
Ontology Design Pattern Detection - Initial Method and Usage Scenarios

Muhammad Tahir Khan
School of Engineering, Jönköping University

P.O. Box 1026, SE-551 11 Jönköping, Sweden
Email: khmu09mt@student.hj.se

Eva Blomqvist
StLab, ISTC-CNR

via Nomentana 56, 00161 Roma, Italy
Email: eva.blomqvist@istc.cnr.it

Abstract—Ontology Design Patterns (ODPs) are emerging
as an important support for ontology engineering. In this
paper, we show how a method for detecting Content ODPs
in existing ontologies can be used as a means to characterize
online ontologies, e.g., for finding, browsing and analyzing
them, as well as a means of analyzing an ontology being built,
by detecting partial instantiations of a Content ODP in that
ontology. The main contribution of this paper is the simple but
effective method for pattern detection, together with its initial
evaluation, as well as the study made on online ontologies
providing an overview of Content ODP usage in real-world
ontologies as well as a proof-of concept of the proposed method.

Keywords-Ontology Design Patterns; Ontology Engineering;

I. INTRODUCTION

Ontology Design Patterns (ODPs) are emerging as an
important support for ontology engineering. On the semantic
web, ontologies are no longer only constructed by developers
having a background in logical languages and knowledge
modeling. On the contrary, ontologies are commonly drafted
by software engineers or found online, combined, and
reused. Some small and frequently reused ontologies exist,
e.g., the foaf ontology[1], however selecting and reusing
larger and more complex ontologies is still a challenging
task. Finding reusable ontologies is facilitated by ontology
search engines, however, to understand and assess the on-
tologies is still up to the user, as well as formulating the
keyword query to retrieve an accurate search result.

ODPs provide encoded best practices that can facilitate
the construction of high-quality ontologies, despite lack of
experience and deep knowledge of the logical languages
(e.g., as experimentally shown in [2]). However, certain
types of ODPs, e.g, Content ODPs, also come with a
‘reference implementation’, i.e., a small reusable component
(usually represented in OWL [3]). A collection of such
Content ODPs can be found in the ODP Portal[4], a wiki
portal supporting the collection and management of ODPs.

In this paper, we show how a method for detecting such
Content ODPs in existing ontologies can be used as a means
to characterize online ontologies, e.g., for finding, browsing
and analyzing them, as well as a means of analyzing an
ontology being built, by detecting partial instantiations of a
Content ODP in that ontology. The main contribution of
this paper is the simple but effective method for pattern

detection, together with its initial evaluation, as well as
the study made on online ontologies providing both an
overview of Content ODP usage in real-world ontologies
as well as a proof-of-concept of the proposed method. In
the following section, we describe Content ODPs in more
detail. Section III describes related work, as well as two
usage scenarios motivating our approach. In Section IV we
present the pattern detection method, and its experimental
validation is presented in Section V. Finally, in Section VI
we conclude the paper and outline future work opportunities.

II. CONTENT ONTOLOGY DESIGN PATTERNS

There exist different types of ODPs having different
characteristics, e.g., focusing on logical language constructs,
architecture issues, naming, or efficient provision of rea-
soning services; for details on ODP types see [5], [6].
However, in this paper we focus on Content ODPs. Content
ODPs are small ontologies with explicit documentation of
design rationales, which can be used as building blocks
in ontology design [5], [6]. As an example, we describe
a Content ODP that is called Agent Role. It represents
the relation between agents, e.g., persons, and the roles
they play, e.g., professional roles such as researcher and
teacher, as well as personal ones such as father and friend.
Figure 1 shows an illustration of the OWL building-block
representing this Content ODP. Content ODPs are collected
and presented in different catalogues, such as the ODP
Portal. In addition to their diagrammatic representation
Content ODPs are described using a number of catalogue
entry fields (c.f. software pattern templates), such as name,
intent, covered requirements, consequences, and building
block (linking to an OWL realization of the pattern). Reusing
Content ODPs is a special case of ontology reuse, when the
elements of the Content ODP are specialized, e.g., subclasses
and subproperties that use domain-specific terminology are
added, and more specific axioms are included.

