change management process is totally based on it.

 The rest of our state of art is articulated in three parts.

According to the literature, we will first define the evolution

role, operations and process. Then we’ll have a look at the

existing solutions for change representation and ontology

versioning. We will see how to link the evolution process

and a versioning system in order to integrate both of them in

existing ontologies.

A. Ontology Evolution

As stated by [26], ontology evolution aims at responding to

one or several changes in the domain or the

conceptualization by applying them on the source

ontology.This brief definition looks abstract and leads us to

ask: what kind of changes does the evolution apply? How

evolution applies them? What are the criteria to respect?

How can we manage a goodevolution? Evolution changes

are defined in the literature and especially in [9] as a

succession of simple or complex operations the user wants to

apply on the intension (schema) or the extension(data) of the

ontology.This evolution aims at adapting the ontology to the

changed domain. Applying and propagating thechange are

often manual tasks but can be done automatically by

synchronization with the domain.According to [27] these

tasks usually occur during the use phase of the ontology.

Ontology Dynamics clearly define the evolution criteria. [28]

and [29] qualify the maintenance of the ontology as the most

important criterion.Evolution has to maintain whatever relies

on the ontology.Maintaining the ontology consistent and

pertinent, in a consensus is an inescapable issue of

evolution[30]. Applying changes on ontology can turn the

conceptualization inconsistent and irrelevant. That’s why an

evolution should never be validated before the user has a

preview of the impact of the changes on the ontology. This

impact can only be estimated if the evolution operations are

semantically clearly defined.

In order to assure that this process is fully respected, some

works propose an approach in six phases. 1. the change

detection phase consists in detecting what changes occurred

in the domain or in the point of view must be propagated to

the conceptualization. Lots of papers in the Ontology

Dynamics deal with this phase and propose methods and

tools like integrated event handlers[27], ontology learning

[31] etc… 2. the representation phase aims at representing

the selected changes with ontological operations. [10]

classifies the evolution operations in two types: elementary

(atomic) operations and composed (complex)

operations.According to [10], elementary operations are

simple operations that modify only one entity like

addition/suppression of classes/relations, of hierarchy,

domain, range links, of class/relation properties like disjoint,

transitivity, etc…whereas composed operations are a

composition of several elementary operations.The choice of

composed operations depends on the granularity of the

evolution needs. Therefore, we aimat displaying our

proposition to the major part of formal ontologies. So we

need to integrate usual operations. Usual operations

correspond to operations the ontology that developers are

the most expected to use when creating and evolving an

ontology. In addition to elementary operations, the literature

gives some lists of usual operations (e.g. [32,33]). In

complement, we have extracted other usual operations like

“change the place of an entity”…from the application

Protégé. Moreover we make a distinction between

operations on the intension and operations on the extension.

The cited works on change operations don’t specify specific

operations for the instances because they argue that an

instance can become a class [10]. However, we maintain

that schema operations can’t be confounded with instance

26

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

operations. Actually, it is impossible to create an instance

(instance operation)related to a class if this class is not

created. Inversely a class can be created (schema operation)

without instances. 3. the semantic phase prevents the user

from inconsistency risks by determining the sense of the

represented changes. For example, if composed operations

have been selected, this phase will allow seeing their

decomposition in elementary operations. 4. the

implementation of the changes alerts the user of the impact

on data in terms of data gain or loss. [10] gives these

impacts from a list of 22 usual operations (the elementary

ones and some composed). 5. the propagation phase aims

at informing all the dependent parts of the ontology (other

ontologies, application) of these changes. 6. Finally, comes

the validation of the changes. In the following part we will

see how our proposition can integrate these operations in the

versioning system and follow these evolution phases.

B. Versioning

This section is articulated in three parts. First we define the

role of versioning, bringing our new vision on this

definition; Then we describe the versioning process of our

versioning system based on the 6 phases of evolution

process. A state of art on the existing solutions of change

representations will help us to build the tools needed in this

process. Finally we present our suggestion to permit the

identification and the retrieval of a version of an ontology.

