SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

Addressing Malware Family Concept Drift with Triplet Autoencoder

Numan Halit Guldemir
Centre for Secure
Information Technologies
Queen’s University Belfast
United Kingdom
nguldemir01 @qub.ac.uk

Abstract—Machine learning is increasingly vital in cyberse-
curity, especially in malware detection. However, concept drift
—where the characteristics of malware change over time— poses
a challenge for maintaining the efficacy of these detection systems.
Concept drift can occur in two forms: the emergence of entirely
new malware families and the evolution of existing ones. This
paper proposes an innovative method to address the former,
focusing on effectively identifying new malware families. Our
approach leverages a supervised autoencoder combined with
triplet loss to differentiate between known and new malware
families. We create clear and robust clusters that enhance
the accuracy and resilience of malware family classification
by utilizing this metric learning technique and the Density-
Based Spatial Clustering of Applications with Noise (DBSCAN)
algorithm. The effectiveness of our method is validated using an
Android malware dataset and a Windows Portable Executable
(PE) malware dataset, showcasing its capability to sustain model
performance within the dynamic landscape of emerging malware
threats. Our results demonstrate a significant improvement in
detecting new malware families, offering a reliable solution for
ongoing cybersecurity challenges.

Keywords-Concept drift; Windows PE malware; temporal anal-
ysis; triplet loss; autoencoder; metric learning.

I. INTRODUCTION

Machine learning has become a key tool in cybersecurity,
particularly for detecting malware. These systems, when well-
trained, are highly effective at identifying threats. However, the
effectiveness of these systems is continually challenged by the
dynamic nature of malware. As cyber threats rapidly evolve,
machine learning models that were once effective can quickly
become obsolete — a phenomenon known as concept drift
[1]. Concept drift in malware detection is often driven by two
major factors: developing entirely new malware and modifying
existing malware to evade detection systems. A report by AV-
Test indicates approximately 320,000 new malware samples
emerge daily, underscoring the need for continuous model
adaptation to unseen threats [2].

Retraining models frequently is one common strategy to
fight against concept drift, but it has problems. Firstly, in
cybersecurity, accurately labeling data is essential but costly, as
it often requires experts to examine and classify new threats
[3]. Moreover, determining the precise timing for updating
or retraining a model is not straightforward [4]. Frequently
retrained models might fail to keep up with the latest mal-
ware without a reliable method to decide when updates are
necessary, resulting in security gaps.

Oluwafemi Olukoya
Centre for Secure
Information Technologies
Queen’s University Belfast
United Kingdom
o.olukoya@qub.ac.uk

Jesus Martinez-del-Rincon
Centre for Secure
Information Technologies
Queen’s University Belfast
United Kingdom
j-martinez-del-rincon@qub.ac.uk

Labeling unknown samples is crucial to ensure that the
model does not misclassify them and can be accurately ana-
lyzed by experts. Machine learning models typically generate
a probability distribution over the known class labels, always
selecting the most likely class. Ideally, for an unknown input,
all classes should exhibit low probabilities, and setting a
threshold based on uncertainty should reject these unknown
classes. However, recent studies have shown that even inputs
far from any known class can produce high probability/confi-
dence scores [5]. This leads to misleadingly high confidence
scores even when the model’s predictions are incorrect. Neural
networks, in particular, tend to produce overly confident pre-
dictions in such scenarios, creating a false sense of reliability
[6].

This paper addresses the challenges associated with concept
drift in malware family detection by proposing a novel neural
architecture and training paradigm tailored to this issue. It is
important to clarify that this work focuses solely on analyz-
ing and differentiating between malware samples. Thus, we
assume that all input samples are malware, and the goal is to
identify and address variations within malware families rather
than distinguishing between malicious and benign software.
To achieve this, we leverage metric learning to map input
samples to their respective families based on their proximity
to the centroids of known classes. This method enhances the
model’s generalization ability by constructing a feature space
that accurately reflects the similarities and differences between
samples. Additionally, we incorporate triplet loss to refine this
feature space further, forming distinct, compact clusters that
improve the accuracy of assignments. This approach ensures
that samples from the same family are closely grouped, while
those from different families are pushed apart. Importantly,
our work specifically addresses concept drift in detecting
new, unknown malware families, rather than focusing on
the evolution of existing malware families. This distinction
is critical because a related, yet underexplored, aspect of
concept drift involves the automated detection of emerging
malware families for multi-class classification purposes. While
existing approaches may employ drift signaling techniques
to determine when to retrain binary classification models,
the automatic identification of new malware families —those
that significantly deviate from historical data— poses a more
intriguing challenge [7].

Our experiments demonstrate the effectiveness of the pro-

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

89

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

posed approach in detecting newly emerging malware families,
offering valuable insights into maintaining robust defense
mechanisms against rapidly evolving cyber threats. The results
show a significant improvement in detection performance for
new malware, providing a reliable and adaptive solution to
keep pace with the dynamic landscape of cyber threats.

The main contributions of this paper are as follows:

o We present a method that leverages metric learning and
DBSCAN for family clustering to address concept drift
in malware analysis.

o We propose a neural network architecture that utilizes an
autoencoder and triplet loss for robust malware family
detection.

« We extensively evaluate our approach using two relevant
benchmark datasets for Android and Windows PE mal-
ware detection, as commonly used in the literature.

