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Abstract—Transportation systems use location data to track
and coordinate vehicle fleets. As locations pertain to sensitive
information of users, privacy has become a key concern. Users
can be tracked without their consent; location data could be
(unintentionally) leaked, leading to costly consequences. Existing
work on solving this problem often relies on using trusted servers
for computation, or on masking, anonymization, obfuscation
techniques on untrusted servers. Hence, either a trusted server
is needed, or one must trade data utilization for privacy,
unfortunately. Homomorphic encryption could be leveraged on
location-based services to eliminate the need of using user’s raw
location while certain computations on encrypted data are still
permitted. However, homomorphic encryption (1) only allows
certain arithmetic (i.e., addition, multiplication) operations on
encrypted data, and (2) incurs significant performance overhead.
This impedes the application of homomorphic encryption in
preserving the privacy of user in location-based services. This
paper presents a novel approach to track a vehicle using homo-
morphic encryption. To this end, we propose a communication
scheme that allows a vehicle to report its encrypted location
to an untrusted cloud service. We design an efficient algorithm
on homomorphically encrypted data to determine if vehicles
are following predefined trips using advanced transformation
techniques. Our evaluation shows that we can indeed flexibly
employ homomorphic encryption in privacy-preserving location
tracking with acceptable performance overhead. Our work only
needs ≈ 6 milliseconds to compute results on encrypted location.

Index Terms—Homomorphic encryption; privacy preserving;
location tracking; trajectory monitoring

I. INTRODUCTION

Location tracking allows companies to trace and coordinate
the movements of their vehicle fleets. Further, location is
heavily used for different purposes such as targeted advertising
[6], recommendations [16], vehicle’s trajectory monitoring
[18], and many more [14]. Numerous incidents related to
location tracking have been reported [17].

To tackle this issue, two main lines of work have been
proposed: (1) using trusted service (with sufficient security
and privacy protection) and (2) techniques to mask, obfuscate,
or anonymize location data. On one hand, trusted services
could become a single point of failure. Once become untrusted
(e.g., for financial gains), they could potentially leverage
user’s locations for un-ethical usages (e.g., selling, leaking).
On the other hand, data obfuscation techniques, most of
the time, reduce data utilization. To potentially fill this gap,
Homomorphic Encryption (HE) can be utilized to provide
location-based service on encrypted data. It offers two crucial
benefits: data privacy-preserving and data utilization. How-
ever, it remains challenging to employ HE in location-based

services for several reasons. Homomorphic encryption only
allows certain arithmetic operations on encrypted data such as
multiplication and addition. This impedes the practicality of
HE. Homomorphic encryption further incurs significant perfor-
mance overhead, which is a constraint for many applications.

In this paper, we propose a privacy-preserving approach
to track vehicles using HE. To overcome the constraints of
applying HE, we design an effective algorithm to determine
if a vehicle is following a pre-defined trajectory with only
the allowed (on encrypted data) arithmetical operations. Ac-
companied with the algorithm is an efficient communication
protocol that only requires few rounds of data exchanges. Our
evaluation shows that it is possible to bring HE into privacy-
preserving location processing with acceptable performance
(and communication) overhead. Our proposed algorithm needs
on average 6 milliseconds to check if an encrypted location is
on a specific road-segment. We further discuss techniques to
work with HE and the implication of our work.

Outline: This paper is organized as follows. We give
an overview of related work in Section II. We describe
our methodology for privacy-preserving vehicle tracking in
Section III. Our approach is evaluated in Section IV. Section
V discusses our findings. Section VI concludes our paper.

II. RELATED WORK

One of the popular approaches to (partially) preserve lo-
cation’s privacy is reducing location’s resolution. Particularly,
cloaking techniques can be used to obfuscate user’s location
in a specific cloaked region [3]. K-anonymity was also pro-
posed to obfuscate user locations [15]. The authors combined
generalization (using less specific but semantically consistent
locations) and suppression (completely removing the loca-
tions) techniques to achieve anonymity for user’s locations.
Dummy (fake) location data can also be provided together with
actual (true) locations to confuse attackers [13]. However, all
these data techniques degrade the utility of location data. In
certain use-cases, the data might no longer be useful. Further,
attackers can try to reconstruct the obfuscated data [4]

Multiple cryptography-based approaches were proposed to
protect user’s positions. Users could be notified if friends
were in their vicinity using symmetric key to encrypt their
locations [11]. For untrusted cloud services, Maris et al.
introduced an architecture to distribute the management of
user’s location using secret sharing [10]. Recent work of
Guldner et al. proposed homomorphic encryption to examine
if a location is inside/outside a fencing area [5]. This however
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used perpendicular projection of encrypted location to examine
its position, which involves approximating functions for non-
basic mathematical operations (e.g., sine, cosine).

