
Coordination of Controllers and Switches in
Software Defined Networks (SDN) for Multiple

Controllers
Stavroula Lalou

Department of Digital Systems
University of Piraeus

Piraeus, Greece
slalou@unipi.gr

Georgios Spathoulas
Dept. of Inform. Sec. and Comm. Techn.

NTNU
Gjøvik, Norway

georgios.spathoulas@ntnu.no

Sokratis Katsikas
Dept. of Inform. Sec. and Comm. Techn.

NTNU
Gjøvik, Norway

sokratis.katsikas@ntnu.no

Abstract—Coordination of the workload among distributed
SDN controllers is critical role for both the network performance
and the control plane scalability. Therefore, various load balanc-
ing techniques were proposed for SDN to efficiently utilize the
control plane’s resources. However, such techniques suffer from
increased latency and packet loss that come as the result of load
migration requirements and intensive communication between
the SDN controllers. The proposed system adopts OpenFlow
mechanism and introduces a new system that offers coordination,
synchronization and stable performance.

Index Terms—Software Defined Networks, multiple controllers,
coordination, load balancing.

I. INTRODUCTION

SDN aims to offer easier management and faster through
dynamically customizing the operation of a network through
the use of the combination of a centralized controller and
programmable network devices. When SDN is deployed in
large-scale networks, they may consist of multiple controllers
or different administrative vendors. Hence, how multiple con-
trollers and switches coordinate is a critical issue. OpenFlow
[1], is one of the mostly representative protocol for SDN,
carries the message between an SDN controller and the un-
derlying network infrastructure. One of the most fundamental
features of the OpenFlow protocol is the “packet-in” message.
If a packet arrived at a OpenFlow based switch does not
match any forwarding rule, the packet can be configured as
the “packet-in” message to be forwarded to the controller
for corresponding policing processing. The use of multiple
controllers is an approach that offers greater availability but
it also introduces a new problem regarding the coordination
between multiple controllers and switches. Insufficient coor-
dination may result in sub optimal network performance. In
large data centers, the traffic patterns are usually unpredictable
due to elastic resources and flexible services. For example, if
the switch to controller map-ping configuration is static, some
switches can generate a larger number of packet-in messages
than other switches of the network. This condition implies that
the corresponding controller, which these switches are mapped
to will become overloaded, while other controllers will remain

under-utilized. On the other hand, in multi-controller SDN [7]
each controller is responsible for a set of switches (domain).
A controller can be master, equal, or slave, where the first
two types can process the flow requests from the switches and
install the forwarding rules in the switches. A slave controller
can only read the switch flow table, but cannot update it. Each
switch can have multiple equal and slave controllers, but only
one master controller. Furthermore, a master controller for a
specific switch can be slave controller for another one, and
whenever a master controller fails, a slave or local controller
can request (via OpenFlow role-request message) to become
the new master of the affected switches. The multi-controller
paradigm is shown to improve many aspects of SDN, but
it presents many challenges, especially for controllers’ uti-
lization when switch-controller assignments are static. The
load of a controller is mainly caused by the processing of
the packet-in messages sent from the switches, and due to
network dynamics, the number of these messages vary both
regionally and temporally. As a result of these variations, some
controllers will be over committed , while some others will be
underutilized. This leads to domain failure (and multi-domain
failure), or network under utilization. The coordination among
controllers is a major issue with several protocols proposed
thus far [2]. OpenDaylight [3] [4] and ONOS, two state-of-the-
art controller implementations, rely on RAFT and Anti-entropy
protocols for disseminating coordination messages among con-
trollers. Each controller is responsible fora part of the network
only, commonly referred to as the controller’s domain. The
messages disseminated by a controller to the other controllers
convey its view on the state of its domain (e.g., available
links and installed flows). The composition of these messages
allows the controllers to synchronize and agree on the state
of the entire network. Also the authors of [5] proposed a load
re balancing method based on switch migration mechanism
for clustered controllers. They also using the OpenFlow 1. 3..
The multiple controllers use JGroups to coordinate actions for
switch migration. The whole network is divided into several
groups and each group has a controller cluster set up. In this
paper we will discuss the available mechanisms that offer

76Copyright (c) IARIA, 2023. ISBN: 978-1-68558-092-6

SECURWARE 2023 : The Seventeenth International Conference on Emerging Security Information, Systems and Technologies

multiple controller coordination and network synchronization.
To address this problem, we propose a scalable and crash-
tolerant load balancing based on controller switch connection
for multiple OpenFlow controllers. The contribution of this
paper is:

• A dynamic coordination and synchronization system
among SDN controllers and switches that focus partic-
ularly on the impact of the rate of synchronization on the
performance of network.

• A system that can dynamically shift the load across
multiple controllers through switches.

• A controller fail-over without switch disconnection avoid-
ing the single point of failure problem.

The remaining of the paper is structured as follows: In
Section II, we briefly review necessary background knowledge
on SDN and on the RAFT consensus algorithm. In Section III,
we discuss related work. In Section IV, we present our pro-
posal for coordination of the workload among distributed SDN
controllers. In Section V, we present the experimental setup
that we used for evaluating the performance of the proposal
and we discuss the results. Finally, section VI summarizes our
conclusions.

II. BACKGROUND

A. OpenFlow Protocol

The OpenFlow architecture consists of numerous pieces of
OpenFlow-enabled switching equipment which are managed
by one or more OpenFlow controllers, as shown in Figure
1. It depicts the fundamental concept of the SDN architecture
[2]. Network traffic can be partitioned into flows, where a flow
could be a Transmission Control Protocol (TCP) connection,
packets with the same MAC address or IP address, packets
with the same Virtual Local Area Network (VLAN) tag, or
packets arriving from the same switch port [6].