The rest of the paper is organized as follows: Section II
covers related work, discussing existing approaches in mal-
ware detection, metric learning, and concept drift. Section III
explains our proposed method, detailing how we effectively
utilize an autoencoder with triplet loss to differentiate be-
tween known and new malware families. Section IV details
the datasets we used and the experimental setup. Section V
presents our experiments’ results and evaluates our approach’s
effectiveness. Section VI discusses the limitations of our
study, highlighting potential areas for improvement. Finally,
Section VII concludes the paper and discusses potential future
work.

II. RELATED WORK
A. Machine Learning in Malware Detection

Numerous studies have leveraged machine learning tech-
niques to enhance the detection of malware and its various
families by utilizing a range of features. These include static
features, which are extracted from the malware without ex-
ecuting it to reveal the underlying code structure, such as
Application Programming Interface (API) function calls [8][9],
bytes [10][11] and opcodes [12]-[14]. Additionally, some
research has focused on using a set of these static features
[15]-[17]. Dynamic features, on the other hand, capture the
behavior of malware during its execution and include data,
such as API call traces [18][19], instruction traces [20], and
network traffic [21]. Some studies have furthered this approach
by converting these inputs into visual formats, aiding in
recognizing malicious patterns [8][22]. Machine learning thus
plays a crucial role in strengthening cybersecurity measures
against diverse threats.

B. Metric Learning

Recent advancements in metric learning have demonstrated
their efficacy in learning high-quality data representations for
tasks involving object differentiation and semantic similarity
across various fields, such as computer vision [23]-[25], au-
dio processing [26]-[28], and bioinformatics [29][30]. Metric
learning has also garnered significant attention from security
researchers due to its potential to enhance malware detection

capabilities. Wu et al. [31] introduce IFDroid, a system that
leverages contrastive learning to enhance the robustness and
accuracy of Android malware family classification. IFDroid
trains an encoder to extract features resilient to code obfusca-
tion by converting function call graphs into images. Similarly,
Jurecek and Lérencz [32] employ Particle Swarm Optimization
to optimize feature weights for a weighted Euclidean distance
metric, improving the accuracy of k-Nearest Neighbors (k-
NN) classification. Building on these concepts, Liu et al. [33]
model the execution behavior of malware as heterogeneous
graphs, capturing interactions between entities, such as APIs,
processes, and files. This approach uses data augmentations
and graph attention networks to generate robust positive and
negative samples, enabling effective few-shot detection of
malware variants without extensive labeled data. Andresini et
al. [34] present a method for network intrusion detection that
combines autoencoders and triplet networks to improve pre-
dictive accuracy by addressing data imbalance and enhancing
the separation of normal and malicious network traffic.

C. Concept Drift

In recent years, various approaches have been proposed
to address concept drift in different domains, particularly in
malware and intrusion detection systems. Singh et al. [35]
explored concept drift in malware detection by introducing
new tracking methods and examining different types of mal-
ware evolution. Building on this, Jordaney et al. [4] developed
the TRANSCEND framework, which identifies concept drift
in classification models through statistical metrics and a con-
formal evaluator to assess model credibility and confidence.
The framework was further refined in TRANSCENDENT [36],
which formalized the theoretical foundation of conformal eval-
vation and introduced new evaluators to enhance robustness.
Additionally, CADE [37] employed contrastive learning to
detect outliers and explain concept drift by mapping data
samples into a low-dimensional space. In the realm of intrusion
detection, Andresini et al. [38] proposed the INSOMNIA
framework, which integrates incremental, active, and transfer
learning to adapt to non-uniform data distribution over time,
thus maintaining the efficacy of intrusion detection models
through continuous updates and active learning strategies.
Moreover, Zola et al. [39] conducted a temporal analysis
of distribution shifts in malware classification, proposing a
three-step forensic exploration approach to understand model
failures caused by concept drift. These diverse methodologies
highlight the evolving landscape of concept drift management
in cybersecurity applications.

Many approaches do not adequately consider the issue of
concept drift, which can lead to a decline in detection accuracy
over time [8][13][31]. Additionally, some methods overlook
the complexity of dealing with multiple clusters within a single
malware family and fail to address the presence of outliers
effectively [4][37]. These gaps highlight the need for more
robust and adaptive solutions in malware family detection.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

90

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

III. METHOD

Our method enhances the robustness and performance of
detection models through a structured approach to address
the challenges posed by concept drift in malware family
classification. Initially, high-dimensional feature vectors are
extracted from the malware samples. These vectors are then
processed using an autoencoder, trained with triplet loss to
reduce dimensionality while ensuring that similar points are
closer together and dissimilar points are further apart in
the latent space. Subsequently, clustering in the latent space
using the DBSCAN algorithm is performed to identify sub-
clusters within malware families and exclude outliers. Finally,
centroids of these clusters are calculated to determine the
classification of new samples based on their proximity to the
closest centroid, compared against a pre-calculated threshold
for cluster membership. The high-level process of the method
is illustrated in Figure 1. This section outlines the approach
and techniques we employed to maintain reliable classification
performance in the face of the constantly evolving nature of
malware.

Figure 1. An overview of the method.

