
Stego-Malware Attribution: Simple Signature and
Content-based Features Derived and Validated from

Classical Image Steganalysis on Five Exemplary
Chosen Algorithms

Bernhard Birnbaum
Dept. of Computer Science

Otto-von-Guericke University
Magdeburg, Germany

email: bernhard.birnbaum@ovgu.de

Christian Krätzer
Dept. of Computer Science

Otto-von-Guericke University
Magdeburg, Germany

email: christian.kraetzer@ovgu.de

Jana Dittmann
Dept. of Computer Science

Otto-von-Guericke University
Magdeburg, Germany

email: jana.dittmann@ovgu.de

Abstract—Stego malware, which hides malicious functional-
ity using steganographic communication channels, is becoming
increasingly common in today’s attack scenarios. Cybersecurity
capabilities against such malware include prevention, detection,
response and attribution tasks. In this paper, we focus on JPEG
images and the attribution task by investigating a set of very
simple signature-based steganalysis features for stego-malware
attribution by attempting to identify the embedding algorithm
used in a multi-class problem. First, the communication scenario
in stego-malware is discussed by showing how the warden
(observer) setting differs from the typical communication setup in
steganography (known as the ‘Alice and Bob (A-B) scenario’) to
be used for a simple (non-blind) cover-stego pair analysis besides
blind steganalysis. For our considered stego-malware case, the
stego communication is redefined as an attacker-to-attacker (A-
A) scenario by extending the capabilities of the warden. Second,
due to the very simple nature of stego approaches often used
in malware, basic assumptions in steganography are not well
incorporated in the malware design. This motivates us to study
simple, classically known steganography approaches to simulate
stego-malware attribution capabilities using five long-standing,
well-known steganography tools. Four simple signature-based
and two content-based features are derived for the attribution
of five stego algorithms and their performance is validated in
a multi-class comparison. Using a test set of 1000 randomly
selected original cover images from the Alaska2 dataset, the
feature set for attribution of the five algorithms used and their
individualisation properties are investigated exemplarily for two
different capacities (low: 26 bytes and high: 2.1 kBytes) and
two different embedding keys (one long and one short), also
considering a recompression case for the low capacity. A single
and double recompression of the 1000 Alaska2 images used
and the Flickr dataset with its 31,783 images are performed
to determine the false positive detection performance within
image data without steganographic embedding. The results show
the differences in stego-algorithm attribution performance per
feature and algorithm.

Keywords—stego-malware communication scenario; multi-
class steganalysis and attribution.

I. INTRODUCTION

According to [1], attackers started to use information hiding
techniques to make malicious software (malware) stealthier

and harder to detect more than a decade ago. In the last
10 years, the volume of malware using steganography and
information hiding to prevent detection (bypass security mech-
anisms), implement evasion or anti-forensics techniques, as
well as create hidden communication channels to orchestrate
attacks, has been growing on a yearly basis [2]. For such
malware using information hiding the term stego-malware was
created and the following taxonomy was proposed [1]:

• Group 1) malware hiding information by modulating
shared resources (e.g., a CPU register)

• Group 2) malware hiding information within network
traffic

• Group 3) malware hiding information in digital media
objects (covers, e.g., digital images in JPEG formats)

This taxonomy partially reflects the goal of the information
hiding mechanism implemented by the attacker: Methods
belonging to group 1 are primarily used to allow two processes
to exchange data within the same machine or to bypass
hardware isolation, methods in group 2 are primarily used to
implement Internet-wide covert communication, and methods
belonging to group 3 are used for data infiltration, exfiltration
or storage. For instance, images modified via steganographic
techniques have been used to store information on the local file
system of the infected host, to conceal configuration files and
malicious code when spreading the infection, or to implement
simple command and control (C&C) channels by making them
available in social networks or other network services.

Today’s cybersecurity capabilities against malware include
prevention, detection, response and attribution tasks. For stego-
malware detection, for example, the authors from MalJPEG [3]
provide an overview of existing work and show that JPEG
images are often used. Further [4] summarises available stego-
malware approaches by also concluding that JPEG is often
used as cover media type. For the detection, the authors in [5]
propose an approach to locate stego content in JPEG images by
analysing JPEG header markers. In our paper, we also have

33Copyright (c) IARIA, 2023. ISBN: 978-1-68558-092-6

SECURWARE 2023 : The Seventeenth International Conference on Emerging Security Information, Systems and Technologies

selected to follow this idea of using JPEG header analysis
(file/header integrity as well as the characteristics of specific
markers). We focus on an attribution task: Finding traces
indicating on the source of the malware. Such a source can be
for example malware creation kits on one or more computers,
malicious cyber activities of a human intruder or an ultimately
responsible party, see e.g., in [6]. As summarized in [7],
attribution contains the identification of such sources, the
collection of artefacts, extracting relevant information from the
data and answering attribution questions besides the source,
such as e.g., the time of a malware infestation and activities
that where performed on the target. This is similar to the
attribution approach presented by Jennifer Newmans group
in [8].

In this paper, we address in particular the following in
attribution: The identification of the source and collection of
artefacts to try to determine the used stego algorithm in stego-
malware that is hiding information in digital images (media
objects used as covers group 3 in the taxonomy discussed
above).

Starting in 2015, the volume of attacks observed ‘in the
wild’ using such methods increased in numbers but also
reduced in terms of variety. In fact, the majority of malware
exploiting steganographic techniques seems to only take ad-
vantage of images as the preferred type of cover media object.
As detailed in surveys on that topic (e.g., [2] and [4]), it seems
that attackers are capitalizing on the techniques offered by
related literature, publicly available source code and libraries,
or third-party information-hiding-capable malicious routines
offered on a Crime-as-a-Service basis (usually malware cre-
ation kits which also contain steganography modules/plugins).