[26] gives in 2007 a very strict definition of the role of

versioning : give a transparent access to different existing

versions of an ontologyby creating a versioning system.This

system identifies the versions by their “Id” and delimits

their mutual compatibility. In the past three years, Ontology

Dynamics proposals extend its role: manage several

chronologic and multitemporal versions [34], at local or web

level [35], when collected, distributed, accessed by search

engines [35]. All these definitions correspond to a

retroactive versioning because versions of the ontology have

to preexist. However in our objective, we want to integrate a

versioning system since the creation of the first version of

the ontology. Therefore, we need, as the ontology

development, a dynamic and incremental process, which

could take into account a new version at each evolution

phase. That’s why we propose to merge the evolution

process (following the 6 phases) with the versioning one.

First, the user chooses the list of operations to apply (cf.

change detection phase). The versioning system formalizes

them (cf. representation phase), turn them semantically

understandable (cf. semantic phase), records and

implements them (cf. implementation phase).Then after the

propagation of the changes, (cf. propagation phase), the user

validates them (cf. validation phase) and the versioning

system applies them and generates the new version of the

ontology corresponding to an evolution iteration. Finally the

versioning system can give a transparent access to both of

the versions with criteria defined by the user [36]. It can

delimit compatibility by retracing evolution operations [32,

33]. To follow this process, we need to specify the tools

displayed by our versioning system. According to [37], a

change specification should enclose an operational change

specification (our list of operations), then the conceptual

relationship between the first version and the new one (the

selected operations on the selected entities).The first phase

of the evolution process is then completed. The next step is

to represent these changes.Several approaches are proposed

in the literature to represent changes. Major part of them

uses logs.Versioning logs [38] record the different versions

of an ontology by representing each entity at a given time.

For each class, relation and instance, a new instance of

“EvolutionConcept” class is created. [37] argues that

metadata should be added to identify this change. In

versioning logs, each instance is annotated with metadata

(Id, cause, transaction time, state validated or not…).This

solution is interesting if the versioning log can be integrated

in the ontology. However for our purposesthere is no need

to represent each entity if it’s not modified by the evolution.

Evolution logs [39] don’t save the versions but act like a

change history. Not each entity but each substitution in the

ontology is recorded in order to be reused when the user

wants to access a version.Tracing the substitution rather

corresponds to our objectives as a substitution contains the

selected operations and the entities affected. In order to cope

with our evolution process we propose to create a Version

concept like in the versioning logs integrated in the

ontology that will be created at each evolution iteration.

This Version concept encloses: 1/the substitutions operated

in the intension or 2/ those operated on the extension and3/

the metadata.Then, the implementation phase can be helped

by introducing event detectors on data. In the application

Jena supporting the ontology, the idea is to insert methods

using “ActionListener” objects. The propagation phase can

be performed by generating events activating the

“ActionListener” objects. Finally, the validation is similar to

the “Commit” operator of a DBMS, can be done by a simple

click by the user. Our incremental versioning process

following the 6 evolution phases constitutes the first part of

our versioning system.

The second part corresponds to the transparent access

definition. The first issue is the identification of the

versions. Most of the versioning systems use “Id” of

theontologies to identify them [35]. Though, it’snot enough

to identify in which version a change on a certain entity

occurred. As we have introduced metadata and the list of

substitutions occurred when a Version is created, those data

can serve as search criteria to identify and retrieve the right

version. We have chosen to extend Jena operators (access

on ontology etc…) in order to take into account the search

criteria. This extension can be performed by an override of

the access methods. For example, by adding metadata and

operation attributes. This state of art permitted us to build

the evolution and versioning process of our proposition. We

also managed to design the versioning tools in order to

represent changes and access the ontology.

27

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

III. VERSIONGRAPH ARCHITECTURE

In this section, we present the VersionGraph architecture

which implements the choices of our state of art. First, we

focuses on the operations corresponding to the evolution

operations. Then we describe our versioning system.