To the best of our knowledge, none of these works use
homomorphic encryption with advanced transformation tech-
niques (on encrypted data) without linear approximation in-
volved to provide privacy-preserving location tracking.

III. VEHICLE TRACKING USING HOMOMORPHIC
ENCRYPTION

In this section, we provide details on how we perform
vehicle tracking without learning plaintext locations. This
includes details of our settings, our novel algorithm, and a
few running examples on how our algorithm works.

1.2 Send public key

Vehicle

1.3 Forward vehicle's
public key

2.1 Send departure,
destination information

Fleet Manager

Cloud Service

Key
provisioning

Setup

1.1 Generate H.E.
asymetric keypair

2.2 Compute trajectory
via third party

Figure 1. Setup phase.
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Figure 2. Communication flow.

In our settings, we assume the following parties:

• Vehicle: who needs to report its location periodically to
a Fleet Manager. A requirement is no plaintext location
can leave the vehicle.

• Fleet Manager: who needs to check if the aforemen-
tioned vehicle following a predefined trip. Fleet manager
only needs to know whether Vehicle is following any
possible route (of a predefined trip) or not. Fleet Manager
is trusted, however it could be compromised.

• Cloud Service: who performs all computations on en-
crypted data to provide the answer of whether Vehicle is
following any possible route (from A to B) or not. The
cloud service is honest but curious, it may try to extract
user’s locations. In the worst scenario, cloud service could
be compromised.

At the beginning of a trip, Fleet Manager provides the
Vehicle a departure (A) and a destination (B) information to
start the trip. Vehicle can take any route to get from A to B.
Figure 1 describes the setup phase of our work. We propose
this setting because it represents typical fleet management
scenarios. Specifically, we want to outsource the computation
to a cloud service while protecting user’s privacy. In case the
Cloud Service or the Fleet Manager gets compromised, it is
impossible for them to learn vehicle’s location as location is
encrypted and only information of A and B is available in
plaintext.

As we are dealing with homomorphic encryption, we are
only allowed to use certain arithmetic operations on encrypted
data (e.g., addition, multiplication, subtraction). However,
prior algorithms to determine if a location is on a specific
segment were all designed for plaintext locations. Besides,
working with homomorphically encrypted data will incur sig-
nificant performance overhead, we aim to tackle this by having
minimal communication rounds among different communica-
tion parties. Hence, we cannot re-use existing algorithms.

Threat model: The adversary’s goal here is to learn
vehicle’s location. It might try to collect vehicle’s current and
past location for different (unethical) purposes by attacking
the Fleet Manager or the Cloud Service. In our setting, we
assume the GPS location is always reported correctly (e.g.,
by using trusted hardware component in the vehicle [7]). We
assume the Cloud Service and Fleet Manager in our setting is
semi-honest (e.g., similar to prior works [9][12]). When Fleet
Manager or Cloud Service is compromised, they are not able
to extract vehicle’s location as location is always encrypted
and only the Vehicle holds the decryption key.

Homomorphic encryption scheme: As we work with
location’s coordinates in the form of longitude and latitude
(e.g., float numbers), we use the CKKS scheme as this scheme
can work with float data type.

Key provisioning: Our work uses the public-key scheme
with four operations: (1) KeyGen produces a public key (pk)
and a secrete key (sk); (2) Encrypt uses pk to encrypt a
plaintext m and produces a cipher-text c; (3) Decrypt uses
sk to decrypt the above cipher-text c; (4) Evaluate uses pk to
perform computation (e.g., addition and multiplication) on a
set of cipher-text C = c1, c2, ..., cn
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Vehicle is responsible for setting up the encryption text with
encryption (private) key and computation (public) key. The
encryption key never leaves the Vehicle while the computation
key is shared with the Cloud Service for running computation
on encrypted data.

