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Abstract—With the development of modern society, IoT has
entered many aspects of our daily lives. At the same time, cyber
attacks in IoT environments are becoming increasingly rampant.
We urgently need a method to effectively inspect and detect
them such as the usage of malicious traffic detection technology.
Malicious traffic detection is usually divided into two aspects:
signature based method and machine learning based method.
The former method usually relies on pre-defined signatures or
rules and cannot effectively detect unknown threats such as zero-
day attacks. Although the latter method can detect unknown
attacks, most of them focus on offline traffic and cannot adapt
to the current realtime IoT network environment. In this paper,
we propose a heterogeneous malicious traffic detection system
which combines both of them to achieve the realtime detection.
In this design, we utilize the bloom array to execute pre-filter
in an FPGA board, and implement a CPU based LightGBM
classifier to identify the filtered traffic. We also implemented an
experiment to evaluate the proposed system on both training
stage and inference stage, which shows the system has the ability
to identify malicious traffic in the IoT network environment.

Keywords—Malicious Traffic Detection; Machine Learning;
FPGA; LightGBM

I. INTRODUCTION

With the development of information technology, Internet of
Things (IoT) has gained more and more people’s attractions
in recent years. It improves the convenience of our lives
by enabling communication between electronic devices and
sensors through the Internet [1]. IoT depicts a world where
anything can be connected in an intelligent fashion [2], in-
cluding smart homes, smart cities, wearable devices, industrial
automation and even healthcare and telemedicine. Although
the development of the IoT has brought revolutionary changes
to modern society, however, it also brings some security issues
such as data leakage and identity theft. One of the famous IoT
security threats is Mirai Botnet, it is a worm-like family of

malware which changes IoT devices to DDoS botnets [3]. It
was appeared as early as August 31, 2016 [4]. By scanning
IoT devices on the Internet and controlling them, Mirai has
the ability to launch DDoS attacks to the target network,
which causes huge losses to companies and organizations. In
order to protect the digital and property security of enterprises
and users, and prevent the similar attacks from happening
again, we need some effective defense approaches to resist
and prevent the cyber threats.

Malicious traffic detection is an efficient mechanism to
identify and mitigate potential threats and attacks. It is widely
used in Intrusion Detection System (IDS) which is among the
existing security methods responsible for detecting malicious
activities [5]. Traditional malicious traffic detection usually
adapts signature or feature based rules to achieve the traffic
inspection process [6][7]. These methods rely on the pre-
defined signatures or rules of malicious traffic such as packet
protocols or payloads, which are essentially specific patterns
associated with the known network attacks. However, if we
just rely on the traditional signature matching mechanism,
it may miss out many potential and undiscovered threats
such as zero-day attacks [8][9][10]. Compared with signature
based malicious traffic detection, machine learning (ML) based
malicious traffic detection is a different detection approach
which leverages the advantages of machine learning to detect
unknown attacks and increase the detection efficiency. There-
fore, in the IoT environments [11][12][13], it is useful to use
machine learning methods to detect network attacks, which
will apply machine learning models to learn corresponding
features on the network traffic datasets. By extracting the
traffic features from packet headers or payload contents, the
machine learning algorithm can identify whether the network
traffic is benign or malicious. Although machine learning
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based malicious traffic detection methods overcome some
limitations of signature based detection methods, but most of
them focus on the offline detection which can not deal with
the realtime incoming network traffic [14][15][16].

In order to overcome this problem, in this paper, we present
a realtime heterogeneous malicious traffic detection method
based on LightGBM, which has the ability to detect malicious
traffic with high accuracy. An FPGA based pre-filter is used to
perform IP address blacklist filtering, while a packet capturer
and parser is used to capture and parse the packet, and a Light-
GBM classifier is implemented to achieve precise detection of
malicious network packets. The performance of our proposed
system is evaluated from both detection speed and detection
accuracy, which shows that our system can support realtime
malicious traffic detection in the IoT environment.

The rest of the paper is organized as follows. In Section II,
we discuss the related work about malicious traffic detection.
In Section III, we introduce the prototype design of the
heterogeneous malicious traffic detection system. We also
conduct an experiment and evaluate the system in Section IV.
Finally, we conclude this paper in Section V.

II. RELATED WORK

In the past few years, in order to alleviate security and trust
issues on the Internet, there are a lot of researches focusing
their attentions on inspecting and detecting network malicious
traffic. In this section, we mainly review signature based
malicious traffic detection including software and hardware,
and machine learning based malicious traffic detection.