III. RELATED WORK AND MOTIVATION

The detection and analysis of naming patterns in ontolo-
gies was proposed in [7], where labels and other lexical
entries are analyzed, e.g., for supporting refactoring. Al-
though related in its aim, the approach uses lexical patterns
to analyze the logical structure, while we use Content ODPs

19

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

Figure 1. The graphical representation, in UML, of the Agent Role ODP
(the unlabeled arrow between Agent and Role representing disjointness).

as input. The approach in [8] for detecting logical patterns
in ontologies using SPARQL queries is not applicable to
our scenario since we are not only dealing with the logical
constructs of the ontology, but the actual content, i.e., it
is impossible to pose appropriate queries until the correct
terminology has been established. In [9] a universal pattern
language is introduced to monitor and detect constraint
violations during ontology modeling, however, the approach
is not focused on pattern detection in existing ontologies but
rather detection of violations of the patterns being reused.

Our previous work includes OntoCase [5], a method for
automatic ontology enrichment based on Content ODPs,
mainly focused on enhancing ontologies generated from tex-
tual resources. The current method is a further development
of the methods used in OntoCase. However, while OntoCase
focused on finding matches that were ‘useful enough’ for
interpreting the unrelated elements1 of the input ontology,
our focus in this paper is on simply finding instantiations of
Content ODPs. OntoCase also applies an elaborate ranking
scheme, which would be too computationally expensive to
apply on a web scale, hence, its current implementation with
focus on pattern ranking makes a direct comparison between
OntoCase and the method proposed in this paper unrealistic.

Another approach that attempts to enrich ontologies by
finding partial matches of Content ODPs and subsequently
‘completing’ the ontology by (automatically) adding the
remaining part of the ODP as axioms in the ontology, is
found in [11]. This approach does not assess if the missing
parts are actually relevant and appropriate for that ontology,
and where [11] chooses to add anything possible without
evaluation, we leave such decisions up to the user by simply
providing the pattern as a reference. Additionally, [11] uses a
logical approach for the matching that involves both logical
reasoning and manual pre-processing of the ODPs, hence it
is not obvious that it will be feasible on a web scale.

A. Application Scenarios

Approaches exist for finding reusable ontologies, e.g., in
the form of semantic web search engines such as Watson
[12], Sindice [13], and SWOOGLE [14], and ontology

1In this paper the term ontology element (formally defined in [10])
denotes formal expressions used to represent any entity, e.g. named classes
and properties are elements, as well as class definitions and restrictions.

repositories such as [15]. Recent improvements of search
engines allow for simple visualization and assessment of
the ontologies, e.g., by providing basic information on
the size, language and complexity, as well as displaying
key concepts [16]. Nevertheless, it is a difficult task to
assess the usefulness of the ontology for a particular case.
Moreover, merely to pose an appropriate keyword query to
the system is challenging, since the index is based on the
particular terminology of the ontology. Attempts have been
made to introduce the ‘query-by-example’ paradigm into
ontology search engines [17], however, in this case based
on a user-developed model of the query and not considering
specialization/generalization in the matching. In this paper,
we propose to apply Content ODP detection for using ODPs
as queries to find online ontologies that (partly) realize or
specialize that Content ODP. This will address the need of
users already knowing what kind of modelling issue they are
interested in, wanting to find online ontologies containing
particular solutions for that modelling problem. One could
imagine ontology repositories that are browsable by means
of the different ODPs the ontologies contain. In addition,
it provides an interesting possibility to study the type of
modelling solutions applied in online ontologies, as well as
to study the ‘support’ that Content ODPs have in online
ontologies (see Section V-C1).

A second scenario is concerned with novice users building
an ontology ‘from scratch’. Studies such as [2] show that
ODP selection is a problem that hampers the designers
in fully exploiting the benefits of ODPs, hence, additional
tool support should be provided for Content ODP selection.
Recently some support has appeared, in the form of the XD
Tools [18] for the NeOn Toolkit [19]. XD Tools currently
provide ODP registry browsing and search facilities for
retrieving Content ODPs based on a keyword query. The
semantic vector search service extends standard keyword
indexing, but does not take into account the fact that
ODPs are usually more abstract than the terminology in the
ontology. In this scenario we have a draft ontology and a
set of Content ODPs, and wish to find some patterns that
are already partially realized within the ontology. Hence,
we try to detect occurrences of each pattern in the draft
ontology, and if such occurrences are found we propose the
pattern to the user, who can study the pattern and evaluate
his or her solution against the best-practices that the pattern
describe. Although other approaches have been proposed, to
use patterns to enhance draft ontologies, they have either
been purely automatic (e.g., the OntoCase approach [5]) or
using a heavy logical approach also requiring the manual
pre-processing of the ODPs, as in [11]. We propose the
use of a light-weight method that will easily detect simple
modelling attempts of a novice user, who receives a list
of possible patterns of interest to be used as a means for
evaluating or enhancing the ontology by specializing the
Content ODPs found (see Section V-C2).