Algorithm 1: Algorithm to determine if an encrypted
location is on a predefined trip

1 Function shift_coordinate():
Input : coordinate, base
Output: shifted coordinate

2 return [coordinate.x - base.x, coordinate.y -
base.y]

3 Function change_basis():
Input : coordinate, vector
Output: changed coordinate
/* Perform coordinates

transformation (e.g.,
cooridnates rotation with an
angle called α formed by x-axis
and the segment P). See Figure 4
for examples. */

4 Function generate_noise()():
Input :
Output: random list
/* Generate a list of random

length. Each element is a pair
of 2 random numbers. */

5 Function main():
Input : routes, loc, security number
Output: ret

6 ret = []
7 for segment in routes do
8 segment.start = call: shift_coordinate

(segment.start, segment.start)
9 segment.end = call: shift_coordinate

(segment.end, segment.start)
10 loc = call: shift_coordinate (loc,

segment.start)
11 vector = (segment.end.x - segment.start.x,

segment.end.y - segment.start.y)
12 segment.end = call: change_basis

(segment.end, vector)
13 loc = call: change_basis (loc, vector)
14 lat del = (loc.x - segment.start.x)*(loc.x -

segment.end.x)
15 ret.append([lat del, loc.y])

16 ret.append(call: generate_noise())
17 ret = call: shuffle(ret)
18 return ret

A. Trip Tracking

The workflow of our approach is described in Figure 2.

In the setup phase, the Fleet Manager shares a predefined
trip — that the vehicle needs to follow — to the Cloud
Service for later computation. In the running phase, the Vehicle
first encrypts its current location using its encryption key and
shares the encrypted location with the Fleet Manager. Upon
receiving the encrypted location, Fleet Manager forwards it
to the Cloud Service. Cloud Service runs algorithm 1 on the
encrypted location to produce encrypted results that indicate
whether a given location is on any road segment (of the
predefined trip). Cloud Service further adds noise and shuffles
the results of algorithm 1 before sending them back to the
Fleet Manager. This makes it harder for a compromised Fleet
Manager to learn about the current route segment and route
that the Vehicle is following. Fleet Manager now receives
the encrypted results, it will forward to the Vehicle to ask
for decryption. Vehicle, upon receiving the encrypted results,
decrypts them and gets the results in plain text. Vehicle then
forwards the plaintext results back to the Fleet Manager. Fleet
Manager first checks in the results if any number is negative.
If there is a negative number, Vehicle is on a segment of a
possible route. Subsequently, if a tolerance distance is defined,
Fleet Manager then checks the value of the second parameters
(associated with the negative number) to see if it is less than
the predefined tolerance. If that is the case, the Vehicle is
following the predefined trip.

B. Algorithm 1

Pseudo code in Algorithm 1 illustrates how we perform
computation on encrypted data to provide results that indicate
whether a location is on a possible route of a predefined trip.
In Algorithm 1, only multiplication, addition, and subtraction
are used on vehicle’s location as only these arithmetic oper-
ations are allowed on homomorphically encrypted data. We
take as inputs (1) a set of possible routes (representing the
predefined trip) that the vehicle can follow. This set of routes
is represented by an array of route segments.; and (2) vehicle’s
current location that has been homomorphically encrypted. For
each segment in all possible routes, Algorithm 1 first performs
coordinates shifting (line 8, 9, 10) and basis change (line
12, 13) to avoid complex operations on encrypted location.
The returned results (variable ret) are an array consisting
of encrypted obfuscated distances. Once, decrypted (by the
Vehicle) the Fleet Manager checks if (1) the Vehicle is on any
segment of any possible route (i.e., if any number in the array
is negative); and (2) the corresponding distance of the Vehicle
to the segment is within the predefined tolerance.

Running example: Figure 3 shows the original coor-
dinates in gray of the vehicle and the current segment in
Algorithm 1 that we are examining. If we want to calculate
the distance of the vehicle’s location to segment, we must use
some forms of advanced mathematical operations (e.g., sine,
cosine). This is however not possible on homomorphically
encrypted data. We therefore need to transform the current
coordinates so that we can calculate the distance using only
subtraction, multiplication, and addition. We shift all coordi-
nates such that start location of the segment (segmentstart)
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Figure 3. Coordinates shifting. New coordinates are marked blue.

becomes the origin (0,0). Shifted coordinates are marked
blue. At this point, the distance calculation related to vehicle’s
locationx,y still involves complex mathematical operations
(that are not allowed on homomorphically encrypted data).
We then aim to rotate all coordinates such that the distance
can be calculated only using allowed operations on encrypted
locations. We set to rotate all coordinates so that the current
segment lies on the x-axis. This gives us the distance of the
current location to the segment, which is exactly the value of
locationy without further complex distance calculation. To this
end, we apply the following equation to transform/rotate the
all coordinates (i.e., change of basis [2])[

xnew

ynew

]
=

[
cos(α) −sin(α)
sin(α) cos(α)

]−1

×
[
xold

yold

]
The coordinates of vehicle’s locationx,y and segment S after

coordinates’ basis have been changed is shown in Figure 4.
The functions sin(α) and cos(α) operated on plaintext data
only (e.g., x and y are derived from segment S and the x-
axis). Finally, we can see that, the closest distance between
vehicle’s locationx,y and S is exactly the value of locationy .