In contrast to the academic research on traditional (end-to-
end) steganography (as discussed, e.g., in [9] or [10]), stego-
malware relies on much simpler basic assumptions on the
communication scenario that will be discussed in more detail
in Section II. As done in recent work in [5], we also use
existing simple steganography tools from [11], easily available
to potential stego-malware creators: jphide, jsteg, outguess,
steghide and f5. Amongst other tools f5 was also used in [5].

Focusing on stego-malware that uses JPEG images as cover,
the paper contributions are as follows to identify the embed-
ding algorithm used in a multi-class problem:

• The disscussion of the warden setting in the stego-
malware communication scenario, calling it attacker-to-
attacker (A-A) setup by also showing differences in the
corresponding basic assumptions for traditional stegano-
graphic end-to-end communication (also known as the
‘Alice and Bob (A-B) scenario’).

• Considerations on the attribution of steganographic meth-
ods in stego-malware, aiming at providing indicators of
compromise (IoC) for malware detection by trying to
identify the algorithm used in a multi-class attribution
problem on the example of five algorithms.

• Introduction of a set of light-weight (i.e., easy to com-
pute) features derived from observed artefacts during

embedding: Four simple, blind signature-based features
and two non-blind, content-based features. The signatures
are derived by using existing forensic tools (here foremost
and binwalk) as well as by header analysis on the JPEG
files (considering the JFIF version from the JPEG APP0
marker segment as well as a string-search in the JPEG
COM marker segments). While the first is novel to this
paper, the second follows the methodology in [3] and [5]
but determines novel signatures for the string-search
performed. The content-based, non-blind features, which
analyse in our case the (re-)compression behaviour as
well as the embedding impact to the colour distribution in
the image, are motivated by the typical, content-focused
steganalysis methods discussed, e.g., in [10]. The feature
extraction and attribution functionalities are presented in
detail in Section III and in Figure 2.

• An empirical investigation on five simple, classical
steganography approaches with two different capaci-
ties and key sizes based on 1000 randomly chosen
images from the Alaska2 image steganalysis reference
database [12] to derive a tendency for malware detection
and algorithm individualisation by additionally testing
for false positives (wrongful stego attribution on cover
data with no embedding) with (1) single and double re-
compressed Alaska2 images without embeddings and (2)
the Flickr30k data set from [13] with 31,783 images in
total. The results show in the multi-class decision the
following: Unique attribution of jsteg is possible with
two blind features with no errors and one blind feature
with 0.18 percent errors, four stego algorithms can be
attributed using file header signatures. jphide is difficult
to attribute with our features set. Those promising results
motivate further work for stego-malware detection and
attribution focusing on JPEG image header analysis.

The rest of the paper is structured as follows: First, the A-
A communication scenario of stego-malware and correspond-
ing attribution challenges for the Warden are introduced in
Section II. In Section III, the attribution concept with the
summary of the used steganography tools, the used image
sets, the embedding options and the set of attribution features
are discussed. Section IV contains implementation details and
Section V summarizes the results, followed by a last section
with a summary and conclusion.

II. SCENARIO AND ATTRIBUTION BACKGROUND FOR
STEGO-MALWARE

Stego-malware has firmly established itself as a dangerous
and still growing malware trend since 2015. A recent ex-
ample for such malware relying on steganographic channels
is an incident that has been reported in November 2022 by
(among many other sources) [14]. In [15] this stego-malware
is discussed in some detail by security specialists that where
reacting to this attack early on and who were responsible
for limiting its spread by providing involved actors with
indicators of compromise (IoC). The details in [15] provide
first insights, with more detailed information presented here:

34Copyright (c) IARIA, 2023. ISBN: 978-1-68558-092-6

SECURWARE 2023 : The Seventeenth International Conference on Emerging Security Information, Systems and Technologies

In late October 2022 malicious source code projects from
this attack started to appear on the Python code repository
PyPi. They were claiming to be libraries to be useful for
web development tasks and were soon added (in a kind
of supply chain attack) as includes to other repositories on
PyPi and GitHub. In those malicious packages, the existing
steganography library ‘judyb’ [16] (itself a fork from the well
known Python steganography module ‘stegano’ [17]) was used
to manage the communication. On infestation on a target
machine, the malware tried to post-fetch/infiltrate malicious
routines steganographicaly hidden in PNG images from a
fixed remote source (in this case a channel on imgur.com),
establish on site control (this only worked on MS Windows
machines due to the execution methods used), execute the
actual malicious function (a fork of W4SP-Stealer [18], trying
to steal saved passwords, two-factor-authentication tokens,
wallet keys, etc. and uploading them to the command &
control (C&C) server; here, this W4SP fork is different from
other forks by the fact that it uses the steganographic channel
to exfiltrate the stolen data instead of simply posting it on Dis-
cord) and communicate it back to the C&C server. The code of
the malicious libraries also contained hookups for a spreader
module to try to infest also other MS Windows machines in
the same Active Directory domain, but corresponding code
was defunct in the sources analyzed here. Figure 1 illustrates
the activities of this stego-malware.

Fig. 1. Activities of the exemplary discussed stego-malware and the A-A
communication scenario discussed in this paper.