A. Signature based Malicious Traffic Detection

On the software side, Snort [17] and Suricata [18] are
the famous signature based IDS projects which are widely
used in many companies or organizations. They distinguish
network traffic against a set of defined signatures to identify
attacks and threats. These kinds of signatures are provided
by cybersecurity experts or proprietary vendors [19]. Besides,
in the paper [20], J. Nam et al. propose a high-performance
Suricata-based NIDS on many-core processors (MCPs) which
is called Haetae to achieve traffic detection. This system adapts
the parallelism of NIDS engines and uses programmable
network interface cards to offload packet processing, it can
also dynamically offload network traffic to host-side CPU to
achieve the detection. H. Li et al. [21] design the vNIDS to of-
fer effective detection and provisioning for NIDS virtualization
by using such as detection state sharing and microservices.

On the hardware side, K. Jaic et al. [22] design a hybrid-
NIDS (called SFAOENIDS), which combines the FPGA with
a network interface card to provide hardware pattern matching
and software post processing. In the paper [23], Z. Zhao
et al. propose an FPGA-first approach called Pigasus, most
of the processing and controlling of the network traffic are
implemented in the FPGA to ensure the speed. Except for
the FPGA components, there are also some designs which
are implemented on other hardware devices. N. Cascarano et
al. [24] present a regular expression matching method with a

parallel engine that is implemented on GPU. T. Jepsen et al.
[25] propose a string searching approach of packet payloads
on a programmable network ASIC.

B. Machine Learning based Malicious Traffic Detection

Recently, machine learning methods (such as supervised and
unsupervised learning) are widely used on malicious traffic
detection. For example, in order to detect and block bot-net
C&C traffic, M. Antonakakis et al. [14] propose a method
called Pleiades to identify randomly generated domains with-
out reversing. They combine clustering and classification
algorithms, monitor traffic below the local recursive DNS
server and analyze streams of unsuccessful DNS resolutions
to achieve detection process. In the paper [26], T. Nelms et
al. present the WebWitness, which is an incident investiga-
tion system to trace back events before malware downloads
happening, and leverages the paths to build effective defenses.
They also deploy their system on an academic network to
collect malicious download paths, which shows the system
can successfully decrease the infection rate. In addition, in
order to resist the threat of malware, L. Invernizzi et al. [16]
propose a system called Nazca which identifies infections in
large scale networks by investigating how a client downloads
and installs malware in the real world. Through checking the
telltale signs of the malicious network infrastructures, Nazca
has the ability to detect previously-unseen malware and can
not be easily influenced by code obfuscation. Y. Mirsky et
al. [27] also present another approach called Kitsune which
uses neural networks to distinguish normal traffic and network
attacks. This method adapts the ensemble of neural networks
which are called autoencoders to identify the benign and
abnormal network traffic. They also propose a dataset named
Mirai which includes the real network information of the Mirai
botnet malware.

III. HETEROGENEOUS MALICIOUS TRAFFIC DETECTION
SYSTEM DESIGN

The heterogeneous malicious traffic detection system is
designed to detect packet-level malicious traffic in IoT envi-
ronment, it mainly consists of two parts: FPGA based Pre-
Filter and Machine Learning based Traffic Detection. The
former is used to preliminary filter the incoming traffic, while
the latter is used for further traffic detection. Figure 1 shows
the overview of the system architecture.

A. FPGA based Pre-Filter

1) Description of FPGA based Pre-Filter: In a network
environment, there will be some truly malicious traffic with
specific characteristics such as IP address. These traffics can
be blocked by setting the software firewall and corresponding
rules. Compared with the traditional firewall that uses CPU to
handle traffic, an FPGA based pre-filter can be programmed
with specific rules to filter or discard data with low resource
consumption and high performance. At the same time, it can
implement underlying protocol parsing (such as Layer 2, Layer
3) to achieve more accurate detection. Currently, we execute

28Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-092-6

SECURWARE 2023 : The Seventeenth International Conference on Emerging Security Information, Systems and Technologies



PCIe
ModuleQSFP 28

CMAC
Module

0 1 0 1

Hash

Bloom Filter TX Path

PCIe PHY

PCIe
Driver

+
Traffic

Capturer
& Parser
Module

Feature Vector

Decoder

LightGBM Classifier

Traffic

FPGA based Pre-Filter on Alveo U50 ML based Traffic Detection on Linux Host

PCIe

Ethernet Port

Figure 1. Overview of the system architecture.