We employ metric learning, a machine learning approach
that focuses on defining a distance metric between data points
to transform the data space. This method aims to bring similar
points closer together while pushing dissimilar points further
apart [40]. In our implementation, we utilize triplet loss,
which simultaneously considers pairs of similar and dissimilar
points, enhancing the model’s capability to learn meaningful
representations. Triplet loss operates by using triplets of data
points: an anchor, a positive sample that is similar to the
anchor, and a negative sample that is dissimilar [23]. The
objective is to ensure that the distance between the anchor
and the positive sample is smaller than the distance between
the anchor and the negative sample by at least a specified
margin. This margin enforces a separation between similar
and dissimilar pairs, driving the model to learn a more
discriminative feature space. Additionally, working with high-
dimensional feature vectors introduces the challenge of the
curse of dimensionality. In high-dimensional spaces, distances
between data points become less informative, complicating
the task of distinguishing between different classes [41]. To
overcome this, we incorporated an autoencoder to reduce the
dimensionality of the data, thereby mitigating the effects of the

curse of dimensionality and making distance measures more
reliable. The autoencoder compresses the high-dimensional
data into a lower-dimensional latent space, preserving the most
critical features while discarding redundant information. This
compression not only enhances the efficiency of distance com-
putations but also helps in capturing the underlying structure of
the data, making it easier to identify and distinguish between
different classes.

After samples are projected into the latent space, samples
from the same malware family are grouped, facilitating easier
classification. However, since our goal is to analyze new
malware families, a more fine-grained analysis is required. To
achieve this, clustering in the latent space is used to group
samples belonging to subgroups of the same malware families.
This approach allows us to project new samples during testing
and not only classify them as belonging to an existing or new
family but also measure their deviation from existing families.
Building on this foundation, we employed the DBSCAN [42]
clustering algorithm to identify multiple clusters within each
class in the latent space obtained from the bottleneck of the
autoencoder. Although we know the number of classes from
the training data, DBSCAN helps us identify sub-clusters
within these classes, which is crucial since a single class can
contain multiple distinct clusters.

Ignoring these sub-clusters can result in misleadingly large
distances between data points and their centroids. By employ-
ing DBSCAN, we can accurately detect these sub-clusters,
leading to precise centroid calculations. This clustering process
allows us to determine whether a new sample fits within
existing classes or should be considered a new malware family
or variant, pending expert verification. Additionally, DBSCAN
effectively handles outliers, ensuring that anomalies do not
distort the centroid calculations.

To further refine our classification approach, we calculate
the centroids of each cluster. Given that we use the DBSCAN
algorithm, which does not include every point in a cluster and
filters out outliers, we compute the centroids more accurately.
The centroids are calculated by taking the mean of the
data points within each cluster. This method benefits from
DBSCAN’s ability to handle outliers effectively, ensuring that
these outliers do not distort the centroid calculations.

Once the clusters and their centroids are established, we
determine whether a new sample belongs to an existing
family by locating the closest centroid in the latent space and
noting the family to which this centroid belongs. The distance
between the new sample and the closest centroid is then
calculated and compared with a pre-calculated threshold for
the identified family. Each family’s threshold is determined by
the distance from the centroid to the furthest point within the
cluster (excluding outliers). This threshold acts as a boundary
to decide cluster membership. If the calculated distance for
the new sample is less than or equal to the threshold, the
sample is classified as belonging to that family. Otherwise, it
is considered as not belonging to any existing family and may
be flagged as a potential new family or variant.

The threshold for each family is calculated during the clus-

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

91

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

tering process with DBSCAN. For each cluster, the threshold
is defined as the distance from the centroid to the furthest
point within the cluster. This is feasible because DBSCAN
effectively excludes outliers, ensuring that the threshold rep-
resents the maximum distance within the core points of the
cluster.

By employing DBSCAN and centroid calculation, our
method can accurately determine whether a new sample fits
within existing classes or should be considered a new malware
family or variant, pending expert verification. This approach
not only enhances detection performance but also provides a
reliable mechanism to handle the dynamic nature of malware,
maintaining the model’s robustness over time.

Impact of triplet loss

The triplet loss function is a powerful technique used in
machine learning to enhance the discriminative ability of
models [23]. It operates by optimizing the distance between
samples in such a way that similar samples (belonging to
the same class) are brought closer together, while dissimilar
samples (belonging to different classes) are pushed farther
apart.

Given an anchor sample z,, a positive sample x, of the
same class, and a negative sample z,, of a different class, the
triplet loss function aims to ensure that the distance between
the anchor and positive samples is less than the distance
between the anchor and negative samples by at least a margin
«. The triplet loss function L can be defined as:

L(zq,xp, xn) = max {0, D(zq, xp) — D(xq, zn) +a} (1)

where:

D(wi,x;) = || (i) = f(a5)I? 2)

represents the squared Euclidean distance between the em-
bedding vectors of two samples, produced by the embedding
function f. The margin « defines the desired separation
between positive and negative pairs.

In practice, the loss is computed over a batch of triplets, an
anchor input (input pair), a positive input (similar pair), and
a negative input (dissimilar pair), and the objective is to min-
imize the total loss across the batch. In triplet loss, a margin
enforces a distinct separation, where distances smaller than the
margin do not contribute to the loss function. Assuming we
have a set of triplets {(z4,,%p,, Tn,)};, the overall triplet
loss can be defined as:

N
1
Lbatch = N § L(xawxpwwm) (3)
i=1

This formulation forces the network to learn an embedding
space where positive pairs (anchor and positive samples) are
closer than negative pairs (anchor and negative samples), with
a margin « separating them.