In their initial report [15], the authors summarize that ‘little
more than 80 projects containing the malicious packages’
were detected in this supply chain attack. It can be assumed
that this number is too low, since over more than two weeks
many different versions of the initial libraries were created
on PyPi under different names and were then be used to
poison other projects (on PyPi and GitHub) by adding them as
includes in user contributions. The attack wave stopped after
PyPi managed to find a way to automatically derive IoCs and
thereby effectually take down new versions before they could
be used to poison other projects.

For this representative stego-malware scenario using image
steganography, the following points shall be highlighted:

• All discussed software components (the steganography li-
brary, the W4SP-Stealer as actual payload, etc.) were and
still are publicly available on platforms like GitHub.

• Attackers make extensive use of third party resources
(e.g., repositories like PyPi or GitHub as well as social
media sites / image hosts like imgur.com) in infiltration
and exfiltration activities, making blocking by application
level firewalls difficult.

• The steganographic method used in the discussed exam-
ple is trivial least significant bit (LSB) replacement
for PNG images (which is still good enough to prevent
usual end-point security solutions from raising an alarm
during infiltration).

• The key used for securing the communication is not pre-
shared but is instead infiltrated together with other attack
components, violating Kerckhoffs’ principle.

• The attacker embeds steganographic messages in PNG
images found in the target system observed by the
warden with the intention to communicate these stego
images back to him/herself, making the whole scenario
prone to cover-stego image comparison attacks.

This stego-malware example is representative for the cur-
rent state-of-the-art, where the significant deviations from the
traditional ‘Alice and Bob’ (A-B) end-to-end communication
scheme can be identified:

• As the attacker A activities at the target system are
fully observable, all attacker actions should be as limited
as possible to raise no suspicion.

• Therefore Non-Kerckhoffs’ setups (key-less techniques,
hard-coded keys or key infiltrated together with the
payload of the hidden communication) are often used.

• Simple embedding and retrieval techniques are used
natively in the target domain or are put in place with
supply-chain-attacks like the one discussed above.

• The classical ‘Alice and Bob’ (A-B) end-to-end commu-
nication scenario with a ‘Warden’ monitoring the channel
is changed to a scenario with the attacker A controlling
both ends of the communication and the Warden
observing the target system and its incoming and
outgoing communication - the A-A scenario shown in
Figure 1.

• The cover selection and/or cover embedding at the target
system can be observed by the warden. Blind as well
as non-blind analysis of cover and stego objects used
become possible.

For in-depth justifications on these generalizing claims, the
reader is referred to [2] and [4].

III. ATTRIBUTION CONCEPT

In the A-A communication scenario of stego-malware,
the Warden has (potentially) full access to the malware in-
jected into the target side and to all communication chan-
nels, including the steganographic communication, due to
the Non-Kerckhoffs’ setups. As a consequence, the Warden
would be capable to perform blind steganalysis (as in the

35Copyright (c) IARIA, 2023. ISBN: 978-1-68558-092-6

SECURWARE 2023 : The Seventeenth International Conference on Emerging Security Information, Systems and Technologies

traditional Warden in an ‘Alice and Bob’ (A-B) end-to-end
steganography scenario) but potentially also non-blind (stego-
cover comparison) analysis, since the media used as cover
in an outgoing communication would be originating within
his observed domain. In stego-malware setups, the attacker A
relies primarily on two things for the security/confidentiality
of his malicious communication: a) a lack of suspicion from
the Warden (i.e., security by obscurity) and b) the fact that an
in-depth analysis of every in- and outgoing object by dedicated
steganalysis engines is far to expensive (in terms of run-time,
communication delays and other QoS aspects, false positives,
etc.), so such an analysis would only be used as an on demand
service for the scaling of methods for evidence gathering in
case of a suspicions (e.g., when an IoC was found by an
endpoint security solution). As a consequence, the attacker
will assumedly try to perform only simple, innocently looking
operations (like, e.g., accessing PNG files on an image hosting
service as in the example discussed in the previous section)
to avoid raising suspicion.

In this paper, the research idea is to define and use a set
of light-weight attribution features that could be checked
by the Warden for each communicated media object as part of
the continuous perimeter defense of the target site (e.g., as
rules in a next-generation firewall). As starting point for our
empirical work, five existing, simple steganography tools,
easily available to potential stego-malware creators, are used
here, together with simple signature- and content based-
steganalysis methods to provide a set of light-weight (i.e.,
easy to compute) features (five simple structural features plus
two content-based features). This set of light-weight attribution
features is applied on a selected image test set, processed
with a fixed embedding option using two selected payload
capacities and two different keys as described in the following
sub-sections.

A. Steganography and general analysis tools

Our goal is to use very simple approaches to simulate
malware steganography. Therefore the well known
Steganography Toolkit [11] is used for the empirical
evaluations in this paper. It is maintained by the GitHub
user ‘DominicBreuker’ and is one of the most popular
steganography repositories on GitHub. At the time of writing
of this paper it has been forked (and extended) more than
300 times by other users. The reason why it is so popular
lies in the fact that it provides a large number of popular
steganography and steganalysis tools in a Docker image,
making them easily deployable on many platforms without
complicated installation procedures. The steganography
tools selected for this paper from this toolkit are limited to
provided image steganography tools for JPEG images. The
corresponding set of steganography methods contains the
following five tools: jphide, jsteg, outguess, steghide and f5.

The following general analysis tools are selected from
the Steganography Toolkit to compute the features/attributes
for this paper: exiftool, binwalk, foremost, strings, and the

imagemagick modules ‘identify’ and ‘compare’. All tools used
in this paper are listed in Table I.