20

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

IV. CONTENT ODP DETECTION

The method for Content ODP detection is based on Onto-
Case [5]. The basic principle of OntoCase pattern detection
is to identify specializations of Content ODPs based on
matching the terminology used for properties and classes,
as well as matching the property structure through domain
and range restrictions.The graph based pattern matching of
OntoCase is currently not considered in this paper because of
its complexity, e.g., processing time. The approach presented
in this paper is thereby both an extension and a simplification
of the OntoCase approach. The main extension is that
the current approach not only matches domain and range
restrictions but all axioms of the ontology, while a simplifi-
cation is that the current approach uses less computationally
expensive algorithms, e.g., the OntoCase ranking has been
removed, instead relying on simple matching percentages.

The proposed approach uses three main methods for
detection; (1) import detection, (2) direct matching, and (2)
indirect matching. Import detection is the trivial detection
of an explicit import of a pattern URI in the chain of the
ontology’s import closure. We are aware of the fact that
imported patterns might not be used in the ontology, but
taking this into account is still future work. The direct
matching aims to detect clones of the pattern, including
partial clones, existing in the ontology, while the indirect
matching aims to detect specializations of a pattern in
the ontology, i.e., where the pattern classes and properties
have been exchanged for more (domain-) specific ones. The
procedure is described using pseudocode in Figure 2.

Require: A pattern p, an ontology o, and the thresholds of class/property/axiom
matches t1, t2, t3.

Ensure: The matching percentages Pc, Pp, Pa or null if match was below thresh-
old.

1: if import closure of o contains an owl:import of p then
2: return Pc = 100, Pp = 100, Pa = 100
3: else
4: oClassNames = getClassNames(o)
5: ...
6: extend(oClassNames, oPropertyNames)
7: extend(pClassNames, pPropertyNames)
8: classMatches, propMatches, axiomMatches = ∅
9: for each set in pClassNames = pElement do

10: pairs = stringMatch(pElement, oClassNames)
11: if pairs 6= ∅ then
12: classMatches = classMatches + pairs
13: Pc = percentage(classMatches, p)
14: for each set in pPropertyNames = pElement do
15: pairs = stringMatch(pElement, oPropertyNames)
16: if pairs 6= ∅ then
17: propMatches = propMatches + pairs
18: Pp = percentage(propMatches, p)
19: for each axiom of p = a do
20: pairs = tripleMatch(a, axioms of o)
21: if pairs 6= ∅ then
22: axiomMatches = axiomMatches + pairs
23: Pa = percentage(axiomMatches, p)
24: if (Pc > tc)&(Pp > tp)&(Pa > ta) then
25: return Pc, Pp, Pa

26: else
27: return null

Figure 2. Detection procedure.

If no import was found the detection procedure starts by
retrieving all the terms to be used, e.g., local names (i.e., ex-
cluding the namespaces) and labels of classes and properties.
The extend()-function uses heuristics to extend the terms into
term sets, each representing one original element, e.g., class
or property, of the ontology or the pattern respectively. The
intuition is that we need to allow for certain variations in
the matches, i.e., for the direct matching this would include
heuristics for capitalization and morphological variations,
while for the indirect matching this includes also term spe-
cialization, for instance, using background knowledge such
as WordNet [20]. The stringMatch()-function performs exact
string matching on the elements of the pairs A×B, where A
is one of the extended term sets from the pattern and B is the
set of all such extended term sets of the ontology. Depending
on the previous application of heuristics, this may return
several matching pattern element-ontology element pairs.
The axioms are matched based on matching the subject-
predicate-object structure of their contained triples, i.e.,
the tripleMatch()-function above. It converts all the axiom
constituents to sets of strings, similar to above but taking
into account the uniqueness of the OWL constructs, e.g.,
‘reserved words’ such as disjointWith does not need
to be extended with synonyms and lexical variations, then
matches the string sets for subject, predicate, and object re-
spectively. The percentage()-function calculates the fraction
of classes/properties/axioms that are in the matched set, with
respect to the overall number of the pattern or ontology.
If above the threshold values, the match is confirmed. If
needed, the details of each match can also be recorded,
although not shown in the procedure above.