Impact of DBSCAN

Selecting an appropriate clustering algorithm is crucial for
accurate identification and analysis. Popular clustering meth-
ods like K-means were not suitable for our needs due to several
reasons. Firstly, K-means require the number of clusters to
be specified beforehand, which is challenging in our scenario
because the number of clusters is unknown and can vary signif-
icantly. A single class could potentially have multiple clusters
due to intraclass variants. Secondly, K-means tries to include
all data points in a cluster, which is not ideal for real-world
data where outliers, such as incorrectly labeled data or genuine
anomalies, are present. These outliers can distort the clustering
results and reduce the overall accuracy. Additionally, K-means
assumes that clusters are spherical and equally sized, which
is rarely the case in malware datasets [43]. Malware families
can exhibit diverse and complex structures that do not fit the
spherical assumption.

Given these limitations, we considered DBSCAN [44] as a
potential solution. DBSCAN is effective in identifying clusters
of arbitrary shapes and sizes and is robust in detecting outliers.
It operates on the principle that regions of high data density
are separated by regions of low density. DBSCAN requires
two parameters: epsilon €, which defines the radius for neigh-
borhood search, and minPts, the minimum number of points
required to form a dense region. The challenge with DBSCAN
lies in setting these parameters correctly, especially for datasets
with varying densities. To address this, we employed several
heuristics and techniques discussed in the literature. Firstly,
we set the minPts parameter based on the dimensionality of
the data. A common heuristic is to set minPts to twice the
number of dimensions, i.e., minPts = 2 xdim [42]. Choosing
the appropriate value for € is more challenging. One effective
method is to use the k-distance plot, where we plot the distance
to the k-th nearest neighbor for each point in the dataset. A
sharp bend in this plot, known as the "knee" or "elbow," often
indicates a good choice for ¢. In practice, the value of € should
be chosen as small as possible to capture the most relevant
clusters without merging distinct ones.

In our case, there is another advantage of using DBSCAN.
One crucial parameter to decide is the distance threshold
metric, which helps us determine whether samples exceed or
fall within the distance threshold. We utilized the DBSCAN
algorithm to establish this distance threshold. The DBSCAN
algorithm identifies clusters in the provided data, finding one
or multiple clusters if they exist. Importantly, it does not force
every point into a cluster; instead, it marks points that do
not belong to any cluster as noise or outliers. This feature is
advantageous for determining a robust threshold that accounts
for outliers. We set the highest distance between a point and
a centroid within a cluster as the threshold.

To demonstrate the effectiveness of DBSCAN, we present
Figure 2 where multiple clusters within a single class are
shown. Specifically, using DBSCAN, we detected two clusters
in one of the classes, Fakelnstaller. This approach decreased
the mean distance between a sample and its centroid by

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

92

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

26%, from 1.46 to 1.07. This significant reduction in mean
distance highlights the effectiveness of DBSCAN in accurately
separating clusters within a class, ultimately improving the
clustering performance.

Fakelnstaller
DroidKungFu
Plankton

GinMaster
BaseBridge
Iconosys

Kmin

FakeDoc (Unknown)

o488 HLO>O0

-20

-40

Figure 2. Clustering results using DBSCAN algorithm.

IV. DATASET AND SETUP

A. Drebin dataset

We utilized the Drebin dataset, an Android malware dataset
containing 5,560 malware samples and 123,453 benign ap-
plications compiled between August 2010 and October 2012
[15]. Drebin extracts features from the Android Manifest file,
such as hardware components, requested permissions, app
components, and filtered intents, as well as features from the
app’s disassembled code, including restricted API calls, used
permissions, suspicious API calls, and network addresses.

For our analysis, we selected families with a minimum of
100 malware samples, reducing the dataset to 8 families and
a total of 3,317 samples (Table I). We followed a previous
study’s strategy of splitting the dataset into training and testing
sets using an 80:20 ratio, based on the malware creation times-
tamps [37]. This temporal split ensures that our evaluation
reflects real-world scenarios, where models encounter newer
malware after being trained on older data, thus providing a
robust evaluation against established benchmarks.

TABLE I. SAMPLE DISTRIBUTION OF DREBIN DATASET.

Family Number of Samples

Fakelnstaller 925
DroidKungFu 667
Plankton 625
GingerMaster 339
BaseBridge 330
Iconosys 152
Kmin 147

FakeDoc 132

B. BODMAS dataset

We utilized the BODMAS dataset, originally consisting of
57,293 malware samples and 77,142 benign samples, for a
total of 134,435 samples [17]. Each sample is represented by a
2,381-dimensional feature vector, extracted through static anal-
ysis. These feature vectors include elements such as general
file information (file size, imported/exported functions, and
section data like relocations, resources, and signatures), header
information (machine type, subsystem, and image versions),
imported and exported functions, and section information
(section names, entropy, and virtual size). Additionally, byte
histograms, byte entropy histograms, and string information
(e.g., URLs, registry keys, and string entropy) are included to
capture statistical properties. The dataset also records times-
tamp metadata, indicating when each sample was first seen on
VirusTotal.

In our preprocessing, we performed several preprocessing
steps to refine the subset used in our analysis. We excluded
packed malware samples, as packers encrypt and compress the
code, making it difficult to carry out accurate drift detection
[35][39][45]. Additionally, we focused only on malware fam-
ilies with more than 1,500 samples, resulting in the inclusion
of seven families for our study (Table II).