B. Image sets for evaluation

For a first empirical evaluation, the quality of the test data
(esp. the amount of relevant and representative data) is impor-
tant to obtain generalizable results. To ensure that the data used
here is representative as well as diverse, 1000 randomly chosen
specimen are sampled as covers from the established image
steganalysis reference dataset ‘Alaska2’ [12]. To provide a
significant amount of wide variance image data to establish
potential false positive rates for the attribution in an ‘in the
field’ scenario, additionally the ‘Fickr30k’ dataset from [13]
is used in our evaluations.

C. Embedding options used

In this first evaluation, an attribution based on two different
message capacities (embedding data: ASCII text of 26 Bytes
(‘low’ capacity scenario) and 2.1 kBytes (‘high’ capacity
scenario) length) and two keys of different length (4 Bytes
(=‘short’) and 128 Bytes (=‘long’) are used. Only jsteg does
not support a key as a parameter and therefore the embedding
that case is key-less (‘no key’).

D. Our set of light-weight attribution features

Motivated from the idea to design an easy to compute
feature set, the tools selected (see Section III-A) are analysed
and a set of features is identified for potential attribution.
Based on in-depth tool output analysis, the following set of
light-weight attribution features are implemented from Table I,
using pre-existing analysis tools (see marked in cursive) and
used in this paper. This table also encodes for each of the
attribution features whether it is relevant (r), unique (u),
motivated from (m) or not applicable (n.a.) for a specific
steganographic tool.

Our six features are motivated from the following obser-
vations:

• ba1: The feature extracted by exiftool is considered
anomalous if the value cannot be successfully retrieved.
As can be seen in Figure 2, the 2 bytes reserved for the
JFIF version in the APP0 marker segment are zero, which
is the case for all jsteg embedding attempts.

• ba2: For correctly written JPEG images, binwalk can also
determine the data type by extracting image data, but
similar to the feature ba1, this does not apply to jsteg
embeddings, as the file header is corrupted by this stego
tool.

• ba3: The tool foremost can produce successful output for
all manipulations by carving the input image except for
jsteg, since the jsteg image headers appear to be damaged,
which violates JPEG image format integrity.

• ba4: All tools seem to leave specific traces in the COM
sections of the JPEG file header. This is a weakness that
many stego tools share, because they use in many cases
non-standard JPEG libraries and do not write correct or
plausible JPEG/JFIF metadata. As listed in Table II, ba4

36Copyright (c) IARIA, 2023. ISBN: 978-1-68558-092-6

SECURWARE 2023 : The Seventeenth International Conference on Emerging Security Information, Systems and Technologies

TABLE I
THE ATTRIBUTION FEATURES USED IN THIS PAPER WITH THE CORRESPONDING ANALYSIS TOOLS AND THE ENCODING OF THE RELEVANCE FOR THE FIVE

CONSIDERED STEGANOGRAPHY TOOLS (r: RELEVANT, u: UNIQUE, m: MOTIVATED FROM, n.a.: NOT APPLICABLE)

feature id feature name feature type analysis tools jphide jsteg outguess steghide f5

signature-based features
ba1 JFIF version blind exiftool n.a. r, u, m n.a. n.a. n.a.
ba2 binwalk extraction blind binwalk n.a. r, u, m n.a. n.a. n.a.
ba3 foremost carving blind foremost n.a. r, u, m n.a. n.a. n.a.
ba4 file header blind strings r r, u r r r, u, m

content-based features
nba1 file size non-blind exiftool r n.a. n.a. r, m n.a.
nba2 difference color mean non-blind imagemagick r n.a. n.a. r, m n.a.

TABLE II
SIGNATURES FOR FEATURE BA4 - CHECKED ON ITS PRESENCES: IF sig1 ,
sig3 AND sig5 ARE NOT PRESENT AND sig2 AND sig4 ARE PRESENT

THE CORRESPONDING STEGO ALGORITHM IS DETECTED

signature id stego algorithm signature content

sig1 jsteg JFIF
sig2 f5 ((
sig3 jphide 56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz
sig4 outguess, steghide !22
sig5 outguess, steghide Exif

is based on different signatures, which are also shown
in Figure 2. First, the identifier field in the JFIF-APP0-
marker-segment is checked for sig1. If it is not present, a
jsteg embedding is assumed. Further in the file header, the
COM-marker-segment is also checked for the following
signatures: the presence of sig2 indicates a f5 embed-
ding; jphide embeddings usually do not contain sig3;
whenever sig4 is found but sig5 is not, an outguess or
steghide embedding is expected.

• nba1: The idea behind this feature is to compare original
and stego-image file sizes, as the stego tools jphide and
steghide do not perform an image recompression during
embedding. This results in a stego file size that is much
closer to the original compared to other stego algorithms.
The following rule was derived by empirical analysis:
diff. size < orig. size

2 ∧ stego size > orig. size
2 .

• nba2: This feature is also motivated by the fact that jphide
and steghide do not apply a recompression. So, when
creating a differential image of the stego-manipulated
image (by jphide or steghide) and the original, all vis-
ible changes are directly related to the embedded data.
Usually, the amount of changes is much smaller than the
changes related to a re-compression, except when embed-
ding large amount of data. As stego manipulations are
also visible in the different colour channels of the image,
but changes in the RGB channels due to a re-compression
are much higher than for stego embeddings, the following
detection rule is derived by empirical analysis:
diff. mean > 127 ∧ diff. mean == rgb diff. mean± 1%.