V. EXPERIMENTAL VALIDATION

To allow for a proof-of concept validation of the approach
it has been implemented as a stand-alone Java application,
and applied to two different datasets.

A. Implementation

The method described in Section IV has been imple-
mented using Java. The implementation exploits the OWL
API (3.0) [21] for handling the ontologies, the Watson API
[22] for retrieving online ontologies, and JAWS [23] for
interfacing WordNet and supporting the indirect matching.
In this implementation the extension heuristics for the direct
matching are restricted to (i) ignoring capitalization, and
(ii) recognizing the most common ways of replacing spaces
in element names, e.g., using the camel convention or
instead of spaces. For the indirect matching these heuristics
are extended by using JAWS. Through a simple lookup
mechanism the corresponding synset of every element name
or label in the pattern is retrieved from WordNet, and all
specializations (hyponyms) of that synset are additionally
added to the extended term set. No disambiguation of the
terms are currently performed, i.e., all possible chains of

21

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

synsets are used, but since only specialization and not
generalization is considered this is a manageable set. In the
current implementation only direct matching is performed on
the axiom triples, i.e., no specialization of these are allowed.

B. Data Collection

Two sets of ontologies were collected, each corresponding
to one of the usage scenarios described previously.

1) Online Ontologies: The online ontologies were re-
trieved through the keyword search feature of the Watson
API [12]. The set of keywords entered are matched to
the local names, labels, comments, or literals of elements
occurring in semantic documents, i.e., ontologies. Based on
query logs of the Watson search engine we collected a list of
the 70 most used search keywords. From this list we further
selected the 50 keywords that returned the highest number
of ontologies, in order to get a sample that represents typical
search results. A list of matching ontologies was retrieved,
for each of the keywords. The results were filtered based on
language (i.e., only allowing RDF/OWL). Next, all broken
links were filtered out, e.g., where the ontology was no
longer accessible at that URI. The resulting set consisted of
845 ontologies, which were saved locally for repeatability
reasons[24] (no additional sampling was performed).

2) Ontology Drafts: The ontology drafts result from
student assignments2 to design an ontology within the
theater domain, based on a fixed set of requirements, i.e.,
competency questions (CQs) [26]. They had not previously
been introduced to ODPs (assured by self-assessment) but
had some training (one full day) on OWL and ontology
engineering. The task was designed so that it would be
possible to solve some of the design problems using Content
ODPs, in order to expose the students to those problems
before introducing Content ODPs later in the course. The
students were given 3 hours to solve the exercise, and they
all used the same tool. The resulting set consists of 15
ontologies (of between 9-20 classes, and 12-30 properties).

C. Accuracy of Implicit Content ODP Detection

To evaluate the Content ODP detection implementation
we have applied it to the two sets of ontologies, together
with a set of 76 content ODPs (the complete set of Content
ODPs at that time available from the ODP Portal).

1) Online Ontologies: The accuracy evaluation of the
indirect ODP detection within online ontologies was for
practical reasons performed on a small sample of ontologies,
randomly selected from the data set. The sample contained
40 ontologies, where 33 of them had at least one match to
any of the 76 Content ODPs (threshold of class matches set
to 50%), summing up to a total of 200 pattern detections.
The ontologies were then reviewed by a human evaluator,
to assess the matches. The human evaluator classified each

2Assignment details at [25]

proposed detection (i.e., each pattern-ontology pair) either
as (a) ’I agree that there is a match, the suggestion is
correct’, (b) ’I do not agree that there is a match, the
suggestion is incorrect’, or (c) ’I cannot decide based on
the available information’. The evaluator classified 62% of
the suggestions into category (a), i.e., correct matches, 31%
into (b), i.e., incorrect, and 7% into (c). Counting (a) as the
correctly suggested patterns, 62% corresponds to the level
of precision of the detection approach.