We split the dataset into training and testing sets in an
80:20 ratio based on the first-seen timestamps to simulate
real-world settings and evaluate the model’s performance
under more realistic conditions. The training data consists of
samples from August 2019 to July 2020, while the testing data
includes samples from July 2020 to September 2020. This
temporal split helps minimize experimental bias and aligns
with recommendations from previous work [3].

TABLE II. SAMPLE DISTRIBUTION OF BODMAS DATASET.

Family = Number of Samples
berbew 1741
dinwod 1942
ganelp 1413
mira 1526
sfone 3218
sillyp2p 3012
small 3606

C. Experimental Setup

To evaluate the robustness and accuracy of our proposed
method, we designed a comprehensive experimental setup
involving preprocessing, model training, and validation stages.
This section outlines the procedures and configurations em-
ployed to ensure the credibility and reproducibility of our re-
sults. The experiments were conducted on two prominent mal-
ware datasets, Drebin and BODMAS, each requiring tailored
preprocessing steps to handle their specific characteristics.

We began by implementing a variance threshold to filter out
features with low variance in both datasets. Data was then split
into training and testing sets based on timestamps, utilizing the
malware creation time for Drebin and the first-seen date (based

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

93

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

12 - 120
10 100
g 8 . 80
s 6 s 60
o s
a8 e a
4 40
2 ’ l;|
0o — 0 Dﬁ I
e > L o @ @ & © 5 o
é@\ @Q& § &‘:\c J}Z %,‘\g) Qoé\ 4§\ \@00 9\,,}\0 °°<< § (\\{_\o
& & < N &6 <& & & < S
((/5‘. Q@\ () & Q%‘. 0@\ o

(a) Original feature space.

&
&

(b) Vanilla AE feature space.

=
15.0
125
3
€ 10.0 o
s
38 75
50 | —
. 25
= []
=== S — -
Q@ & N L ANY QO A 2 & £
&) N © NG K S @ . N o
@«\b coop’ +« \‘g? a’l} *&(\Q \'o&} @rzf"\ Q)«\Q o(\ob’* « *(3‘0
& ¢ <« 2 S < N & ¢ <«
3 Qé*' & [y &F

(c) Triplet autoencoder feature space.

Figure 3. Boxplot diagrams showing the distances between samples and their family centroids for three feature representations: original features, vanilla

autoencoder features, and triplet autoencoder features.

on VirusTotal) for BODMAS, ensuring a temporal allocation.
The Drebin dataset was modeled using neural network layers
consisting of 1376 input neurons, followed by 1024, 256,
and 32 neurons. The BODMAS dataset’s model architecture
included layers with 2381, 1024, 256, and 32 neurons. For
training, the vanilla autoencoder utilized mean squared error
as its loss function, whereas the triplet autoencoder employed
a combination of triplet loss and reconstruction loss. Triplets
were selected by including one sample from a random class,
one sample from the same class, and one from a different
class.

To validate our model’s performance, we used an 80:20 split
for both datasets, with the training set comprising older sam-
ples and the testing set consisting of more recent samples. This
temporal split simulates real-world scenarios where models are
deployed and subsequently encounter new malware.

In our experiments, we simulate the presence of drifting
samples by systematically excluding one malware family from
the training data in each iteration. For example, if we exclude
the Fakelnstaller family, the remaining families are used to
train the model, and during testing, the previously excluded
family (e.g., Fakelnstaller) is reintroduced alongside the test
sets of the other families. This approach creates a scenario
where the model encounters 'unknown’ or ’drifting’ families,
allowing us to evaluate its ability to manage concept drift.
This technique aligns with approaches used in previous studies
[4]1[37]. Although this method effectively labels drifted sam-
ples (since they are excluded from training), it has a limitation:
newer samples from known families in the test set might
exhibit drift or initiate drifting, but without specific labels to
denote this finer level of drift, they will not be classified as
such.

V. EVALUATION
A. Experiment on Android malware dataset (Drebin)

In Figure 3, we present the distance boxplot diagrams
of the distance between every sample and its family cen-
troid for three different feature representations: the original
features (1376-dimensional features), the vanilla autoencoder
(32-dimensional features), and the triplet autoencoder (32-

dimensional features). We observe that the distances from
centroids are significantly smaller by comparing the original
feature space to the triplet autoencoder feature space. This
indicates that the samples of the same class are more tightly
clustered and closer to each other in the triplet autoencoder
feature space.

When comparing the vanilla autoencoder to the triplet
autoencoder, we also find that the distances in the triplet
autoencoder are more compact. Additionally, we conducted
an experiment where one class was designated as an unknown
class by excluding any samples from that class during the
training phase for both the vanilla autoencoder and the triplet
autoencoder. This setup allows us to test the models’ ability
to handle out-of-distribution samples.

The results show that the distances between the unknown
class samples and the closest centroid are much larger, indi-
cating that the unknown class is effectively separated from
the known classes. This separation suggests that the triplet
autoencoder successfully differentiates between known and
unknown classes, enhancing its robustness to data drift and
unseen samples.

To further illustrate the separation of classes, we also
provide t-distributed Stochastic Neighbor Embedding (t-SNE)
graphs of the same data used to generate the boxplots in
Figure 4. These t-SNE visualizations offer a clearer picture of
how the different feature representations perform in terms of
clustering [46]. By comparing the t-SNE plots of the vanilla
autoencoder and the triplet autoencoder, it becomes evident
that the clusters in the triplet autoencoder are more distinct and
tightly packed. This demonstrates the superior capability of the
triplet autoencoder in creating a well-defined and separated
feature space.

