
Threat-Based Vulnerability Management: Mapping CVEs to the MITRE ATT&CK
Framework

Logan McMahon
School of Electronics, Electrical

Engineering and Computer Science
Queen’s University Belfast, United Kingdom

e-mail: lmcmahon25@qub.ac.uk

Oluwafemi Olukoya
School of Electronics, Electrical

Engineering and Computer Science
Queen’s University Belfast„ United Kingdom

e-mail: o.olukoya@qub.ac.uk

Abstract—Mapping Common Vulnerabilities and Exposures
(CVEs) to the MITRE Adversarial Tactics, Techniques, and
Common Knowledge (ATT&CK) framework plays a crucial
role in cybersecurity, particularly in threat mitigation and
risk management. Accurate and automated CVE-to-ATT&CK
mapping enables defenders to better assess the risks posed by
emerging vulnerabilities. Prior work has relied primarily on
CVE descriptions to establish links to relevant tactics and tech-
niques. However, these approaches struggle when descriptions
are incomplete or poorly written. This research proposes that
enriching CVE descriptions with extended features, such as
exploitability scores, software weaknesses, system and software
identifiers, attack patterns, and classification data, substantially
improves mapping accuracy. In unsupervised evaluations, this
enrichment increased correct mappings by 42 % to 66.7% and
reduced misclassifications by 6%. In supervised experiments,
the proposed SecRoBERTa model significantly outperformed
prior work. While baseline models achieved a weighted F1
score of 78.88%, the fully extended and Optuna-tuned version
reached 93.47%, marking a 14.6% improvement. These results
demonstrate the effectiveness of combining structured feature
enrichment with hyperparameter optimization to enhance the
accuracy and reliability of CVE-to-ATT&CK mappings.

Keywords-MITRE ATT&CK; CVE; Vulnerability; Machine
Learning; Data Augmentation; Threat Intelligence.

I. INTRODUCTION

In 2024, 40,077 Common Vulnerabilities and Exposures
(CVEs) were published, a 39% increase from 2023, underscor-
ing the growing challenge organizations face in managing vul-
nerabilities at scale [1]. Studies show that most organizations
are only able to remediate 10% to 15% of open vulnerabilities
each month, leaving a persistent backlog [2]. While only an
estimated 1% to 6% of CVEs are actively exploited, these
few can have severe consequences [3][4]. According to the
Mandiant M-Trends 2025 Report [5], vulnerability exploita-
tion was the most common initial attack vector observed in
incident response investigations, emphasizing the importance
of effective vulnerability prioritization.

Since it is neither feasible nor necessary to remediate every
vulnerability, organizations are shifting toward risk-based vul-
nerability prioritization. This approach focuses on addressing
vulnerabilities that pose the greatest risk, incorporating threat
intelligence to enable a threat-informed defense [6]. Central to
this approach is the MITRE ATT&CK framework, a widely
adopted knowledge base of adversary tactics and techniques

derived from real-world observations [7][8]. Within this frame-
work, tactics represent high-level attacker goals (such as Initial
Access or Persistence), while techniques describe how those
goals are achieved (e.g., exploiting a public-facing application
or executing a script).

Mapping CVEs to MITRE ATT&CK tactics and techniques
allows defenders to better understand the potential impact of
unpatched vulnerabilities, prioritize them based on adversary
behavior, and align vulnerability management with real threat
scenarios [9]. For example, prioritizing CVEs linked to tactics
like privilege escalation or lateral movement can help security
teams mitigate high-impact risks more effectively. However,
given the rapid growth of CVEs, manually labeling each
with ATT&CK mappings is infeasible. This highlights the
urgent need for automated solutions to support scalable, threat-
informed vulnerability management.

Recent research [10]–[16] has increasingly focused on au-
tomating the mapping of CVEs to MITRE ATT&CK tech-
niques. Most existing methods rely heavily on CVE descrip-
tions, with some efforts incorporating additional data, such as
Common Vulnerability Scoring System (CVSS) vectors and
Common Weakness Enumeration (CWE) identifiers [17][18].
However, prior studies have shown that patterns derived from
CWE and CVSS can be unreliable, and vulnerability descrip-
tions themselves are often inconsistent, incomplete, outdated,
or inaccurate [17][19]–[22].