IV. IMPLEMENTATION OF THE ATTRIBUTION

Analysis and attribution feature extraction: The process
of feature extraction is done by first executing all given

analysis tools (as outlined in Section III-A) in a so-called
‘screening phase’ in the following order: exiftool, binwalk,
strings, foremost and imagemagick. In the ‘parsing phase’, the
attribution features from Table I are parsed into a CSV file,
where each row contains the data of one investigated JPEG
files.

Implementation of the attribution: The attribution was
implemented in two different modes, blind and non-blind.
As blind attribution is the most common case in reality,
non-blind attribution – often plausible for stego-malware as
discussed for the A-A scenarion and the warden monioring
capabilities – allows to take advantage of more powerful
features (e.g., steghide embeddings are not detectible with only
the blind attributes presented in Table III-A). Finally, multiple
queries with rules/signatures specific for each steganography
tool are used to interpret the extracted feature values, which
performs the actual stego-tool attribution. Figure 2 illustrates
the attribution process in a flowchart.

V. RESULTS AND EVALUATION

In Table III at the end of the document, the evaluation
results are summarized. The table is divided into three main
column parts:

The first part, containing the first and second column, the
features from Table I and the test configuration are listed.
In the second part, the attribution results in terms of correct
or incorrect entries to the result list as well as (true/false)
positive (=stego) hits and (true/false) negative (=unmodified
cover) hits are given. In the third main column part, all stego
tool identification results are included for the corresponding
test configuration.

Starting with the results for jphide, Table I discusses
attribution results for each of the blind or non-blind attributes
deemed relevant for a stego tool, using the described stego
embeddings on the Alaska2 data set. This is done for all five
stego tools. Second, false positive rate tests on re-compressed
genuine Alaska2 and Flickr30k images are presented.

The results presented in the table can be summarised as
follows:

• Regarding different capacities and keys for all algo-
rithms:

37Copyright (c) IARIA, 2023. ISBN: 978-1-68558-092-6

SECURWARE 2023 : The Seventeenth International Conference on Emerging Security Information, Systems and Technologies

(1) The blind simple signatures show:
– no influence from different capacities and keys

in the performance for jphide, jsteg and f5, while
jphide and f5 have false classifications for the
file header signatures of ba4: jphide with the re-
compressed Alaska2 set and Flickr30k, f5 with
Flickr30k only;

– for outguess and steghide the ba4 - file header
signatures are sensitive: The high capacity with
the short key influences the outguess file header
signature (for the 2.1KB message, in 437 of the
1000 cases outguess could not successfully embed,
which results for this tool in an empty (0 Byte)
output file without a header – in the evaluations
these cases are counted as false negatives since they
are no genuine image files any longer but are also
not flagged to be the output of this steganography
tool). For steghide, the ba4 file header signature
is (besides embedding problems that result in only
881 stego files being successfully created for the
2.1KB message) not only resulting in large num-
bers of false negatives for all cases except the re-
compressed Alaska2 images with short capacity
with the short key but it also lacks discriminatory
power in regard to steghide and outguess.

(2) The non-blind (content-based) features motivated from
steghide characteristics show the following:

– both features are relevant for steghide and jphide
but not in a unique manner;

– the first content-based feature (nba1) of file size is
in most cases capacities and keys independent
but attributes steghide as well as jphide at the same
time (in a not unique manner) with errors only in
high capacity with the short key and with wrong
classifications in the Alaska2 re-compression tests;

– the second non-blind feature of different color
mean attributes (nba2) also steghide as well as
jphide and is error prone to high capacity with
the short key too and less sensitive for all other
settings with wrong classifications in the Alaska2
re-compression tests.

• Regarding the individual algorithm identification per-
formances:

(1) jsteg: Features ba1, ba2 and ba3 are motivated from
the artefacts observed after embedding and also ba4
file header motivated from f5 can be used with sig1
in the file header to identify jsteg in a unique manner
with best results. There are only a minor error in high
capacity with the short key for ba2 and JFIF signature
errors for ba1 in the Flickr30k tests of 58 errors.

(2) f5: Feature file header ba4 with signature sig2 allows
a unique identification of f5 with only low errors in the
Flickr30k test of 624 similar cases in sig2.
In summary of (1) of (2): ba1 and ba4 signatures
sig2 seem to be partially occurring also in JPEG

data on the example on Flickr30k causing classification
errors: for ba1 of 0.18% (58/31783) and ba4 of 1.96%
(624/31783).

(3) outguess: Feature file header ba4 with signature sig4
is relevant for identification of outguess but it is not
unique with errors in the high capacity embedding;
it overlaps with the signature for steghide in the file
header. For stego malware detection without the need
of algorithm identification the sig4 usage is possi-
ble. There are no errors in the re-compression and
Flickr30k tests.

(4) steghide: Feature file header ba4 with signature sig4 is
relevant for identification of steghide but also outguess
is attributed and therefore no unique algorithm identi-
fication is possible, but it allows with sig4 the general
stego-malware detection. Only the re-compressed em-
bedding has no errors. As for outguess there are also
no errors in the re-compression and Flickr30k tests.
The two blind content-based features nba1 and nba2
are motivated from steghide artefacts in JPEG files.
Both features are relevant but do not allow algorithm
individualization as also jphide causes similar artefacts
in JPEG. Further it causes false positives in the re-
compression and in the Flickr30k tests.
In summary from (3) and (4): the ba4 sig4 allows
stego-malware detection but no algorithm individual-
ization.