Table III provides comprehensive details about our exper-
iments. The first two columns list the labels of the malware
families, along with the family names that were excluded from
the training set and reserved solely for testing. The table also
presents the F1 scores, which measure the performance of the
models in terms of both precision and recall. Three methods
are compared in our evaluation, CADE [37], triplet autoen-
coder with Median Absolute Deviation (MAD) threshold, and

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

94

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

original feature space

SN

aBme

w7
&
©°8 Tah e

O Fakelnstaller [DroidKungFu /\ Plankton

& GinMaster

vanilla autoencoder

triplet autoencoder

%éi
&8
ey BT
gy
qn BaseBridge $3 Iconosys V Kmin O FakeDoc (Unknown)

Figure 4. t-SNE diagrams of original features space, vanilla autoencoder and triplet autoencoder.

our proposed approach. MAD, calculated using the formula
MAD = median(|X; — median(X)]), serves as a measure
of statistical dispersion, and is used to determine the distance
threshold. Including MAD allows us to compare the perfor-
mance of the threshold using DBSCAN. Since the training
model structure is the same for both the MAD and DBSCAN-
based methods —both using the triplet autoencoder— the only
difference lies in how the threshold is determined to decide
whether each sample belongs to existing families. The results
in the table demonstrate that the DBSCAN-based method
consistently outperforms MAD method in terms of the overall
F1 score. Even though in some cases MAD’s performance is
closer to that of DBSCAN, it is important to note that MAD
requires a coefficient determined empirically. In contrast, DB-
SCAN calculates the threshold automatically without requiring
a manual coefficient. When comparing CADE, which uses
contrastive loss and MAD threshold, and our method, which
employs triplet loss along with the DBSCAN threshold, our
method demonstrates superior performance overall.

B. Experiment on Windows PE malware dataset (BODMAS)

We also used the BODMAS dataset to measure the per-
formance of our method. This dataset brings two different
advantages: it is a more recent dataset, and it is a Windows
PE dataset, representing a different operating system, which
helps us measure the generalizability of our method.

The results, summarized in Table IV, show that our method
performs well on the Windows PE malware dataset. This
performance demonstrates the robustness and generalizability
of our method across different types of malware and operating
systems. By using the BODMAS dataset, we validated that
our approach is not limited to a specific type of malware or
operating system but can be effectively applied to various sce-
narios. This enhances the overall reliability and applicability
of our malware detection method, providing a practical and
robust solution for cybersecurity challenges across different
platforms.

VI. LIMITATIONS

While our study provides valuable insights, it is important to
acknowledge several limitations. Our analysis considers only

one family as the unknown family. However, in real-world
scenarios, there can be multiple unknown families, which
could affect the clustering results and the interpretation of
the data. Moreover, although we automatically determined the
parameters of the DBSCAN algorithm based on the method
outlined in [42], parameters, such as € and the minimum num-
ber of points (minPts) could be further fine-tuned depending
on the specific context and dataset characteristics. Fine-tuning
these parameters might lead to more accurate and meaningful
clustering results. Additionally, our study did not include any
packed samples because the encryption and compression of
code by packers make accurate drift detection challenging.

VII. CONCLUSION AND FUTURE WORK

This paper presents an approach to addressing concept
drift in malware family detection, specifically focusing on the
emergence of new malware families. Our method effectively
differentiates between known and new malware families by
leveraging a triplet autoencoder and the DBSCAN clustering
algorithm. We validated our method using two prominent
datasets, Drebin and BODMAS, representing Android and
Windows PE malware. The results demonstrate that our ap-
proach significantly improves the detection performance for
new malware families. This robust and reliable solution ad-
dresses the dynamic nature of cyber threats, ensuring that
detection models remain effective over time. Our contributions
include applying metric learning and clustering techniques to
improve malware family classification in the face of concept
drift, providing a practical framework for ongoing cybersecu-
rity efforts.

Moving forward, we aim to explore retraining strategies to
adapt our model to evolving malware behaviors more effec-
tively. This will involve identifying the features and factors
contributing to malware drift, allowing us to understand the
dynamics of malware evolution better. By incorporating these
insights, we aim to develop more robust detection mechanisms
to maintain high performance even as malware tactics change.

ACKNOWLEDGMENTS

Numan Halit Guldemir is supported by the Republic of
Tiirkiye Ministry of National Education (MoNE-1416/YLSY).

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

95

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

TABLE III. PERFORMANCE OF THE MODELS. THE FAMILY COLUMN INDICATES WHICH MALWARE FAMILY WAS EXCLUDED FROM TRAINING AND KEPT
FOR TESTING TO SIMULATE DRIFTING SAMPLES.

Family No. of No. of F1 score F1 score F1 score

known samples unknown samples CADE [37] MAD DBSCAN
Fakelnstaller 478 925 0.86 0.95 0.95
DroidKungFu 529 667 0.87 0.89 0.90
Plankton 538 625 0.77 0.90 0.87
GinMaster 595 339 0.63 0.84 0.85
BaseBridge 597 330 0.59 0.97 0.98
Iconosys 632 152 0.42 0.46 0.65
Kmin 633 147 0.40 0.63 0.62
FakeDoc 636 132 0.38 0.56 0.66
Overall 4638 3317 0.62 0.78 0.81

TABLE IV. PERFORMANCE OF THE MODELS. THE FAMILY COLUMN
INDICATES WHICH MALWARE FAMILY WAS EXCLUDED FROM TRAINING

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

AND KEPT FOR TESTING TO SIMULATE DRIFTING SAMPLES.