A major challenge remains in accurately mapping CVEs
with poor-quality descriptions, as these often lack sufficient
detail about exploitation methods or impact. To address these
limitations, recent approaches have explored using Large Lan-
guage Models (LLMs) to infer missing or unclear information,
though gaps in domain knowledge constrain these methods and
the complexity of vulnerability language [23].

This research proposes a comprehensive, automated ap-
proach to mapping CVEs to MITRE ATT&CK tactics, for-
mulated as a multilabel classification problem that integrates
structured data to enhance accuracy, particularly when descrip-
tive fields are limited or ambiguous. The primary contributions
of this research are as follows:

• Extended Unsupervised Mapping Pipeline: We adapt
and expand the SMET framework [13] to operate on
a larger, feature-enriched CVE dataset, using mappings
from the Centre for Threat-Informed Defence [24]. By

6Copyright (c) IARIA, 2025.     ISBN:  ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

https://orcid.org/0000-0003-2771-2553


integrating pre-processed CVSS, CWE, and Common
Platform Enumeration (CPE) data, the modified pipeline
achieves measurable improvements in full and partial
mappings without requiring labelled data.

• Creation of an Enriched Dataset for Supervised
Learning: We compile an extended dataset by incor-
porating structured data from the National Vulnerability
Database (NVD), Common Attack Pattern Enumeration
and Classification (CAPEC), and Exploit Prediction Scor-
ing System (EPSS). This dataset enables systematic eval-
uation of the contribution of each feature to the CVE-to-
ATT&CK mapping process.

• Systematic Feature Evaluation: We perform a detailed
feature importance analysis to assess the impact of
each added feature on model performance. This includes
tactic-level analysis, particularly focusing on historically
difficult-to-predict classes, such as Initial Access, Impact,
Collection and Reconnaissance [14].

• Hyperparameter Optimization with Optuna: We ap-
ply Optuna [25] to fine-tune model hyperparameters,
resulting in notable performance gains on the extended
dataset and highlighting the importance of optimization
in supervised models.

• Public Release of Resources: All datasets, code, and
supplementary materials are made publicly available via
the project’s GitHub repository to support reproducibility.
We present and release an extended dataset comprising
7,328 CVE entries, each enriched with CWE, CPE,
and CVSS information, and optionally annotated with
CAPEC and EPSS data.

The rest of the paper is structured as follows: Section II re-
views related work on supervised and unsupervised approaches
for mapping CVEs to MITRE ATT&CK tactics and tech-
niques. Section III outlines the methodology, including data
collection, preprocessing, model development, and evaluation.
Section IV presents the research objectives and hypotheses,
and the experimental results. In Section V, we interpret the
research findings and the implications. Section VI discusses
the limitations of the study, and Section VII concludes with a
summary and directions for future work.

II. RELATED WORK

A. Supervised Mapping

Existing approaches to mapping CVEs to the MITRE
ATT&CK framework predominantly rely on supervised learn-
ing. Branescu et al. [14] modelled this as a multi-label
classification task using CVE descriptions for ATT&CK tactics
mappings. Ampel et al. [15] employed self-distillation to
capture long-term textual dependencies. Vulcan Cyber [17]
proposed enriching input features with CWE and CVSS Ver-
sion 3.x data. BERT-based models, such as CVE2ATT&CK
[11], showed promise using only CVE descriptions for map-
ping 31 of 92 ATT&CK techniques. Mendsaikhan et al. [16]
expanded coverage to 52 techniques using textual features
from CVE descriptions, though performance declined with

label expansion due to limited training data. Adam et al. [18]
introduced a two-step mapping via CWEs, but their method is
constrained by incomplete CWE annotations in CVEs and the
lack of comprehensive CWE-to-ATT&CK mappings.

B. Unsupervised Mapping

The SMET framework [13] employs semantic role labelling
to rank ATT&CK techniques based on CVE descriptions,
without requiring labelled data. Kuppa et al. [12] demonstrated
an unsupervised approach that maps CVEs to 37 ATT&CK
techniques by extracting relevant phrases from both threat re-
ports and ATT&CK descriptions. However, they observed that
many CVE entries contain minimal textual content, resulting
in incomplete or failed mappings.