(5) jphide: Feature file header ba4 with signature sig3 is
relevant and unique for identification of algorithm but
the lack of signature sig3 (and the attribution based
on this fact) also appears in the Flickr30k tests.
The two non-blind content-based features nba1 and
nba2 are motivated from steghide artefacts in JPEG
files. Both features are also relevant but does not allow
algorithm individualization as also steghide causes sim-
ilar artefacts. Further it also causes as for steghide false
positives in the re-compression and in the Flickr30k
tests.
In summary for (5): the based on ba4 sig3 is unique
for the algorithm jphide, but also occurs in non stego
data in re-compression of Alaska2 and Flickr30k. Con-
tent based features are also relevant, but also occur
during normal re-compression. Therefore, for these
three features, it is difficult to used them for stego-
malware detection.

For the tested attribution features, the following summary
can be drawn:

• the signature-based features ba2 and ba3 are capacity
and key independent and perform best for jsteg algorithm
identification with no false positives in re-compression as
well as in the Flickr30k tests;

• feature ba1 (JFIF Version) has a similar performance for
jsteg with few errors of 0.18% in the Flickr30k tests;

• ba4 COM signatures allow algorithm identification with:

38Copyright (c) IARIA, 2023. ISBN: 978-1-68558-092-6

SECURWARE 2023 : The Seventeenth International Conference on Emerging Security Information, Systems and Technologies

– sig1: jsteg – unique with no errors,
– sig2: f5 – unique with sig2 but 1.96% errors in

Flickr30k test,
– sig3: jphide – relevant but with 100% errors in

Alaska2 re-compression and 98.04% errors in the
Flickr30k test,

– sig4 and sig5: outguess and steghide - relevant with
errors depending on capacity and keys.

The content-based features have high error rates when the
images are re-compressed and are therefore not applicable if
re-compression needs to be considered.

VI. SUMMARY AND CONCLUSION

Summarizing the results presented in Section V, it can
be said that the set of light-weight attribution features used
in this paper in an initial and also very simple evaluation
shows a first positive tendency to potentially identify the
stego algorithm used in a stego-malware scenario with the
tested set of five different existing algorithms. The promising
results motivate further work on attribution approaches,
especially for a generalization for stego-malware detection
and prevention scenarios. One research perspective might
be the combination of our approach with its multi-class
attribution with the localization work for embedding artefacts
as discussed in [5]. The interest in this field is caused (as
pointed out in Section II) by non-Kerckhoffs’ setups, which
are often found in combination with simple embedding
techniques (like the ones practically evaluated in this paper,
or even more trivial, like LSB embedding in pixel domain
image formats such as PNG). Furthermore, the Warden can
usually monitor all relevant communication channels as well
as the potential cover objects available in the target domain.
This last characteristic of such stego-malware scenarios also
enables non-blind analysis and attribution methods which
significantly simplify the detection and attribution tasks.

The first aspect for potential future work would be the
definition of additional attribution characteristics for in-
dividualization of the attack, respectively to characterise the
attacker A more precisely. An extension should cover further
aspects such as different stego key usage, different capacities,
message- and stego-encoding, etc. as well as further forensic
approaches. During the interpretation of the results, additional
knowledge was derived, that could be used for future at-
tribution features: With the tested steganography tools, no
metadata, such as geodata, used camera, or timestamps were
available in the generated stego image files. In addition, all
stego objects were generated by the stego tools in baseline
encoded JPEGs, even if their covers were progressive DCT-
based JPEGs. For non-blind attribution, initial tests with image
entropy showed for a stego object a slightly larger entropy than
for a double compressed version of the same cover (using the
same quality factor as in the first compression again). Also,
the location of the changes in the difference image indicate for
some tools whether a stego embedding or a re-compression
might have created the artefacts.

Second, the list of steganography tools and methods
targeted in the attribution should be significantly extended,
e.g., by including into the evaluations also the steganographic
tools represented in the StegoAppDB [19]. Analyzing differ-
ent embedding capacities might bring more individualization,
like malicious content included as hidden message could po-
tentially be classified by message length into different classes.

An extension into inter-media attribution would be ben-
eficial. In this paper only JPEG images were considered,
but also image formats (esp. PNG and BMP for the still
popular LSB-embedders) or other media formats like audio
file formats should be addressed. The Stego-Toolkit [11] would
also provide a good starting point for such developments.

Source code analysis for stego tools would give very
valuable attribution characteristics, including the used JPEG-
libraries with details on quantization tables and other header
details to be expected in the output of the created stego objects
as a kind of software-based fingerprinting or signature-based
detection.
Since some of the stego methods are also content-sensitive
in the embedding (e.g., ignoring low texture regions and
embedding only into high texture regions) evaluations with a
focus on content selection and different content classes should
be performed.

Author Contributions: Initial idea & attribution methodol-
ogy: Jana Dittmann (JD); Stego-Malware scenario modelling
and domain adaptation from end-to-end steganalysis: Christian
Krätzer (CK); Evaluation (setup and realisation): Bernhard
Birnbaum (BB); Writing – original draft: BB; Writing –
review, enhancements, finalisation & editing: CK, JD and BB.

REFERENCES

[1] W. Mazurczyk and L. Caviglione, “Information hiding as a challenge for
malware detection,” IEEE Security & Privacy, vol. 13, no. 2, pp. 89–93,
2015.

[2] L. Caviglione, M. Choraś, I. Corona, A. Janicki, W. Mazurczyk,
M. Pawlicki, and K. Wasielewska, “Tight arms race: Overview of current
malware threats and trends in their detection,” IEEE Access, vol. 9,
pp. 5371–5396, 2021.