Line 14 in Algorithm 1 performs calculation to determine if
locationx,y is with-in the segment S. The variable lat_del
now indicates (after being decrypted) if a location is with-
in the segment S (i.e., having a negative value) or not (i.e.,
having a positive value). The value of locationy indicates the
distance of the vehicle to the segment S. If the distance is less
than (or equal to) a predefined tolerance, the Fleet Manager
can consider that the Vehicle is still following the predefined
trip. Otherwise, the Vehicle is not following. Line 15 adds to
the results the distance from locationx,y to segment S. Having
the distance from an (encrypted) location to a segment allows

-1-1 11 22 33 44 55 66
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segmentsegment

segmentsegment
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xx

startstart

endend

endend

locationlocation

locationlocation

Figure 4. Coordinates with basis changed with α angle . New coordinates
are marked blue.

us to later check if the distance is smaller than a predefined
threshold (e.g., distance tolerance). If it is, the location is
considered on the segment. This means, the vehicle is still
following a predefined trip.

Finally, line 16 creates a random set of pairs to the re-
turned results. This is to resemble (fake) variables loc.y and
lat_del, which represent dummy route segments. Hence,
given a fake pair (loc.y and lat_del), both elements
must be greater than 0 (i.e., location is not on the current
dummy route segment and its distance is a positive number).
Subsequently, line 17 shuffles the results. This makes it harder
for Fleet Manager (e.g., in case it is compromised) to associate
the returned distance (of a location to a segment) with, which
segments. Particularly, Fleet Manager knows the distance of
vehicle’s location to a segment but not the exact segment. For
plaintext values (e.g., segment.start, segment.end), certain sine,
cosine functions are used (sine/cosine of the angle of segment
S and the x-axis), yet only on the coordinates of segment.start
and segment.end. This is possible as predefined trip (and its
possible routes) is not encrypted.

IV. EVALUATION

To determine the effectiveness of our solution, we measure
its computation and communication overhead.

A. Setup

Our setting environment is based on a Virtual Machine with
1 CPU 2.10 GHz and 4GB RAM, running Ubuntu 18. For
our evaluation, TenSeal [1] is picked, as it enables quick
implementation. We only care about CKKS scheme, since our
data (location’s coordinates) is represented by float numbers.
Fleet Manager defines a trip that can be reached via 3 possible
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routes. Each possible route contains 10 segments. We choose
number 10 to represent a typical (inner-city) route. This means
Algorithm 1 must iterate over 30 route segments to track if
the Vehicle is following the predefined route.

B. Results

 0.010s 
 (3.85%)

   0.204s 
 (78.46%)

   0.046s 
 (17.69%)

Encryption
Computation
Decryption

Figure 5. Execution time attribution.

We consider three phases for evaluation: encryption, compu-
tation, and decryption. In this phase, we do not consider the
time spent on exchanging data among parties. Computation
here refers to the execution of Algorithm 1 on the encrypted
location leaves the Vehicle. We perform this evaluation 30
times on different locations to measure the execution time.

As illustrated in Figure 5, encrypting vehicle’s location
takes 3.85% (0.01 seconds) of the execution time. Besides,
computation (running Algorithm 1 on encrypted location to
return the encrypted result) takes the majority (78.46%) of the
computation time with ≈ 0.204 seconds. Decryption on the
other hand takes 17.69% the execution time with 0.046s.

  0.106s 
 (25.96%)

  0.204s 
 (50.06%)

  0.01s 
 (2.45%)

  0.087s 
 (21.53%)

Encryption
Transfer
Computation
Decryption

Figure 6. Total execution time attribution.

In the second evaluation, we further consider the commu-
nication time among three parties (Fleet Manager, Vehicle,
and Cloud Service). As Figure 6 shows, average transfer time
(among all parties) — from when encrypted location is shared
by Vehicle until the decrypted results arrive at Fleet Manager
— is 0.106 seconds. This means around one-forth of the
total execution time is spent on exchanging data. setting. We
conducted this experiment in a local network. This means the
latency is negligible. Overall, the time taken for Fleet Manager

to determine if a Vehicle is following a predefined trajectory
is 0.407 seconds.
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Figure 7. Correlation between execution time and N.O segments in a
trajectory.