Since SMET does not leverage structured NVD attributes
(e.g., CVSS, CWE, CPE) or EPSS probability scores, it
struggles with sparse or ambiguous descriptions. Furthermore,
as a fully unsupervised pipeline with no learnable parameters,
SMET lacks adaptability to evolving CVE patterns or domain-
specific requirements. Its logistic regression classifier and
embedding model are trained on ATT&CK descriptions, not
CVE text, rendering the system insensitive to changes in
vulnerability language, emerging exploit types, or shifts in
reporting conventions.

The MITRE ATT&CK Enterprise framework comprises
14 tactics, 211 techniques, and 468 sub-techniques, making
comprehensive CVE-to-technique mapping a complex task.
Due to limited annotated data for many techniques, prior work
has focused on a subset of them. In this study, we shift the
focus to mapping CVEs to ATT&CK tactics, emphasizing
higher-level adversary objectives, such as Reconnaissance,
Initial Access, Collection, and Impact, all of which have been
historically difficult for state-of-the-art (SOTA) methods [14].

Mapping at the tactic level offers practical benefits for
vulnerability prioritization, attacker path modeling, and risk
propagation [26]. To address the challenges of sparse textual
descriptions and limited adaptability, we enhance both super-
vised and unsupervised approaches by incorporating structured
NVD data (CVSS, CWE, CAPEC, CPE) and EPSS scores,
going beyond CVE descriptions alone.

While our long-term goal remains mapping to techniques,
we argue that tactic-level mapping can be substantially im-
proved with richer input features. This work lays a scalable
foundation for future expansion to technique-level mappings
with broader dataset coverage.

III. METHODOLOGY

The proposed methodology for automatically mapping
CVEs to MITRE ATT&CK tactics comprises four main
phases: dataset collection, dataset processing, mapping using
both unsupervised and supervised approaches, and perfor-
mance evaluation. The overall architecture is shown in Figure
1, with each phase described in detail below.
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Figure 1. An overview of the proposed framework for automated mapping
of CVEs to MITRE ATT&CK Tactics

A. Dataset Collection

The phase begins with the collection of an initial dataset to
support both unsupervised and supervised approaches. We use
datasets from SMET [13] and Branescu et al.[14], represent-
ing state-of-the-art methods in each category. These datasets
include CVE IDs and their corresponding descriptions as
primary features. To enrich this initial dataset, we incorporated
five additional sources from the NVD and related repositories:

• CVE Descriptions (baseline): Textual descriptions of vul-
nerabilities from CVE entries. For instance, the CVE de-
scription for CVE-2025-49163 is "Arris VIP1113 devices
through 2025-05-30 with KreaTV SDK allow booting an
arbitrary image via a crafted /usr/bin/gunzip file."

• Common Weakness Enumeration (CWE) [27]: Standard-
ized identifiers for software weaknesses (e.g., CWE-
79 Improper Neutralization of Input During Web Page
Generation (’Cross-site Scripting’)).

• Common Vulnerability Scoring System (CVSS) [28]:
Quantitative scores (0–10) reflecting exploitability and
impact.

• Common Platform Enumeration (CPE) [29]: Machine-
readable identifiers for vulnerable software/hardware
(e.g., cpe:2.3:a:microsoft:edge:)

• Exploit Prediction Scoring System (EPSS)[30]: Proba-
bilities (0–1) estimating the likelihood of a CVE being
exploited in the wild.

• Common Attack Pattern Enumeration and Classification
(CAPEC) [31]: Titles describing adversary tactics (e.g.,
CAPEC-209: XSS Using MIME Type Mismatch).

NVD data was retrieved using the official API [32], EPSS
scores via the EPSS API [33], and CAPEC titles were obtained
through web scraping and HTML parsing of the CAPEC
website.

Following enrichment, the unsupervised dataset retains its
original size but is enhanced with additional features, including
CWE, CPE, and CVSS data. The supervised dataset initially
comprises 9,986 CVEs from prior work [14], but is reduced to
7,328 entries after filtering out CVEs lacking sufficient NVD
attributes (CWE, CPE, CVSS). Features with missing values
across any dataset entries are removed to prevent negative
impacts on machine learning performance. This preprocessing
step of filtering out rows with null values to improve system
effectiveness is consistent with established machine-learning
approaches for automated CVE-to-MITRE ATT&CK tactic
mapping [34].