[3] A. Cohen, N. Nissim, and Y. Elovici, “Maljpeg: Machine learning based
solution for the detection of malicious jpeg images,” IEEE Access, vol. 8,
pp. 19997–20011, 2020.

[4] R. Chaganti, V. Ravi, M. Alazab, and T. D. Pham, “Stegomalware: A
systematic survey of malwarehiding and detection in images, machine
learningmodels and research challenges,” CoRR, vol. abs/2110.02504,
2021.

[5] V. Verma, S. K. Muttoo, and V. B. Singh, “Detecting stegomalware:
Malicious image steganography and its intrusion in windows,” in Se-
curity, Privacy and Data Analytics (U. P. Rao, S. J. Patel, P. Raj, and
A. Visconti, eds.), (Singapore), pp. 103–116, Springer Singapore, 2022.

[6] H. S. Lin, “Attribution of malicious cyber incidents: From soup to nuts,”
Legal Perspectives in Information Systems eJournal, 2016.

[7] F. Skopik and T. Pahi, “Under false flag: using technical artifacts for
cyber attack attribution,” Cybersecurity, vol. 3, pp. 1–20, 2020.

[8] W. Chen, Y. Wang, Y. Guan, J. Newman, L. Lin, and S. Reinders,
“Forensic analysis of android steganography apps,” in Advances in
Digital Forensics XIV (G. Peterson and S. Shenoi, eds.), (Cham),
pp. 293–312, Springer International Publishing, 2018.

[9] J. Fridrich, Steganography in Digital Media: Principles, Algorithms, and
Applications. Cambridge, MA.: Cambridge University Press, 2009.

[10] R. Böhme, Advanced Statistical Steganalysis. Information Security and
Cryptography, Springer Berlin Heidelberg, 2010.

39Copyright (c) IARIA, 2023. ISBN: 978-1-68558-092-6

SECURWARE 2023 : The Seventeenth International Conference on Emerging Security Information, Systems and Technologies

[11] D. Breuker, “Steganography-toolkit,”
https://github.com/DominicBreuker/stego-toolkit - last accessed:
August 21st, 2023, 2020.

[12] Kaggle, “Alaska2 image steganalysis set,”
https://www.kaggle.com/competitions/alaska2-image-steganalysis/data -
last accessed: August 21st, 2023, July 2020.

[13] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier, “From image
descriptions to visual denotations: New similarity metrics for semantic
inference over event descriptions,” TACL, vol. 2, pp. 67–78, 2014.

[14] F. Y. Rashid, “Malicious python package relies on steganography
to download malware,” https://www.darkreading.com/threat-
intelligence/malicious-pypi-package-steganography-download-malware/
- last accessed: August 21st, 2023, 2022.

[15] Spectralops, “Check point cloudguard spectral exposes new
obfuscation techniques for malicious packages on pypi,”
https://research.checkpoint.com/2022/check-point-cloudguard-spectral-
exposes-new-obfuscation-techniques-for-malicious-packages-on-pypi/ -
last accessed: August 21st, 2023, 2022.

[16] JUDYB, “Judyb steganography library,” https://pypi.org/project/judyb/ -
last accessed: August 21st, 2023, 2020.

[17] Stegano, “Stegano steganography library,” https://sr.ht/ cedric/stegano/ -
last accessed: August 21st, 2023, 2020.

[18] W4SP, “W4sp-stealer,” https://github.com/Im4wasp/W4SP-Stealer-
Sourcecode - last accessed: August 21st, 2023, 2020.

[19] J. Newman, “Stegoappdb,” https://forensicstats.org/stegoappdb/ - last
accessed: August 21st, 2023, 2020.

40Copyright (c) IARIA, 2023. ISBN: 978-1-68558-092-6

SECURWARE 2023 : The Seventeenth International Conference on Emerging Security Information, Systems and Technologies

Start
bl

in
d

at
tr

ib
ut

io
n

JFIF-APP0
Identifier != "JFIF"

 (ba4)

JFIF-APP0
Version == 0x0000

 (ba1)

inspect JFIF COM-Marker
0xFFFE (as ASCII)

inspect JFIF APP0-Marker
0xFFE0-F (as ASCII)

search COM
segment for keywords

(ba4)

¬ sig3

¬ sig1

sig4 ∧¬ sig5

sig4 ∧¬ sig5

sig2

read input image

call foremost
on input image

(ba3)

call binwalk
on input image

(ba2)
no output

no output

version empty

no
n-

bl
in

d
at

tr
ib

ut
io

n file size
comparison

(nba1)

RGB ch.
difference analysis

(nba2)

differenceSize < originalSize / 2 ∧
stegoSize > originalSize / 2

colorMean > 127 ∧
colorMean == colorRGBMean ±1%

read original
image

result vector

jphide

jsteg

outguess

steghide

f5

nooriginal
available?