. No. of No. of
Family Kk 1 K 1 F1 score
nown samples unknown samples
berbew 2817 1741 0.99
dinwod 2634 1942 0.96
ganelp 2636 1413 0.97
mira 2470 1526 0.58
sfone 2231 3218 0.51
sillyp2p 2737 3012 0.83
small 1473 3606 0.96
REFERENCES

J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang,
“Learning under concept drift: A review,” IEEE transactions
on knowledge and data engineering, vol. 31, no. 12, pp. 2346—
2363, 2018.

AV-Test, “Malware statistics & trends report,” Accessed: 14
July 2024, 2023, [Online]. Available: https://www.av-test.org/
en/statistics/malware/.

F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cav-
allaro, “Tesseract: Eliminating experimental bias in malware
classification across space and time,” in 28th USENIX security
symposium (USENIX Security 19), 2019, pp. 729-746.

R. Jordaney et al., “Transcend: Detecting concept drift in
malware classification models,” in 26th USENIX security sym-
posium (USENIX security 17), 2017, pp. 625-642.

A. Bendale and T. E. Boult, “Towards open set deep networks,”
in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 1563-1572.

K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified frame-
work for detecting out-of-distribution samples and adversarial
attacks,” Advances in neural information processing systems,
vol. 31, 2018.

A. Guerra-Manzanares, “Android malware detection: Mission
accomplished? a review of open challenges and future per-
spectives,” Computers & Security, p. 103 654, 2023.

M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G.
Giacinto, “Novel feature extraction, selection and fusion for
effective malware family classification,” in Proceedings of the
sixth ACM conference on data and application security and
privacy, 2016, pp. 183-194.

A. Sami, B. Yadegari, H. Rahimi, N. Peiravian, S. Hashemi,
and A. Hamze, “Malware detection based on mining api

(10]

(1]

(12]

(13]

[14]

(15]

(16]

(17]

(18]

[19]

(20]

(21]

calls,” in Proceedings of the 2010 ACM symposium on applied
computing, 2010, pp. 1020-1025.

S. Jain and Y. K. Meena, “Byte level n—gram analysis for
malware detection,” in Computer Networks and Intelligent
Computing: 5th International Conference on Information Pro-
cessing, ICIP 2011, Bangalore, India, August 5-7, 2011.
Proceedings, Springer, 2011, pp. 51-59.

Z. Fuyong and Z. Tiezhu, “Malware detection and classifica-
tion based on n-grams attribute similarity,” in 2017 IEEE inter-
national conference on computational science and engineering
(CSE) and IEEE international conference on embedded and
ubiquitous computing (EUC), IEEE, vol. 1, 2017, pp. 793-796.
N. McLaughlin et al., “Deep android malware detection,” in
Proceedings of the seventh ACM on conference on data and
application security and privacy, 2017, pp. 301-308.

A. G. Kakisim, S. Gulmez, and I. Sogukpinar, “Sequential op-
code embedding-based malware detection method,” Computers
& Electrical Engineering, vol. 98, p. 107703, 2022.

D. Yuxin and Z. Siyi, “Malware detection based on deep learn-
ing algorithm,” Neural Computing and Applications, vol. 31,
pp. 461472, 2019.

D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck,
and C. Siemens, “Drebin: Effective and explainable detection
of android malware in your pocket.,” in Ndss, vol. 14, 2014,
pp. 23-26.

H. S. Anderson and P. Roth, “Ember: An open dataset for
training static pe malware machine learning models,” arXiv
preprint arXiv:1804.04637, 2018.

L. Yang, A. Ciptadi, I. Laziuk, A. Ahmadzadeh, and G.
Wang, “Bodmas: An open dataset for learning based temporal
analysis of pe malware,” in 2021 IEEE Security and Privacy
Workshops (SPW), IEEE, 2021, pp. 78-84.

Z. Salehi, A. Sami, and M. Ghiasi, “Maar: Robust features to
detect malicious activity based on api calls, their arguments
and return values,” Engineering Applications of Artificial In-
telligence, vol. 59, pp. 93-102, 2017.

D. Uppal, R. Sinha, V. Mehra, and V. Jain, “Malware detection
and classification based on extraction of api sequences,” in
2014 International conference on advances in computing, com-
munications and informatics (ICACCI), IEEE, 2014, pp. 2337-
2342.

P. O’kane, S. Sezer, and K. McLaughlin, “Detecting obfus-
cated malware using reduced opcode set and optimised runtime
trace,” Security Informatics, vol. 5, pp. 1-12, 2016.

A. Boukhtouta, S. A. Mokhov, N.-E. Lakhdari, M. Debbabi,
and J. Paquet, “Network malware classification comparison
using dpi and flow packet headers,” Journal of Computer
Virology and Hacking Techniques, vol. 12, pp. 69-100, 2016.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024.

ISBN: 978-1-68558-206-7

96

https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

[33]

(34]

[35]

[36]

[37]

(38]

(39]

[40]

E. Rezende, G. Ruppert, T. Carvalho, F. Ramos, and P.
De Geus, “Malicious software classification using transfer
learning of resnet-50 deep neural network,” in 2017 16th IEEE
international conference on machine learning and applications
(ICMLA), 1IEEE, 2017, pp. 1011-1014.