For supervised learning, we adopt an 80/20 train-test split
as recommended by [14], using 80% of the 7,328 CVEs for
training and 20% for testing. The extended dataset is enriched
with EPSS scores, processed CVSS (v2/v3), CWE, CPE, and
later CAPEC features. A comparative summary between the
initial dataset [14] and the enriched version used in this work
is provided in Table I.

TABLE I. COMPARISON BETWEEN THE INITIAL DATASET INTRODUCED BY
BRANESCU ET AL.[14] AND OUR FULLY ENRICHED DATASET

ATT&CK Tactic Class CVE Record Count
Initial

Dataset[14]
Our

Dataset
Reconnaissance 170 141
Resource Development 170 117
Initial Access 722 573
Execution 2642 1183
Persistence 3016 1591
Privilege Escalation 3218 1731
Defense Evasion 7552 5354
Credential Access 614 534
Discovery 2369 1959
Lateral Movement 1932 620
Collection 663 576
Command & Control 427 382
Exfiltration 171 126
Impact 349 286

Total 9,986 CVEs 7,328 CVEs

The unsupervised dataset comprises 827 CVEs distributed
over 120 ATT&CK techniques, selected from publicly avail-
able CVE-to-ATT&CK mappings provided by the Center for
Threat-Informed Defense [24], allowing for direct evaluation
against verified mappings. This differs from the dataset used
in SMET [13], which lacked consistent NVD feature coverage.
Accordingly, the SMET baseline was re-evaluated on our 827-
entry description-only dataset, compared to the original 303
entries used in SMET distributed over 41 techniques from the
ATT&CK matrix.

Two primary datasets are created for the unsupervised and
supervised mappings: (1) the Description-Only dataset, con-
taining CVE IDs and textual descriptions, and (2) the Extended
dataset, which builds upon the former by incorporating pre-
processed CWE, CVSS, CPE, EPSS scores, and optionally
CAPEC data.

B. Dataset Processing

A key design decision in this research was to enrich the
original CVE dataset with additional structured fields, CWE,
CVSS, CPE, and optionally EPSS and CAPEC, to improve the
accuracy of CVE-to-ATT&CK tactic mappings. This enrich-
ment supports both the unsupervised (SMET) and supervised
(SecRoBERTa) approaches by enhancing the semantic and
contextual representation of each CVE. To ensure consistency
across data types, all extended features (except EPSS scores,
which are numeric) were pre-processed into natural language
format. This was necessary due to the inconsistent quality of
CVE descriptions and the structured, non-linguistic format of
most added fields.
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1) CVSS Pre-Processing: CVSS Version 2.0 and
CVSS Version 3.x vector strings were transformed into
natural language using mappings from the NVD CVSS
calculators [35][36]. For example, the CVSS v3.1 vector
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:
H of CVE-2023-23333 is pre-processed into:

• “The CVE is Exploited by the Network Attack Vector. The
CVE has Low Attack Complexity. The CVE Requires No
Privileges. The CVE Does Not Require User Interaction.
The CVE scope is Unchanged. The CVE has a High Con-
fidentiality Impact. The CVE has High Integrity Impact.
The CVE has High Availability Impact.”

2) CWE Pre-Processing: CWEs were converted into nat-
ural language by combining their titles and descriptions. For
instance, CWE-78 is rendered as:

• “The CVE is affected by Improper Neutralization of
Special Elements used in an OS Command (’OS Com-
mand Injection’): The product constructs all or part of
an OS command using externally-influenced input from
an upstream component, but it does not neutralize or
incorrectly neutralizes special elements that could modify
the intended OS command when it is sent to a downstream
component.”

For multiple CWEs associated with a single CVE ID, the
processed CWE strings will be concatenated to create a longer
sentence.

3) CAPEC Pre-processing: CAPEC titles were processed
similarly to CWEs. However, due to limited API support and
outdated data (last reviewed in 2023), CAPEC enrichment was
used selectively. A pilot study indicated that the inclusion of
CAPEC features did not improve mapping accuracy.