While 62% precision may seem low, it is comparable to
other complex search mechanisms operating on online data
that are currently widely appreciated. For instance, consider
online search engines, where the precision on complex
queries has been assessed in [27]. The average precision
of the search engines in this study ranged from 51.25% for
Google, down to 32.5% for Ask.com, for complex queries.
Although this study has a completely different aim, it shows
that in fields such as online information retrieval, a precision
as low as 51.25% is considered acceptable.

2) Ontology Drafts: The task given to the students had a
clear set of requirements (CQs) and was constructed with
a set of Content ODPs in mind, i.e., 6 of the Content
ODPs available in the portal, hence, also the recall of the
approach could be assessed. To obtain the ‘gold standard’
on which to perform the recall calculation, we additionally
analyzed the intents and requirements of all the 76 Content
ODPs and recognized 13 additional Content ODPs where the
requirements match the CQs. Table I shows the resulting set
of 19 Content ODPs 3. Most of these were compositions
or generalizations of the smaller set, while a few also
represented alternative modelling choices applicable in this
context, e.g., to view a music album as a collection of tracks,
or tracks as being proper parts of the album.

Table I
CONTENT ODPS APPROPRIATE FOR USE IN SOLVING THE TASK.

Content ODP Name Content ODP Name
1. Agent Role 11. Person
2. Collection/Collection Entity 12. Place/Location
3. Componency 13. Region
4. Co-participation 14. Situation
5. Information Realization 15. Time-indexed Participation
6. N-ary Participation 16. Time-indexed Part Of
7. Object Role 17. Time-indexed Person Role
8. Participant Role 18. Time-indexed Situation
9. Participation 19. Time Interval
10. Part Of

The results of the indirect matching can be seen in Table
II. The table shows the average precision and recall over the
set of 15 ontologies (threshold for class matches again at

3Collection and Collection Entity are represented by the same OWL-
building block although having separate pages in the ODP portal, just as
Place and Location. Since our method works on the OWL building blocks,
they are here treated as the same pattern.

22

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

50%). The reader should however note that while precision
is highly relevant, recall is not an entirely relevant measure
from a user perspective since some patterns are overlapping
or simply specializations of others. This means that even
with a recall less than 100% the set of proposed ODPs could
cover the complete task.

Table II
AVERAGE PRECISION AND RECALL OVER THE 15 ONTOLOGIES.

Method Avg. Precision Avg. Recall
Direct matching only 14.4% 1.4%
Direct+Indirect matching 66.4% 38.9%

As a comparison we note that using only direct matching,
on average 1 pattern was proposed for each ontology,
while using the indirect matching the system proposed on
average 11 patterns for each ontology, which is considered a
reasonable number to be assessed by the ontology engineer
(compared to the catalogue of 76, hence, 86% of the patterns
were filtered out). An interesting problem to consider is how
the method would perform on larger ontologies, however, it
is worth noting that many patterns are applicable in several
places within an ontology (e.g., if ‘partOf’ is applicable, it
will only be proposed once although applicable throughout
the ontology). This indicates that the number of proposed
patterns will not explode when the ontology size increases.

Comparing to the XD Tools search functionality, when
entering the ontology requirements, i.e., the CQs that were
the basis of the draft ontologies, into the search interface
(standard keyword indexing) of XD Tools only reaches a
precision of 36% and recall of 21% for the first 11 results
(i.e., the average number of patterns suggested by our pattern
detection method). When considering the first 20 results we
also note that the precision drops to 20% while the recall
remains on 21%, indicating that we do not get any more
useful results even if we check the next ten results, i.e., some
patterns are very hard to retrieve with standard keyword-
search.

D. Content ODPs Detected in Online Ontologies

The study of online ontologies additionally aimed to
assess Content ODP usage. In Table III we present the
count of ontologies where the 20 most frequent patterns were
detected using our method as described above (class match
threshold again set to 50%). The dataset consisted of 682
ontologies previously collected4.

When analyzing these results we note that certain patterns
are favored by the background knowledge used for the
matching, e.g., the Constituency pattern contains only one
concept, named ‘entity’, which appears at the top level of
WordNet. Other patterns are instead never matched, due to

4Unfortunately, 162 of the original 845 ontologies were not processable
through the OWL API, due to syntactic errors or other problems.