A. Hermans, L. Beyer, and B. Leibe, “In defense of
the triplet loss for person re-identification,” arXiv preprint
arXiv:1703.07737, 2017.

X. Dong and J. Shen, “Triplet loss in siamese network for
object tracking,” in Proceedings of the European conference
on computer vision (ECCV), 2018, pp. 459-474.

B. McCartney, B. Devereux, and J. Martinez-del-Rincon, “A
zero-shot deep metric learning approach to brain—computer
interfaces for image retrieval,” Knowledge-Based Systems,
vol. 246, p. 108 556, 2022.

A. v. d. Oord, Y. Li, and O. Vinyals, “Representation
learning with contrastive predictive coding,” arXiv preprint
arXiv:1807.03748, 2018.

E. Ghaleb, M. Popa, and S. Asteriadis, “Metric learning-
based multimodal audio-visual emotion recognition,” IEEE
Multimedia, vol. 27, no. 1, pp. 3748, 2019.

J. S. Chung et al., “In defence of metric learning for speaker
recognition,” arXiv preprint arXiv:2003.11982, 2020.

Y. Xu, H. Min, H. Song, and Q. Wu, “Multi-instance multi-
label distance metric learning for genome-wide protein func-
tion prediction,” Computational biology and chemistry, vol. 63,
pp. 3040, 2016.

H. Luo, J. Wang, C. Yan, M. Li, E-X. Wu, and Y. Pan,
“A novel drug repositioning approach based on collaborative
metric learning,” IEEE/ACM transactions on computational
biology and bioinformatics, vol. 18, no. 2, pp. 463—471, 2019.
Y. Wu, S. Dou, D. Zou, W. Yang, W. Qiang, and H. Jin,
“Contrastive learning for robust android malware familial
classification,” IEEE Transactions on Dependable and Secure
Computing, 2022.

M. Jurecek and R. Lérencz, “Application of distance metric
learning to automated malware detection,” I[EEE Access, vol. 9,
pp- 96 151-96 165, 2021.

C. Liu, B. Li, J. Zhao, Z. Zhen, X. Liu, and Q. Zhang, “Fewm-
hgcl: Few-shot malware variants detection via heterogeneous
graph contrastive learning,” IEEE Transactions on Dependable
and Secure Computing, 2022.

G. Andresini, A. Appice, and D. Malerba, “Autoencoder-
based deep metric learning for network intrusion detection,”
Information Sciences, vol. 569, pp. 706727, 2021.

A. Singh, A. Walenstein, and A. Lakhotia, “Tracking concept
drift in malware families,” in Proceedings of the 5th ACM
workshop on Security and artificial intelligence, 2012, pp. 81—
92.

F. Barbero, F. Pendlebury, F. Pierazzi, and L. Cavallaro,
“Transcending transcend: Revisiting malware classification in
the presence of concept drift,” in 2022 IEEE Symposium on
Security and Privacy (SP), IEEE, 2022, pp. 805-823.

L. Yang et al., “Cade: Detecting and explaining concept drift
samples for security applications,” in 30th USENIX Security
Symposium (USENIX Security 21), 2021, pp. 2327-2344.

G. Andresini, F. Pendlebury, F. Pierazzi, C. Loglisci, A.
Appice, and L. Cavallaro, “Insomnia: Towards concept-drift
robustness in network intrusion detection,” in Proceedings of
the 14th ACM workshop on artificial intelligence and security,
2021, pp. 111-122.

F. Zola, J. L. Bruse, and M. Galar, “Temporal analysis of dis-
tribution shifts in malware classification for digital forensics,”
in 2023 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), 1IEEE, 2023, pp. 439-450.

M. Kaya and H. S. Bilge, “Deep metric learning: A survey,”’
Symmetry, vol. 11, no. 9, p. 1066, 2019.

(41]

(42]

[43]

(44]

[45]

[46]

N. Altman and M. Krzywinski, “The curse (s) of dimension-
ality,” Nat Methods, vol. 15, no. 6, pp. 399—400, 2018.

E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu,
“Dbscan revisited, revisited: Why and how you should (still)
use dbscan,” ACM Transactions on Database Systems (TODS),
vol. 42, no. 3, pp. 1-21, 2017.

M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means algo-
rithm: A comprehensive survey and performance evaluation,”
Electronics, vol. 9, no. 8, p. 1295, 2020.

M. Ester et al., “A density-based algorithm for discovering
clusters in large spatial databases with noise,” in KDD, vol. 96,
1996, pp. 226-231.

D. W. Fernando and N. Komninos, “Fesa: Feature selection
architecture for ransomware detection under concept drift,”
Computers & Security, vol. 116, p. 102659, 2022.

L. Van der Maaten and G. Hinton, “Visualizing data using t-
sne.,” Journal of machine learning research, vol. 9, no. 11,
2008.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024.

ISBN: 978-1-68558-206-7

97

	Introduction
	Related work
	Machine Learning in Malware Detection
	Metric Learning
	Concept Drift

	Method
	Dataset and Setup
	Drebin dataset
	BODMAS dataset
	Experimental Setup

	Evaluation
	Experiment on Android malware dataset (Drebin)
	Experiment on Windows PE malware dataset (BODMAS)

	Limitations
	Conclusion and Future Work