Finally, we give an example of evolution on the Wine

ontology.

A. Evolution Operations

Contrarily to the [4] proposition, the schema and instance

operations are differentiated respectively by

SchemaOperation and InstanceOperation.

SchemaOperationtype operations correspond to the

creation and deletion of classes (AddClass) and properties

(AddProperty) but also to additions and deletions of

restrictions on them. We distinguish restrictions on the

classes and properties or properties of the data link

hierarchy (HierarchyLink) such as class / subclass,

property / sub-property. Also in the class restrictions,

limitations like classes / properties such as the relationship

between properties and classes (ClassPropertyLink,

ClassDataPropertyLink), cardinality

(ClassPropertyCardinality) are classified. Also in the

restrictions we find domain and range restrictions of

attributes (PropertyAttributeLink). Finally

TypeProperty operations are used to define a specific

constraint of a property (transitive, symmetric etc ...).

InstanceOperationtype operations, correspond to

operations of addition and deletion of individuals and

statements about these individuals. We distinguish between

the assertions relying individuals to the values

(DataPropertyAssertion) and those specifying the

types for these individuals (ObjectPropertyAssertion).

B. From evolution to versioning

From these evolution operations and the study of the

different versioning solutions of our state of art, we derived

a versioning system. At each evolution of the ontology, the

system stores in the ontology, the changes impacted by the

operations used and the context. This versioning system is

an independent ontology which intends to be integrated into

the existing ontology by a simple addition operation. Then,

the user can start a first evolution of ontology in choosing

whether to change the schema (intension) or data

(extension) using the above operations. Each list of changes

chosen by the user during the evolution is kept using a

concept SchemaVersionGraph for SchemaOperation

operations and InstanceVersionGraphfor

InstanceOperationoperations on instances by specifying

which elements of the ontology are concerned (concepts,

relationships...). Contextual information can be added (as

version, date, author, description...). These data are traced

during the evolution using a concept of context

VersionContext. The set containing

SchemaVersionGraph or InstanceversionGraph and

VersionContextis called VersionGraph. Figure 2

depicts an overview of the ontology schema. For more

clarity, it only shows concepts and their relationships under

6
th

 hierarchical degrees. In a transparent way, each

application of changes made by the user generates a new

VersionGraph.TheVersionGraph definition in Protégé is

presented in Figure 3.As depicted in this figure a

VersionGraph contains a link with the previous version of

the ontology (hasPreviousVersionGraph). It's actually a

link to the core ontology (for the first VersionGraph) or to

the previous VersionGraph.Because of its nature, our

system of evolution and versioning can be integrated into

applications using ontologies Jena. The access operations of

the library Jena can be overridden by the criteria of change

and context. Until now, proposals for versioning are often

accompanied by a specific application that the user must

install to access the version it wants if the use of URI is not

enough (Evolva). However, many ontologies are accessed

using a Java API Jena. Indeed, this library supports

ontology-based formalisms like RDF, RDFS, OWL and the

various DAML + OIL. Jena contains all the methods to

access and edit ontologies. In addition, it also implements

all the basic operations of evolution and the commonly used

composed ones. Overridden access methods are able to take

into account the criteria of versions thanks to new attributes.

These criteria are integrated into the ontology itself as we

saw in the previous paragraph.

C. The Wine Ontology Versionning

The Wine ontology is an ontology example in which

international wines are described. For the first step, we

import the VersionGraph ontology into the Wine ontology

by an addition operation. Then the system creates the first

version of the wine ontology with a first instance of

VersionGraph. This Versiongraph only has a link with the

source ontology.