4) CPE Pre-Processing: CPE strings were parsed to
extract three key attributes: component type (application,
Operating System, or hardware), vendor, and product.
These were reformatted into natural language. For example:
cpe:2.3:o:contec:solarview_compact_firmware
:*:*:*:*:*:*:*:* was converted to: The "CVE affects
Contec Solarview_compact_firmware Operating System.”.

To reduce noise from highly variable product names,
a standardization step was applied. Generic terms,
such as “Product”, were substituted when the product
name was not essential. In contrast, critical operating
system identifiers (e.g., Windows, Linux, Mac_os_x
and Linux_kernel) were preserved. For instance:
cpe:2.3:a:microsoft:365_apps:-:*:*:*:enterp
rise:*:*:* was converted to: “The CVE affects Microsoft
Product Application.”. This generalization improves model
robustness by minimizing irrelevant variance while preserving
key distinctions necessary for accurate CVE-to-ATT&CK
tactic mapping.

C. Machine Learning

This research addresses the challenge of automatically map-
ping CVEs to the MITRE ATT&CK framework using both
unsupervised and supervised machine learning techniques.

For the unsupervised approach, we employ the SMET
framework [13], a state-of-the-art method that does not require
labelled data. SMET extracts semantically meaningful attack
vectors from CVE textual descriptions by leveraging seman-
tic role labelling and other semantic similarity techniques.
We extend the original SMET implementation, designed for
description-only inputs, to incorporate structured features from
the NVD, including CVE ID, CWE, CVSS, and CPE. We
hypothesise that even in the absence of labelled data, in-
corporating this extended feature set enhances the quality of
semantic mappings.

For the supervised approach, we utilize SecRoBERTa [37],
a transformer-based model derived from RoBERTa [38], which
is an optimized version of BERT (Bidirectional Encoder
Representations from Transformers), and has been fine-tuned
on cybersecurity-specific corpora. Prior work has shown that
SecRoBERTa achieves state-of-the-art performance in map-
ping CVEs to ATT&CK techniques [14]. Castano et al. [39]
trained five BERT-based models and found SecRoBERTa
to be the most effective at linking CTI sources via ex-
ternal references, resulting in more complete datasets and
improved threat intelligence.. We further fine-tune a pre-
trained ATT&CK-BERT model from Hugging Face [37] using
our extended dataset, which includes NVD features, EPSS
probability scores, and CAPEC identifiers. Tokenization and
model management are performed using the Hugging Face
Transformers library [40]. While we maintain the default
settings for batch size and number of epochs, we adjust
the learning rate to 3.884755049077609e-05 and the
dropout rate to 0.4864913766068174 to optimize model
performance.

The dual-method study aims to investigate whether both
unsupervised and supervised models can benefit from en-
hanced CVE representations, which could improve automated
mappings to adversarial tactics in ATT&CK.

D. Model Evaluation

We evaluated the machine learning models using accuracy,
validation loss, and both macro and weighted F1 scores.
Validation loss serves as an indicator of generalization per-
formance, with lower values suggesting reduced overfitting
or underfitting. Accuracy reflects the overall proportion of
correctly predicted tactic labels. The macro F1 score, as
the unweighted average of per-tactic F1 scores, emphasizes
performance on less frequent classes. The weighted F1 score,
our primary metric, accounts for class imbalance by weighting
each tactic’s F1 score by its frequency.

IV. EVALUATION

To support a comprehensive evaluation of our system, we
define specific hypotheses for validation:

• H1: An extended dataset improves overall mapping ac-
curacy compared to the commonly used description-only
datasets [11][13][14][16].

• H2: Tactics that are typically harder to classify, such as
Reconnaissance, Initial Access, Collection, and Impact,
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as identified by Branescu et al. [14], will show improve-
ments in their F1-scores.

• H3: Hyperparameter tuning leads to additional gains in
mapping accuracy.

A. Unsupervised Mapping Validation
Given that SMET is an unsupervised methodology that

ranks mappings based on semantic similarity. In the proposed
solution, rankings greater than 0.1 are considered potentially
correct mappings. When an entry is labelled as Completely
Accurate, it indicates a 1:1 match with the testing data pro-
vided for a CVE. If the entry is designated as Semi-Accurate, it
means that while the accepted mappings included correct ones,
they also incorporated some incorrect mappings that exceeded
the threshold. Conversely, if the entry is marked as Inaccurate,
it signifies that no correct mappings were obtained that met
the threshold (>0.1). We compared the SMET results from a
Description Only dataset with an extended dataset, verifying
an increase in mapping accuracy. As shown in Table II, the
enriched unsupervised dataset with CVSS vectors, CWE and
CPE summaries outperformed the baseline description only in
every metric.