Stop

yes

APPENDIX A

Fig. 2. Flowchart of attribution

41Copyright (c) IARIA, 2023. ISBN: 978-1-68558-092-6

SECURWARE 2023 : The Seventeenth International Conference on Emerging Security Information, Systems and Technologies

TABLE III
ATTRIBUTION RESULTS FOR THE FIVE TESTED STEGO ALGORITHMS AND THE IMPLEMENTED FEATURES

feature test config in result list positives negatives identification results
correct incorrect true p. false p. true n. false n. jphide jsteg outguess steghide f5

jphide (1000 images from Alaska2)

ba4

26B, long Key 1000 0 1000 0 0 0 1000 0 0 0 0
rec; 26B, short Key 1000 0 1000 0 0 0 1000 0 0 0 0

26B, short Key 1000 0 1000 0 0 0 1000 0 0 0 0
2.1KB, short Key 1000 0 1000 0 0 0 1000 0 0 0 0

nba1

26B, long Key 1000 1000 0 0 0 0 1000 0 0 1000 0
rec; 26B, short Key 1000 1000 0 0 0 0 1000 0 0 1000 0

26B, short Key 1000 1000 0 0 0 0 1000 0 0 1000 0
2.1KB, short Key 1000 1000 0 0 0 0 1000 0 0 1000 0

nba2

26B, long Key 923 923 0 0 0 77 923 0 0 923 0
rec; 26B, short Key 775 775 0 0 0 225 775 0 0 775 0

26B, short Key 921 921 0 0 0 79 921 0 0 921 0
2.1KB, short Key 0 0 0 0 0 1000 0 0 0 0 0

jsteg (1000 images from Alaska2)

ba1

26B, keyless 1000 0 1000 0 0 0 0 1000 0 0 0
rec; 26B, keyless 1000 0 1000 0 0 0 0 1000 0 0 0
2.1KB, keyless 1000 0 1000 0 0 0 0 1000 0 0 0

ba2

26B, keyless 1000 0 1000 0 0 0 0 1000 0 0 0
rec; 26B, keyless 1000 0 1000 0 0 0 0 1000 0 0 0
2.1KB, keyless 999 0 999 0 0 1 0 999 0 0 0

ba3

26B, keyless 1000 0 1000 0 0 0 0 1000 0 0 0
rec; 26B, keyless 1000 0 1000 0 0 0 0 1000 0 0 0
2.1KB, keyless 1000 0 1000 0 0 0 0 1000 0 0 0

ba4

26B, keyless 1000 0 1000 0 0 0 0 1000 0 0 0
rec; 26B, keyless 1000 0 1000 0 0 0 0 1000 0 0 0
2.1KB, keyless 1000 0 1000 0 0 0 0 1000 0 0 0

outguess (1000 images from Alaska2)

ba4

26B, long Key 1000 1000 0 0 0 0 0 0 1000 1000 0
rec; 26B, short Key 1000 1000 0 0 0 0 0 0 1000 1000 0

26B, short Key 1000 1000 0 0 0 0 0 0 1000 1000 0
2.1KB, short Key 563 563 0 0 0 437 0 0 563 563 0

steghide (1000 images from Alaska2)

ba4

26B, long Key 338 338 0 0 0 662 0 0 338 338 0
rec; 26B, short Key 1000 1000 0 0 0 0 0 0 1000 1000 0

26B, short Key 338 338 0 0 0 662 0 0 338 338 0
2.1KB, short Key 241 241 0 0 0 640 0 0 241 241 0

nba1

26B, long Key 1000 1000 0 0 0 0 1000 0 0 1000 0
rec; 26B, short Key 1000 1000 0 0 0 0 1000 0 0 1000 0

26B, short Key 1000 1000 0 0 0 0 1000 0 0 1000 0
2.1KB, short Key 881 881 0 0 0 0 881 0 0 881 0

nba2

26B, long Key 992 992 0 0 0 8 992 0 0 992 0
rec; 26B, short Key 971 971 0 0 0 29 971 0 0 971 0

26B, short Key 991 991 0 0 0 9 991 0 0 991 0
2.1KB, short Key 0 0 0 0 0 881 0 0 0 0 0

f5 (1000 images from Alaska2)

ba4

26B, long Key 1000 0 1000 0 0 0 0 0 0 0 1000
rec; 26B, short Key 1000 0 1000 0 0 0 0 0 0 0 1000

26B, short Key 1000 0 1000 0 0 0 0 0 0 0 1000
2.1KB, short Key 1000 0 1000 0 0 0 0 0 0 0 1000

all other n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

imagemagick re-compression (1000 images from Alaska2, quality factor 75%)

ba1
genuine recompressed 0 0 0 0 1000 0 0 0 0 0 0

genuine recompressed twice 0 0 0 0 1000 0 0 0 0 0 0

ba2
genuine recompressed 0 0 0 0 1000 0 0 0 0 0 0

genuine recompressed twice 0 0 0 0 1000 0 0 0 0 0 0

ba3
genuine recompressed 0 0 0 0 1000 0 0 0 0 0 0

genuine recompressed twice 0 0 0 0 1000 0 0 0 0 0 0

ba4
genuine recompressed 0 1000 0 1000 0 0 1000 0 0 0 0

genuine recompressed twice 0 1000 0 1000 0 0 1000 0 0 0 0

nba1
genuine recompressed 0 1134 0 0 433 0 567 0 0 567 0

genuine recompressed twice 0 2000 0 0 0 0 1000 0 0 1000 0

nba2
genuine recompressed 0 650 0 0 675 0 325 0 0 325 0

genuine recompressed twice 0 1960 0 0 20 0 980 0 0 980 0
genuine Flickr30k (31783 images from flickr)

ba1 original 0 58 0 58 31725 0 0 58 0 0 0
ba2 original 0 0 0 0 31783 0 0 0 0 0 0
ba3 original 0 0 0 0 31783 0 0 0 0 0 0
ba4 original 0 31783 0 31783 0 0 31159 0 0 0 624

42Copyright (c) IARIA, 2023. ISBN: 978-1-68558-092-6

SECURWARE 2023 : The Seventeenth International Conference on Emerging Security Information, Systems and Technologies