“Source IPv4 Address” matching on the third layer of the OSI
model. The main function of this pre-filter is to filter the truly
malicious traffic by setting a blacklist in the FPGA board.
When the irregular traffic from some IP addresses come in, it
will drop these packets automatically.

In order to achieve end-to-end packet processing and detec-
tion, the FPGA based pre-filter consists of four components
which are shown as follows. We implement the prototype
design based on AMD OpenNIC project [28].

• Ethernet Port: Ethernet port is a physical component
(such as QSFP 28 interface) which can create an ethernet
connection with the network to be detected. It is used to
forward the traffic to the CMAC module.

• CMAC Module: CMAC module is used to receive the
traffic packet. Here we adapt the Xilinx CMAC IP core
as the implementation.

• Bloom Filter: After getting the packet, the bloom filter
will decode it and extract the “Source IPv4 Address” as
the matching data. The result will indicate whether this
packet can be reserved or blocked.

• PCIe Module: The packets that flow out through the
bloom filter will be sent to the ML based traffic detection
for further inspection through the PCIe interface. It relies
on the PCIe driver to achieve the communication with
the host machine.

2) Bloom Filter: Bloom filter is a space-efficient data
storage mechanism to decide whether an element is located in
a data set. Figure 2 shows the architecture. It utilizes a bit array
and hash functions to store information of the element states.
In our design, we use it as the IP blacklist implementation and
the elements in bloom array map the “Source IPv4 Address”.
In order to add an element to the filter, it needs the hash
computations. We adapt the CRC hash as the hash functions,
and each hash function calculates the element location in
the bloom array. When one element comes from the CMAC
module, to check if it is in the bloom array, the same hash
functions are applied. If any of the calculated positions are not
1, it means this element is not in the defined array.

False Positive Probability =
(
1− e−

kn
m

)k

(1)

Another property of the bloom filter is that there is a false
positive probability. Hash collision is one reason that causes
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input data

hash
function

bloom array

Figure 2. Architecture of the bloom filter.

the false positive probability. According to the equation (1), k
is the number of hash functions, n is the number of elements,
and m is the size of the bloom array. We choose k=4, m/n=16,
where the false positive probability is computed to 0.239% that
meets our design goal.

B. Machine Learning based Traffic Detection

Machine learning based traffic detection leverages the data-
driven insight ability of machine learning to analyze the
malicious traffic on the CPU side. Compared with the tradi-
tional signature based IDS systems, it has the adaptability and
flexibility and can even detect certain undiscovered attacks.
In order to ensure the realtime performance and detect the
attack behaviors timely, we implement two modules including
the Traffic Capturer and Parser Module, and the LightGBM
Classifier that are shown in Figure 1. We focus on the
implementation of the inference process.

1) Traffic Capturer and Parser Module: After filtering the
traffic using FPGA based pre-filter, we need to capture and
parse it for further detection. We adapt the libpcap implemen-
tation to execute the realtime capturing. It builds a connection
between the FPGA board and the software stack. By capturing
from the FPGA board, we can get the corresponding packet-
level filtered traffic. After that, we need to analyze and pre-
process each packet to get the packet features (e.g., IPv4
Length). We mainly adapt the header information instead of
the content to improve the universality of our system. At the
same time, considering we need to replay the traffic to achieve
realtime detection, we do not use the time related features
such as timestamp. We perform hierarchical splitting on each
data packet and extract corresponding features according to
the needs of detection. The specific features that we use and
their descriptions are shown in the Table I.
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TABLE I
FEATURE DESCRIPTION

Feature Description
IPv4 Length The length of an IPv4 packet

IPv4 ID The identification of an IPv4 packet
IPv4 TTL The time to live of an IPv4 packet

Layer The type of protocol
Source Port The source port

Destination Port The destination port
Source IP Address The source IP address

Destination IP Address The destination IP address

We focus on the packet-level feature extraction. Through
detecting each data packet, we can timely identify the mali-
cious traffic. Among these features, since some of them have
different categories which can not be sent into the machine
learning model directly. In that case, we encode the label
(such as the LabelEncoder encoding in scikit-learn) for Layer,
Source IP Address and Destination IP Address to convert
the category format into the number format. The processed
features will be combined into a feature vector and will be
transported into the LightGBM classifier for inspection.