TABLE II. COMPARISON OF UNSUPERVISED MAPPING ACCURACY ON 828
CVES, Description Only VS. Enriched DATASET

Description
Only

Enriched
(+CVE, CVSS
& CPE)

Impact
(%)

Completely
Accurate 6 10 +66.7

Semi
Accurate 88 125 +42.0

Inaccurate 733 692 -5.6

Despite notable improvements in mapping accuracy, over
80% of CVEs remain incorrectly mapped without super-
vised learning, demonstrating that feature enrichment alone
is insufficient. While enriched features capture semantically
meaningful attack vectors, they do not match the performance
of supervised models. Results show that mapping CVEs to
ATT&CK Techniques suffers from low accuracy due to limited
labelled data.

For example, SMET, a state-of-the-art unsupervised method,
uses text similarity between CVEs and ATT&CK technique
descriptions, enabling semantic mapping of 303 CVEs to 41
techniques. In contrast, our improved unsupervised dataset
includes 828 CVEs mapped to 120 techniques, with both
datasets averaging 7 CVEs per technique. Meanwhile, the
leading supervised dataset includes 9,985 CVEs across 14
tactics, with each tactic supported by a minimum of 170
samples and an average of 713 entries (see Table I). This
data imbalance leads to better performance when mapping to
ATT&CK Tactics rather than Techniques.

Given the limited performance of unsupervised methods,
this research adopts a supervised approach. Nonetheless, the
unsupervised results confirm that enriched datasets are more
effective than description-only inputs for offensive technique
mapping.

B. Supervised Mapping Validation

This section presents the results of the supervised learning
experiments. First, we analyze performance across dataset
variants to assess the impact of added features, including
comparisons with and without CAPEC. Second, we report
per-tactic F1 scores for MITRE ATT&CK tactics. Finally, we
benchmark our approach against the state-of-the-art method
by Branescu et al. [14].

Table III presents the overall performance across the su-
pervised dataset variants, enabling a detailed comparison of
feature-specific contributions. Incorporating the EPSS feature
alone consistently improves all four performance metrics: val-
idation loss, accuracy, macro F1 score, and weighted F1 score,
relative to the description-onlybaseline. Similar improvements
are observed when CWE, CPE, and CVSS features are added,
each contributing to increased model performance. In contrast,
the inclusion of the CAPEC feature results in a decline
across all four metrics, with the CAPEC Title-only extension
causing a particularly notable degradation. As a result, CAPEC
was excluded from the fully extended feature set. All other
feature combinations outperform the description-only baseline,
thereby supporting Hypothesis H1. Additionally, hyperparam-
eter tuning yields a consistent performance boost over the
enriched but untuned models, with gains of approximately
2% to 3% in mapping accuracy and macro F1 score, thereby
supporting Hypothesis H3.

TABLE III. OVERALL PERFORMANCE ACROSS SUPERVISED DATASET
VARIANTS.

Supervised Dataset
Variant

Validation
Loss Accuracy Macro

F1 Score
Weighted
F1 Score

Description Only 0.0747 0.8286 0.7948 0.9232
Description + EPSS 0.0729 0.8335 0.8138 0.9277
Description + CWE 0.0724 0.8407 0.7979 0.9248
Description + CVSS 0.0815 0.8229 0.8024 0.9163
Description + CPE 0.0746 0.8286 0.8050 0.9244

Description + CAPEC 0.0870 0.8179 0.7119 0.9011
Fully Extended

(Description + EPSS
+ CVSS + CPE)