Table III
THE 20 MOST FREQUENTLY DETECTED CONTENT ODPS AND THE

NUMBER OF ONTOLOGIES WHERE THEY WERE DETECTED.

Content ODP Name # Content ODP Name #
Constituency 666 Topic 68
Participation 204 Classification 67
Componency 148 Description 67
Co-participation 101 Parameter 67
Types of Entities 101 Basic Plan Execution 59
Collection 98 Participant Role 47
Agent Role 85 Task Role 44
Region 75 Task Execution 44
Object Role 73 N-ary Participation 37
Communities 70 Situation 34

the simple property matching applied, e.g., the Part Of pat-
tern, which contains no classes at all but only two properties.
This leads us to conclude that the numbers presented are
probably not reliable as an absolute count, rather the result
can be seen as an indication that the solutions proposed by
patterns are in fact used in online ontologies. More precise
matching needs to be applied in order to derive accurate
statistics. However, through our experience in working with
patterns we can confirm that the patterns in Table III are
in fact a selection of the ones we, as ontology engineers,
have used most frequently, although some very frequent ones
could not be detected due to limitations in the heuristics.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a simple Content ODP detection
method and described its proof-of-concept implementation
and evaluation in two usage scenarios. Although the ac-
curacy of the current implementation can certainly be im-
proved, we believe that it is a valuable complement to
traditional ontology search and retrieval, where keyword-
based search in most cases returns few or no results when
applied to the task of finding highly abstract Content ODPs.
In addition, we have presented a small study on Content
ODP support in real-world ontologie. The results show that
many Content ODPs are widely used, although very few
seem to be explicitly imported.

Future work includes to improve the heuristics used
by the method, especially on the side of properties and
axioms where the results at the moment are quite poor.
Typical naming patterns for properties could be used in
order to compare property names with different structure
but a similar meaning. Additionally, the axiom matching
could be extended to exploit the matching results already
provided by the class and property matching, in order
to achieve an indirect axiom matching method as well.
OntoCase, as it is currently implemented, is not applicable
to our usage scenarios, however as future work it would
also be interesting to compare other possible relaxations
of OntoCase, to improve the trade-off between scalability
and accuracy. We are currently exploring the possibility to

23

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

integrate the implementation as a selection service in the XD
Tools plugin within the NeOn Toolkit, and in the future we
will also consider the possibility of providing a detection
service for online search, to bring the advantages of this
approach into practice.

ACKNOWLEDGMENTS

Part of this work was performed with support from
The Swedish Foundation for International Cooperation in
Research and Higher Education, project DEON (grant
#IG2008-2011).

REFERENCES

[1] [Online]. Available: http://xmlns.com/foaf/0.1/ Accessed:
08.10.2010

[2] E. Blomqvist, A. Gangemi, and V. Presutti, “Experiments on
Pattern-Based Ontology Design,” in K-CAP 2009. ACM,
2009, pp. 41–48.

[3] [Online]. Available: http://www.w3.org/2002/07/owl Ac-
cessed: 08.10.2010

[4] [Online]. Available: http://www.ontologydesignpatterns.org
Accessed: 08.10.2010

[5] E. Blomqvist, “Semi-automatic Ontology Construction based
on Patterns,” Ph.D. dissertation, Linköping University, De-
partment of Computer and Information Science at the Institute
of Technology, 2009.

[6] A. Gangemi and V. Presutti, “Ontology Design Patterns,” in
Handbook on Ontologies, 2nd Ed., ser. International Hand-
books on Information Systems. Springer, 2009, pp. 221–243.

[7] O. Sváb-Zamazal and V. Svátek, “Analysing Ontological
Structures through Name Pattern Tracking,” in Proceedings
of EKAW 2008, ser. Lecture Notes in Computer Science,
A. Gangemi and J. Euzenat, Eds., vol. 5268. Springer, 2008.

[8] O. Sváb-Zamazal, F. Scharffe, and V. Svátek, “Preliminary
Results of Logical Ontology Pattern Detection using SPARQL
and Lexical Heuristics,” in Proceedings of WOP 2009, collo-
cated with ISWC-2009, vol. 516. Washington D.C., USA:
CEUR Workshop Proceedings, October 2009.