2) LightGBM Classifier: LightGBM is a gradient boosting
decision tree (GBDT) framework which is widely used for
both classification and regression problems. It has advantages
of high accuracy, speed and scalability. Compared with other
traditional GBDT algorithms, it adapts some optimization
technologies (e.g., Histogram Decision Tree, Gradient-based
One-Side Sampling (GOSS) and Exclusive Feature Bundling
(EFB)) to accelerate the training speed. The processing flow of
a realtime classifier based on LightGBM is shown as follows:
Firstly, import the pre-trained LightGBM model and instantiate
it. The model is saved in txt file format in advance. Secondly,
the extracted feature vectors are converted into the floating
point array and fed into the instantiated LightGBM model.
Next, the model conducts inference calculations to obtain the
classification probability of the feature vector. Finally, we
determine whether the data packet is benign or malicious based
on its inference result.

IV. EXPERIMENT AND EVALUATION

We designed an experiment to evaluate the prototype ma-
licious traffic detection system with a specific IoT network
attack dataset. We also evaluated our system from two stages:
training stage and inference stage.

A. Dataset

The experiment and evaluation dataset that we use comes
from Kitsune Mirai [27]. It is presented in 2018 and it is
captured from an IoT network, where the Mirai malware
begins to infect other devices and scans for new victims
network. Table II shows the details of the experiment dataset.
It consists of 642,516 pieces of malicious data and 121,621
pieces of benign data. We selected 80% (611,309) of them as
the training set and 20% (152,828) as the test set.

TABLE II
DETAILS OF THE EXPERIMENT DATASET

Name Year Number

Kitsune Mirai 2018

Num of Malicious Num of Benign
642,516 121,621

Num of Train Num of Test
611,309 152,828

B. Evaluation on Training Stage
The evaluation on the training stage can reflect the accuracy

of our method. The specific details of the evaluation metrics
are shown as follows.

1) Evaluation Metric: We use the following evaluation
metrics to evaluate the performance of our system:

• False Positive (FP) represents the negative samples
predicted to be positive.

• False Negative (FN) represents the positive samples
predicted to be negative.

• Accuracy (ACC) is adapted to evaluate the overall
performance of our system:

ACC =
TP + TN

TP + TN + FP + FN
(2)

• Precision is used to measure the accuracy of positive
predictions:

Precision =
TP

TP + FP
(3)

• Recall evaluates the ability of the model to detect positive
samples:

Recall =
TP

TP + FN
(4)

• F1-score is a harmonic mean between the precision and
the recall:

F1-score = 2× Precision×Recall

Precision+Recall
(5)

2) Evaluation Results: Table III shows the comparison
of evaluation results on different classifiers. We set four
other models including Support Vector Machine (SVM), K-
Nearest Neighbor (KNN), Random Forest and Decision Tree
as the comparisons. From the results, we can get that using
the packet-level features extracted from traffic achieves good
detection performance, which proves that the features in Table
I are effective. At the same time, we observe that LightGBM
achieves the highest evaluation in all the classifiers on ACC,
Precision, Recall and F1-score. It reaches 0.9589, 0.9774,
0.9736 and 0.9755 respectively. This is one of the reasons that
we choose LightGBM as the classifier in the ML based traffic
detection. We also make a comparison between Decision Tree
and LightGBM models with heatmap representations in Figure
3 to indicate the metrics of FP and FN, which shows that our
method has a better performance than other approaches.

C. Evaluation on Inference Stage
The evaluation on the inference stage can reflect the realtime

detection capability of our system. It is separated into two
aspects: FPGA Resource Utilization and Throughput.
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TABLE III
COMPARISON OF EVALUATION RESULTS

Classifier ACC Precision Recall F1-score
SVM 0.9104 0.9706 0.9214 0.9453
KNN 0.9494 0.9740 0.9656 0.9698

Random Forest 0.9525 0.9766 0.9668 0.9716
Decision Tree 0.9556 0.9773 0.9697 0.9735

LightGBM 0.9589 0.9774 0.9736 0.9755

TN
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FP
2899
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3894
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124610

20000

40000

60000

80000

100000
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(a) Decision Tree
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Figure 3. Heatmaps between different methods.