<vg :VersionGraph#VersionGraph0>

p:hasPreviousVersionGraph

<http://www.w3.org/TR/owl-guide/wine.rdf>;

Then we want to add the “StrawWine” wine which doesn’t

exists in the Wine ontology. Straw Wine’s fruit is selected

then dried in the sun so that the juice is very concentrated in

flavor and sugar. So it is a dessert style wine sometimes

heavy or balanced or straw gold color. It can be made from

red grapes Cabernet Franc and Cabernet Sauvignon or

Chardonnay white grapes and Sauvignon Blanc. To add this

new concept and describe it, the system creates another

VersionGraph. This new one islinked with the previous

one.The system specifies a SchemaVersionGraph which

contains the operations needed to describe and add the

concept in the ontology.

VersionGraph1 description

<vg:VersionGraph#VersionGraph1>

28

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

p:hasPreviousVersionGraph<vg:VersionGraph#V

ersionGraph0>;

p:hasDate "11/05/2010";

p:hasAuthor "Perrine PITTET";

p:hasSchemaVersionGraph

<vg:SchemaVersionGraph#SchemaVersionGraph1>;

AssociatedSchemaVersionGraph1 description

<vg:SchemaVersionGraph#SchemaVersionGraph1>

p:hasAddClass <rdfs:class#StrawWine>;

p:hasAddClassHierarchyLink

<vg:ClassHierarchyLink#ClassHierarchyLink1>;

p:hasAddClassDataPropertyLink

<vg:ClassDataPropertyLink#ClassDataPropertyLink1>;

p:hasAddClassDataPropertyCardinality

<vg:ClassDataPropertyCardinality#ClassDataProperty

Cardinality1>;

p:hasAddClassDataPropertyCardinality

<vg:ClassDataPropertyCardinality#ClassDataProperty

Cardinality2>;

Description des SchemaOperation utilisées

<vg:ClassHierarchyLink#ClassHierarchyLink1>

p:class <rdfs:class#StrawWine>;

p:subClass <rdfs:subClassOf#DessertWine>;

<vg:ClassDataPropertyLink#ClassDataPropertyLink1>

p:class <rdfs:class#StrawWine>;

p:dataProperty <owl:DataProperty#hasColor>;

p:value <rdf:resource#Golden>;

<vg:ClassDataPropertyCardinality#ClassDataProperty

Cardinality1>

p:class <rdfs:class#StrawWine>

p:dataProperty <owl:DataProperty#hasBody>

p:value <rdf:resource#Full> and

<rdf:resource#Moderate>

<vg:ClassDataPropertyCardinality#ClassDataProperty

Cardinality2>

p:class <rdfs:class#StrawWine>

p:dataProperty

<owl:DataProperty#madeFromGrape>

p:value (<rdf:resource#CabernetSauvignon>

and <rdf:resource#Carbernetfranc>) or

(<rdf:resource#Chardonnay> and

<rdf:resource#SauvignonBlanc>)

Then, we want to add an individual of Straw Wine type:

“Vin Paillé de Corrèze”. First, we need to validate the

previous changes by a “Commit”. Then changes in the

schema are recorded and the new schema version is

propagated to the ontology. A third VersionGraph is

generated for the addition of the individual. This time it

contains an InstanceVersionGraph.

VersionGraph2 description

<vg:VersionGraph#VersionGraph2>

 p:hasPreviousVersionGraph

<vg:VersionGraph#VersionGraph1>;

 p:hasDate "12/05/2010";

 p:hasAuthor "Perrine PITTET";

 p:hasInstanceVersionGraph

<vg:InstanceVersionGraph#InstanceVersionGraph1>;