0.0743 0.8383 0.8144 0.9245

Fully Extended
+ Tuned 0.0658 0.8538 0.8401 0.9347

Table IV presents F1 scores for the description-only base-
line, the fully enriched dataset (with and without tuning), and
the Branescu et al. [14] SecRoBERTa model. The most notable
improvements were observed for hard-to-predict tactics: Initial
Access improved from 65.27% to 67.44%, Collection from
79.44% to 84.34%, Impact from 67.57% to 72.00%, and
Reconnaissance from 37.33% to 46.15%, confirming Hypoth-
esis H2. Medium-difficulty tactics, such as Credential Access
and Command & Control, saw moderate gains of 1%–7%.
Well-predicted tactics, such as Defense Evasion, Discovery,
Privilege Escalation, Persistence, Lateral Movement, and Ex-
ecution began above 90% and saw only marginal improve-
ments (1%–2%), with fine-tuning contributing an additional
0.5%–1%. The final model achieved a 93.5% weighted F1
score.
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TABLE IV. PLOTS PER-CLASS F1 SCORES FOR THE SUPERVISED DATASET
VARIANT AND COMPARISON BETWEEN THE SECROBERTA PER-CLASS ON

DESCRIPTION ONLY REPORTED IN [14]

Tactics
Description

only
(Benchmark)

Full Extended
Dataset

(+EPSS+CWE
+CVSS+CPE)

+ Optuna
Fine-Tuning

SOTA
[14]

Reconnaissance 37.33% 36.73% 46.15% 53.84%
Resource

Development 51.47% 65.81% 65.79% 79.13%

Initial Access 65.27% 61.52% 67.44% 37.18%
Execution 89.56% 89.25% 89.95% 74.43%
Persistence 94.42% 94.52% 94.87% 80.78%
Privilege

Escalation 94.66% 94.90% 95.11% 80.46%

Defense
Evasion 98.67% 98.00% 98.41% 91.96%

Credential
Access 84.82% 89.39% 91.81% 67.27%

Discovery 97.24% 97.29% 97.92% 81.55%
Lateral

Movement 92.87% 94.59% 94.97% 81.37%

Collection 79.44% 81.82% 84.34% 51.47%
Command &

Control 95.21% 95.81% 96.43% 61.79%

Exfiltration 64.23% 74.83% 81.01% 88.88%
Impact 67.57% 65.73% 72.00% 31.11%

Compared to Branescu et al.’s[14] model trained on 9,986
CVEs (weighted F1: 78.88%), our approach, applied to 7,786
CVEs, achieves 93.45%. This performance gain is attributed to
structured feature enrichment from NVD (CWE, CVSS, CPE)
and the addition of EPSS, coupled with effective hyperparam-
eter tuning. The results demonstrate that enriched features and
tuning significantly enhance CVE-to-ATT&CK tactic mapping
accuracy, especially for previously underperforming tactics.

To ensure a fair comparison with Branescu et al. [14],
we grouped predicted MITRE ATT&CK tactics into three
difficulty levels based on F1 scores: hard (<60%), medium
(60%–80%), and easy (>80%). As shown in Table V, Branescu
et al. [14] identified four hard, four medium, and six easy
tactics. Using our enriched dataset and improved processing
pipeline, our method reduced the number of hard tactics
to one, with three medium and ten easy-to-predict tactics.
Notably, three tactics previously classified as hard in [14]
were reclassified as two medium and one easy, while three
of the four medium tactics shifted to the easy category in
our mapping methodology. The six easy tactics remained
unchanged. These results support Hypothesis H2, demonstrat-
ing that dataset enrichment and enhanced modelling reduce
classification difficulty for previously challenging tactics.

V. DISCUSSION

According to the CVE Key Details Phrasing Guidelines
by MITRE [41], a comprehensive CVE description should
articulate several key aspects, including the vulnerability type
or root cause, attack vector, impact, attacker type, component
identification, affected product(s) and version(s), and product
vendor(s). However, despite the importance of these details,
many CVE descriptions and their associated references suf-
fer from inconsistencies, a lack of structure, or insufficient

TABLE V. COMPARISON BETWEEN THE PREDICTED ATT&CK TACTICS
BY BRANESCU ET AL. [14] AND OUR PROPOSED APPROACH

Difficulty
Level

ATT& CK Tactics in
Branescu et al. [14]

ATT&CK Tactics in our
proposed approach

Hard Reconnaissance, Collection,
Initial Access, Impact Reconnaissance

Medium
Resource Development, Credential

Access, Execution, Command
& Control

Resource Development, Initial
Access, Impact

Easy
Privilege Escalation, Discovery,

Persistence, Exfiltration, Defense
Evasion, Lateral Movement

Privilege Escalation, Discovery,
Persistence, Exfiltration, Defense

Evasion, Lateral Movement, Execution,
Credential Access, Collection, Command

& Control

information [17][22][42], which poses a significant challenge
for downstream tasks such as mapping vulnerabilities to of-
fensive tactics and techniques, particularly within the MITRE
ATT&CK framework.