1) Experiment Environment: Table IV shows the assumed
experimental IoT network according to the Kitsune Mirai
dataset. The number of clients is calculated by the destination
mac address. By adjusting the bloom array in the FPGA
based pre-filter, we build four situations of irregular traffic
which includes different types of source IPv4 addresses. The
experiment environment is shown in Figure 4, we use Cisco
TRex [29] as the traffic generator. On the testing server, the
Xilinx Alveo U50 accelerator card [30] is our FPGA platform
which has 872K LUTs, 1743K registers and 47.3 Mb BRAM.
The Linux host machine is installed with an Intel i9-13900K
cpu and 64GB memory. The filtered traffic will be forwarded
to the ML based traffic classifier.

TABLE IV
ASSUMED EXPERIMENTAL IOT NETWORK

Source IPv4
Address Range Clients Assumed Irregular Traffic filtered

by FPGA based Pre-Filter

192.168.2.0/24
and 0.0.0.0 30

Source IPv4 Address Situations
192.168.2.108 Situation1
192.168.2.108

192.168.2.1 Situation2

192.168.2.108
192.168.2.1

192.168.2.113
Situation3

192.168.2.108
192.168.2.1

192.168.2.113
192.168.2.110

Situation4

2) FPGA Resource Utilization: The resource utilization
refers to the usage of hardware resources on an FPGA board.
Table V indicates the consumption of LUT, Register and
BRAM Tile which comes from Xilinx Vivado Design Suite
2020.2, and shows the respective proportion in Xilinx U50

Traffic Generator

TRex

QSFP
28

100GBASE-SR4

ML based Traffic
Classifier

Libpcap

QSFP
28 Bloom

Filter

XCU50
FPGA

PCIe

Xilinx Alveo U50 Linux Host PC

Generating
testing
traffic 

Testing Server

Figure 4. Overview of the experiment environment.

TABLE V
RESOURCES CONSUMPTION IN XILINX U50

Module Name LUT Register BRAM Tile
CMAC Module 9,793 31,504 0
Filter Module 5,279 5,209 0
PCIe Module 79,576 84,544 94

Proportion 10.9% 7.0% 7.0%

accelerator card. From the result we can see, the filter module
consumes 5,279 LUTs and 5,209 registers which occupies a
reasonable resource consumption.

3) Throughput: We adjust the time interval of packets in
TRex and replay the Kitsune Mirai dataset to measure the
throughput. In our FPGA design, the data bus width is set to
512-bit and the clock frequency is set to 250MHz. Since we
adapt the pipeline design, the throughput of the pre-filter is
calculated as following:

Throughput =
512-bit

(1/250MHz) ∗ 109
= 128Gbps (6)

Considering the design throughput of the Xilinx CMAC IP
core is 100Gbps, the calculated throughput of the pre-filter
has the ability to reach the line speed of 100Gbps.

Figure 5 shows the experiment results of the complete
system. The horizontal axis represents the different situations
in Table IV where truly malicious traffic will be filtered by
FPGA based pre-filter, while the vertical axis represents the
detection throughput. Baseline indicates that there are no rules

0

200

400

600

800
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ro
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bp
s)

Throughput

Figure 5. Throughput under different situations.

being enabled in the FPGA based pre-filter. From this figure
we can see, the FPGA based pre-filter can block a portion of
malicious traffic by setting up an IP blacklist which reduces
the burden on ML based traffic detection, and effectively
improve the overall detection throughput of the system. At the
same time, we also observe the current system performance
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is limited with LightGBM side. If we improve LightBGM
classifier part such as increasing calculation cores or changing
to other packet capture methods, it still has the ability to
improve the performance of the entire system.

V. CONCLUSION

In this paper, we present a realtime heterogeneous malicious
traffic detection method based on LightGBM classifier espe-
cially for IoT environment. We built an FPGA based pre-filter
to filter the truly malicious traffic through the bloom array.
A traffic capturer and parser are used to receive and extract
features from the filtered traffic, while a CPU based LightGBM
classifier is responsible for inspecting and detecting the traffic
in realtime. In order to evaluate the prototype design, we
used a malicious traffic dataset of the IoT malware to test
the proposed system from both training stage and inference
stage. The results on the training stage show that our method
has better performance than the traditional machine learning
methods. Moreover, we built an experiment environment with
the traffic generator and testing server to evaluate this system
on inference stage. The results indicate that our system has a
low FPGA resource usage and effective throughput improve-
ment. In future work, we will explore to add other models to
our system to further improve the detection efficiency.
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