#AssociatedInstanceVersionGraph1 description

<vg:InstanceVersionGraph#InstanceVersionGraph1>

 p:hasAddIndividual <vg:AddIndividual#AddInd

ividual1>

 p:hasAddMemberClass <vg:AddMemberClass#AddM

emberClass1>

 p:hasAddObjectPropertyAssertion

<vg:AddObjectPropertyAssertion#AddObjectPropertyAssertion1>

InstanceOperationdescription

<vg:AddIndividual#AddIndividual1>

 p:individual <rdf:resource#VinPaillé>

<vg:AddMemberClass#AddMemberClass1>

 p:individual <rdf:resource#VinPaillé>

 p:class <rdfs:class#StrawWine>

<vg:AddObjectPropertyAssertion#AddObjectPropertyAssertion1>

 p:individual <rdf:resource#VinPaillé>

 p:objectProperty <owl:ObjectProperty#locatedIn>

 p:value <rdf:resource#FrenchRegion>

IV. CONCLUSION

Ontology evolution and versioning are recent domains of

search. Most of current ontology versioning approaches are

not based on the evolution process. Rare are the solutions

which integrate these mechanisms since the creation of the

ontology. Our proposed architecture Versiongraph is a

semantic solution towards the characterization of a dynamic

ontology which reaches these objectives. Our ongoing

research shows preliminary results on evolution of several

ontologies like Wine, FOAF or Pizza. Our short coming

plan is to enhance our evolution and versioning process on

several projects applied to online press comments, tourism

and town heritage ontologies.

REFERENCES

[1] Gruber, T.,R. - A translation approach to portable ontologies-
Knowledge Acquisition ,1993.

[2] Moguillansky, &al - A Theoretical Model to Handle Ontology
Debugging & Change Through Argumentation – Proc. of the IWOD
at ESWC 2008, Karlsruhe, Germany. 2008.

[3] Klein, M., Fensel, D. - Ontology Versioning on the Semantic We- .
s.l. : SWWS Standford, 2001, SWWS Stanford.

[4] Jaziri W., A methodology for ontology evolution and versioning, The
Third International Conference on Advances in Semantic Processing
(SEMAPRO™2009), pages 15-21, ISBN: 978-1-4244-5044-2,
October 11-16, 2009, Sliema, Malta.

[5] Ventrone, V., Heiler, S. - Semantic Heterogeneity as a Result of
Domain Evaluation. 1991, SIGMOD Record Special Issue: Semantic
issues in Multidatabase Systems.

[6] Klein, M., Noy, N. - A Component-Based Framework for Ontology
Evolution., F. 2003. IJCAI-03 Workshop on Ontologies and
Distributed Systems, CEUR-WS, vol. 71.

[7] Calvanese, D., &al -A Framework for Ontology Integration - in
Cruz, I., Decker, 2002.

[8] Pinto, H.S., &al - Some Issues on Ontology Integration – Proc. of the
Workshop on Ontologies and Problem-Solving Methods (KRR5) at
16th International Joint Conference on Artificial Intelligence (IJCAI-
99).

[9] Avesani, P., &al. - A Large Scale Taxonomy Mapping Evaluation -
s.l. : Lecture Notes in Computer Science, Springer, 2005, Vol.
Volume 3729. 67-81.

[10] Noy, N. F., Klein, M. - Ontology Evolution: Not the Same as Schema
Evolution -Stanford Medical Informatics, Stanford University,
Stanford, CA, USA Vrije University Amsterdam, Amsterdam, The
Netherlands.

[11] Haase, P. & Qi, G. 2007. - An Analysis of Approaches to Resolving
Inconsistencies in DL-based Ontologies – Proc. of the IWOD at
ISWC 2007, pp. 97-109.

[12] Kalfoglou, Y., Schorlemmer, M. - Ontology Mapping: the State of the
Art- Knowledge Engineering Review,18 (1), pp. 1-31 2003.

[13] Hu, W. & Qu, Y. - Block Matching for Ontologies- Proc. of the 5th
International Semantic Web Conference (ISWC-06), pp. 300-313.

29

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

[14] Flouris, G. & Plexousakis, D. - Handling Ontology Change: Survey &
Proposal for a Future Research Direction-Technical Report FORTH-
ICS/TR-362. 2005.

[15] Baader, F., &al - The Description Logic Handbook : Theory,
Implementation & Applications - Cambridge University Press, pp.
495-505, 2003.