Figure 7 shows the correlation between the number of
segments (segments’ size) and the execution time (e.g., run-
ning Algorithm 1). We can see that the time needed to run
Algorithm 1 increases linearly as the size of segments (of a
predefined trajectory) increases. On average, Algorithm 1 takes
≈ 6 milliseconds to compute results on a single segment.

Comparison to plaintext execution: To examine the com-
putation overhead of our approach, we compare the execu-
tion on encrypted data against plaintext data. We run our
comparison 50 times on different locations to examine the
difference. On plaintext location, running Algorithm 1 takes
0.79 milliseconds while on homomorphically encrypted lo-
cation it takes 60.9 milliseconds. This means, computation
on encrypted location, as anticipated, takes significantly more
time (77x execution time).

Accuracy: The accuracy of our approach depends on
two factors: The approximation of the CKKS scheme and
the distance tolerance set by Fleet Manager. As we use the
CKKS implementation of TenSeal, we directly benefit from
its precision. In our evaluation, the calculated distance has
a deviation of around ≈ 1e-8 depending on the unit of the
provided coordinates (e.g., meters, kilometers).

V. DISCUSSION

In this paper, we propose novel techniques to work with ho-
momorphically encrypted data to provide vehicle monitoring
service that preserve location’s privacy, especially when the
data processing entities (i.e., Fleet Manager or Cloud Service)
are compromised. By proposing novel coordinate’s transfor-
mation techniques, our work only uses arithmetic operations
that are allowed on encrypted data — hence, not requiring
any approximation functions, or multiple intermediates collab-
oration steps from the encryption key holders. Our approach
prevents a compromised Fleet Manager or an untrusted Cloud
Service from learning vehicle’s location while still provides
accurate and necessary tracking information.
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A. Limitation and Future Work

With Algorithm 1, Cloud Service needs to return a list of
(encrypted) numbers. This is not optimal as future work could
study a more efficient algorithm that allows checking just one
number to learn vehicle’s compliance.

Performance overhead: In our evaluation, we see a
computation overhead of 77x when running Algorithm 1 on
encrypted locations vs. on plaintext locations. However, we are
aware that for encrypted locations, there exist other overhead
such as encryption, decryption, transfer too. This will result
in higher overhead overall. Hence, such a comparison only
gives a rough overview of the minimal overhead of running
Algorithm 1 on encrypted locations. Further, we did not
consider the data sizes (to be transferred) in our experiments
to judge the size overhead when applying HE. Future work
could consider this aspect to provide a more comprehensive
look into applying HE in location tracking.

Finally, our work relies on the security of HE schemes
in-use. If adversaries can break such schemes, location data
could be revealed. Specifically, CKKS scheme was shown to
be vulnerable to secret key recovery under the assumption that
attackers can (1) access to encryption oracle; (2) choose the
function to be evaluated homomorphically; and (3) access to
decryption oracle [8]. This attack exploits the linearity of the
decryption function in CKKS and the hints that approximated
decrypted results provide.

B. The use of nonlinear functions

One potential direction to use nonlinear functions is to
identify their corresponding approximated (linear) alternatives
so that they could be applied on HE data. There are several
disadvantages to this approach. Approximated functions are
usually complex and could result in extreme performance
overhead. With HE data, the more operations are done on it,
the more noise will be accumulated. Accumulated noise could
lead to the case that encrypted data cannot be decrypted any
more. While bootstrapping techniques generally could remove
the noise, yet it again adds more performance overhead.

C. Application Analysis

While this work focuses on vehicle tracking, the applica-
tions of HE in location-based service is enormous. We can
use HE to monitor if a person is inside a fencing area without
having to collect their exact (raw) location. This protects user’s
privacy even in the event of data leakage (both on purpose and
unintentionally). Points of interests can also be recommended
to users using HE Specifically, so users can search for nearby
coffee shops, restaurants, hospitals, etc. without having to
provide raw location. Further, the Cloud Service, could store
HE locations for future analysis. Analysis results is only be
revealed with the consent of the vehicle (i.e., its owner) as the
results can only be decrypted by the Vehicle.

VI. CONCLUSION

This paper presents a novel privacy-preserving approach to
track real-time vehicle’s compliance to predefined trips. Our

work leverages state of the art homomorphic encryption to
protect location’s privacy while still allowing computations on
encrypted data to determine if a vehicle is following predefined
trips. We evaluated the effectiveness of our approach and
showed that homomorphic encryption can be efficiently used
to protect location privacy.
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