This research demonstrates that supplementing CVE de-
scriptions with structured data, such as software weaknesses
(CWE), platform identifiers (CPE), exploit prediction scores
(EPSS), attack patterns (CAPEC), and vulnerability scoring
metrics (CVSS vector strings), can significantly enhance the
completeness and utility of CVE records. By enriching the
original textual descriptions with these standardized attributes,
the proposed approach improves the effectiveness of both
supervised and unsupervised models for mapping CVEs to
ATT&CK techniques.

Vulnerability descriptions serve as a critical foundation in
the identification and communication of security weaknesses
in software, systems, and hardware. High-quality descriptions
not only support threat assessment and mitigation but are also
essential for enabling automated systems to aid in vulnerability
prioritization and response. This study contributes to the grow-
ing body of work aimed at automating the mapping of CVEs
to adversary behavior models, thereby advancing vulnerability
analysis and threat-informed defense.

VI. LIMITATION

A key limitation of this research is the dynamic nature of
the MITRE ATT&CK framework and the fast-paced evolution
of the cyber threat landscape, which may lead to misalignment
between the framework and the most current adversary tactics,
techniques, and procedures (TTPs). Despite the enhanced ap-
proach, the Reconnaissance tactic remains difficult to predict.
While this could be attributed to its underrepresentation in
the dataset, this explanation is insufficient, as Exfiltration,
similarly sized (see Table I), achieves significantly better per-
formance and falls into the more predictable category. Another
limitation stems from the exclusion of CVEs that lack ex-
tended fields, which introduces bias toward well-documented
vulnerabilities and excludes zero-day threats. These cannot be
included until evaluated by the NVD and assigned relevant
attributes, such as CPE. To address this, future work may
explore partial feature selection to enable broader coverage
until a fully extended dataset becomes available. Furthermore,
LLMs can enhance textual vulnerability descriptions by util-
ising historical data, enabling the system to comprehend new

11Copyright (c) IARIA, 2025.     ISBN:  ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies



vulnerabilities without requiring retraining of the LLM. Ad-
ditionally, the CAPEC feature was poorly represented due to
incomplete web scraping, which extracted only CAPEC Titles.
This limited the utility of the CAPEC data and negatively
impacted performance.

VII. CONCLUSION AND FUTURE WORK

This research demonstrates that augmenting CVE descrip-
tions with extended features, including EPSS, CWE, CVSS,
CPE, and CAPEC, significantly improves mapping accuracy
to MITRE ATT&CK tactics. In unsupervised experiments,
enrichment increased the number of correct mappings and
reduced misclassifications. In supervised experiments, the pro-
posed SecRoBERTa-based model outperformed the current
state-of-the-art models. Accurate CVE-to-ATT&CK mapping
enables Security Operations Centers (SOCs) to prioritize and
mitigate unpatched vulnerabilities more effectively. As CVE
descriptions often lack consistency and technical detail, en-
riching them with well-processed structured features leads to
more reliable mapping outcomes.

Future work will focus on developing a CAPEC API to
streamline the integration of CAPEC features. Building on the
high mapping accuracy to ATT&CK tactics, the next phase
will extend this approach to ATT&CK techniques, using a
supervised methodology while constraining predictions to the
relevant parent tactic. Beyond enriching textual vulnerability
descriptions with structured information such as EPSS, CWE,
CAPEC, CVSS vector strings, and CPE configurations, future
work will explore methods for detecting and augmenting
missing key aspects of CVE entries. This can be approached
through machine learning techniques that predict the labels of
absent attributes based on known vulnerability characteristics
or through software feature inference. Such enhancements
have the potential to improve downstream applications that
rely on CVE data, including vulnerability severity prediction,
automated alignment with adversary tactics and techniques, the
development of exploitation prediction models, and automated
vulnerability classification.
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