[16] Ontology Dynamics : http://www.ontologydynamics.org/od/

[17] Djedidi, R., Aufaure, M., A. - Change Management Patternsfor
Ontology Evolution Process – Proc. of the IWOD at ISWC 2008,
Karlsruhe, Germany. 2008.

[18] Ribeiro, M., &al.- Belief Contraction in Web-Ontology Languages –
Proc. of the IWOD at ISWC 2008, Karlsruhe, Germany. 2008.

[19] Pan, J., Z. - A Stratification-based Approach for Inconsistency
Handling in Description Logics, Proc. of the IWOD at ISWC 2007,
Innsbruck, Austria. 2007.

[20] Allocca, C., &al - Detecting Different Versions of Ontologies in
Large Ontology Repositories – Proc. of the IWOD , Karlsruhe,
Germany. 2008.

[21] OWL : http://www.w3.org/TR/owl-features/

[22] Jena: http://jena.sourceforge.net/

[23] Wine Ontology : http://www.w3.org/TR/owl-guide/wine.rdf

[24] Hodgson, R.- The Potential of Semantic Technologies for e-
government- presentation of eGov Open Source Conference-
Washington, DC, March 18th, 2003

[25] Semantic Web: http://semanticweb.org/wiki/Main_Page

[26] Flouris, F., &al - Ontology Change: Classification & Survey - The
Knowledge Engineering Review, 1–29, 2007, Cambridge University
Press

[27] Tovar, E., Vidal, M., E. - REACTIVE: A Rule-based Framework to
Process Reactivity – Proc. of the IWOD at ISWC 2008, Karlsruhe,
Germany. 2008.

[28] Atle Gulla, J., Sugumaran, V. - An Ontology Creation Methodology:
A Phased Approach.. Karlsruhe, Germany : s.n., 2008. Proc. of the
IWOD at ISWC 2008.

[29] Dividino, R. and Sonntag, D. - Controlled Ontology Evolution
through Semiotic-based Ontology Evaluation. Karlsruhe, Germany :
s.n., 2008. Proc. of the IWOD at ISWC 2008.

[30] Zablith, F., &al - Using Background Knowledge for Ontology
Evolution. 2008, Proc. of the IWOD, Karlsruhe, Germany.

[31] Novacek, V., &al - Semi-automatic Integration of Learned Ontologies
into a Collaborative Framework.

[32] Stojanovic, L., &al - User-driven Ontology Evolution Management.
13th Int. Conf. on Knowledge Engineering and Knowledge
Management. 2002.

[33] Stuckenschmidt, H., Klein, M. - Integrity and Change in Modular
Ontologies. 18th International Conference on Artificial Intelligence,
2003.

[34] Grandi, F. - Multi-temporal RDF Ontology Versioning. Karlsruhe,
Germany, IWOD at ISWC 2008.

[35] Allocca, C., &al - Detecting Different Versions of Ontologies in
Large Ontology Repositories.

[36] Stuckenschmidt, H., Klein, M. - Integrity and Change in Modular
Ontologies, 18th Int. Joint Conference on Artificial Intelligence,
2003.

[37] Klein, M., Fensel, D. - Ontology Versioning on the Semantic Web.
SWWS Standford, 2001

[38] Yildiz, B. - Ontology Versioning and Evolution, Asgaard, 2006

[39] Liang, Y. - Ontology Versioning and Evolution For Semantic Web-
Based Applications. 2005.

[40] Sassi, N., &al - From Temporal Databases to Ontology Versioning:
An Approach for Ontology Evolution, In Ontology Theory,
Management and Design: Advanced Tools and Models, Ed IGI-
Global Publisher, USA, 2010.

Figure 1. Causes of changes in the lifecycle of an ontology. Figure 3. VersionGraph definition in Protege.

Figure 2. Overview of the VersionGraph Ontology

30

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

http://www.ontologydynamics.org/od/
http://www.w3.org/TR/owl-features/
http://jena.sourceforge.net/
http://www.w3.org/TR/owl-guide/wine.rdf
http://semanticweb.org/wiki/Main_Page