[9] O. Noppens and T. Liebig, “Ontology Patterns and Beyond -
Towards a Universal Pattern Language,” in Proceedings of
WOP2009 collocated with ISWC2009, vol. 516. CEUR-
WS.org, November 2009.

[10] [Online]. Available: http://ontologydesignpatterns.org/cpont
/codo/codolight.owl Accessed: 08.10.2010

[11] N. Nikitina, S. Rudolph, and S. Blohm, “Refining Ontologies
by Pattern-Based Completion,” in Proceedings of WOP 2009,
collocated with ISWC-2009, vol. 516. Washington D.C.,
USA: CEUR Workshop Proceedings, October 2009.

[12] M. d’Aquin, C. Baldassarre, L. Gridinoc, M. Sabou, S. An-
geletou, and E. Motta., “Watson: Supporting next gener-
ation semantic web applications.” in Proceedings of the
WWW/Internet conference, Vila real, Spain, 2007, 2007, pp.
363–371.

[13] G. Tummarello, E. Oren, and R. Delbru, “Sindice.com:
Weaving the Open Linked Data,” in Proceedings of
ISWC/ASWC2007, Busan, South Korea, ser. LNCS, vol. 4825.
Berlin, Heidelberg: Springer Verlag, November 2007, pp.
547–560.

[14] L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng,
P. Reddivari, V. C. Doshi, and J. Sachs, “Swoogle A Semantic
Web Search and Metadata Engine,” in Proc. 13th ACM Conf.
on Information and Knowledge Management, Nov. 2004.

[15] N. F. Noy, N. H. Shah, B. Dai, M. Dorf, N. Griffith,
C. Jonquet, M. J. Montegut, D. L. Rubin, C. Youn, and
M. A. Musen, “BioPortal: A Web Repository for Biomed-
ical Ontologies and Data Resources,” in Poster and Demo
Proceedings of ISWC 2008, 2008.

[16] S. Peroni, E. Motta, and M. d’Aquin, “Identifying Key
Concepts in an Ontology, through the Integration of Cognitive
Principles with Statistical and Topological Measures,” in
Proceedings of ASWC 2008, ser. Lecture Notes in Computer
Science, J. Domingue and C. Anutariya, Eds., vol. 5367.
Springer, 2008, pp. 242–256.

[17] C. Anutariya, R. Ungrangsi, and V. Wuwongse, “SQORE: A
framework for semantic query based ontology retrieval.” in
Advances in Databases: Concepts, Systems and Applications,
ser. LNCS, vol. 4443. Springer, 2007, pp. 924–929.

[18] [Online]. Available: http://stlab.istc.cnr.it/stlab/XDTools
Accessed: 08.10.2010

[19] V. Presutti, E. Daga, A. Gangemi, and E. Blomqvist, “eX-
treme Design with Content Ontology Design Patterns,” in
Proc. of WOP 2009, collocated with ISWC-2009, vol. 516.
Washington D.C., USA: CEUR Workshop Proceedings, Oc-
tober 2009.

[20] C. Fellbaum, Ed., WordNet - An Electronic Lexical Database.
MIT Press, 1998.

[21] [Online]. Available: http://owlapi.sourceforge.net/ Accessed:
08.10.2010

[22] [Online]. Available: http://watson.kmi.open.ac.uk/WS and
API.html Accessed: 08.10.2010

[23] [Online]. Available: http://lyle.smu.edu/∼tspell/jaws/index.html
Accessed: 08.10.2010

[24] [Online]. Available: http://ontologydesignpatterns.org/experi
ments/ODPDetectionCorp2010.zip Accessed: 08.10.2010

[25] [Online]. Available: http://ontologydesignpatterns.org/wiki
/Training:PhD Course on Computational Ontologies %40
University of Bologna/Hands-on (Day2): Theater

productions Accessed: 08.10.2010

[26] M. Gruninger and M. S. Fox, “The role of competency
questions in enterprise engineering,” in Proc. of the IFIP
WG5.7 Workshop on Benchmarking - Theory and Practice,
1994.

[27] M. L. Robinson and J. Wusteman, “Putting Google Scholar
to the test : A preliminary study,” Program, vol. 41, no. 1,
pp. 71–80, 2007.

24

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