An OpenFlow switch contains multiple flow and group
tables. Each flow table consists of many flow entries. These
are specific to a particular flow and are used to perform packet
look-up and forwarding. The flow entries can be manipulated
as desired through OpenFlow messages exchanged between
the switch and the controller on a secure channel. By maintain-
ing a flow table, the switch can make forwarding decisions for
incoming packets by a simple look-up on its flow- table entries.
Open-Flow switches perform an exact match check on specific
fields of the incoming packets. For every incoming packet,
the switch goes through its flow table to find a matching
entry. The flow tables are sequentially numbered. The packet-
processing pipeline always starts at the first flow table. The
packet is first matched against the entries of a flow table. If the
packet matches a flow entry in a flow table, the corresponding
instruction set is executed. Instructions associated with each
flow entry describe packet forwarding, packet modification,
group table processing, and pipeline processing [6].

Pipeline-processing instructions enable packets to be sent to
subsequent tables for further processing and enable aggregated
information (metadata) to be communicated between tables.

Flow entries may also forward to a port. This is usually
a physical port, but may also be a virtual port [6]. Flow
entries may also point to a group, which specifies additional
processing. A group table consisting of group entries offers
additional methods of forwarding (multicast, broadcast, fast
reroute, link aggregation, etc.). A group entry consists of a
group identifier, a group type, counters, and a list of action
buckets, where each action bucket contains a set of actions
to be executed and associated parameters. Groups also enable
multiple flows to be forwarded to a single identifier, e.g., IP
forwarding to a common next hop. [6].

Fig. 1. Software Defined Networking.

B. Connection Strategy

The first issue is to address the switch-to-controller con-
nection strategy and how switches are connected to SDN
controllers. In early OpenFlow version, switches can only
attach to one controller. Furthermore, that link is static,
meaning that operators have to configure the switch manually
when it needs to attach to a new controller. A distributed
SDN controllers setup, on the other hand, requires a dynamic
connection between switches to controllers. The dynamic
connection enables to move a switch from one controller to
another controller during a fail-over or load balancing process.
Fortunately, there are two options to deploy such flexible
switch to controller connection, using the IP alias connection
or OpenFlow Master/Slave connection.

In the Master state, the controller has full access to the
switch as in the Equal role. When the controller changes
its role to Master, the switch changes the other controller
in the Master role to have the Slave role. The role change
does not affect controllers with the Equal role. The controller
receives from switch asynchronous Port- status messages. The
controller can send Asynchronous- Configuration messages to
set the asynchronous message types it wants to receive. An
OpenFlow instance can connect to one or more controllers,
depending on the controller connection mode the OpenFlow
instance uses ether Single instance in which the OpenFlow
instance connects to only one controller at a time. When
communication with the current controller fails, the OpenFlow

77Copyright (c) IARIA, 2023. ISBN: 978-1-68558-092-6

SECURWARE 2023 : The Seventeenth International Conference on Emerging Security Information, Systems and Technologies

instance uses another controller, or the Multiple instances so
it can simultaneously connect to multiple controllers. When
communication with any controller fails, the OpenFlow in-
stance attempts to reconnect to the controller after a recon-
nection interval [6].

III. RELATED WORK

Distributed SDN controller deployments require a coordina-
tion protocol among controllers. To address the coordination,
synchronization and performance challenge different systems
and approaches have been introduced. ONOS [4] stands for
Open Network Operating System, uses RAFT, and provides
the control plane for a software-defined network (SDN). It
manages network components, such as switches and links, and
runs software programs or modules to provide communication
services to end hosts and neighboring networks. The most
important benefit of an operating system is that it provides
a useful and usable platform for software programs designed
for a particular application or use case. ONOS applications
and use cases often consist of customized communication
routing, management, or monitoring services for soft-ware-
defined networks. Some examples of things which you can do
with ONOS, and software written to run on ONOS, may be
found in Apps and Use Cases [4]. Devoflow [7] actually reduce
the overhead of the control plane by offloading the controller
by delegating some work to the forwarding devices and enable
a cluster of controller nodes to achieve distributed control
plane. Onix [9], Kandoo [10], and HyperFlow [11] use this
approach to achieve a control planewith high scalability and
reliability. ElastiCon [12] supports for elasticbehaviorwhichin-
creases or decreases the number of controllers based on load
estimates of control plane. The “Doing It Fast And Easy”
(DIFANE) [13] approach examines the scalability issues that
arise with OpenFlow in large networks and with many fine-
grained flow entries. Scalability concerns can be classified by
(1) the number of flow entries inside the switches and (2) the
load on the controller that is caused whenmany flows have
tobe installed simultaneously. DIFANE installs all forwarding
information in the fast path, i.e., in TCAM, in a few selected
switches, called “authority switches”. This is achieved by
wildcard match fields and the intelligent distribution of flow
table entries on the authority switches. The other switches
forward traffic that cannot be resolved by their own flow table
towards authority switches. The authors show the applicability
of DIFANE in large networks by evaluating their proposal on
various metrics, such as the number of required TCAM entries,
packet loss caused by failures, etc.

Some recent works propose to reduce the overhead of
control traffic by strategically placing the controllers in the
network [14] or by finding the appropriate forwarding paths
for loadbalancing on control traffic. Eventual consistency,
where the controllers coordinate periodically rather than on
demand basis, is another way to reduce control overheads.
Levin et al. [15] showed that certain network applications,
like load-balancers, can work around eventual consistency and
still deliver acceptable performance. This would require some

additional effort to be made to ensure that conflicts such
as for-warding loops, black holes and reachability violation
are avoided. The authors [14] studied the problem of finding
the optimal synchronization rates among controllers in a dis-
tributed eventually-consistent SDN system. They considered
two different objectives, namely, (i) the maximization of the
number of controller pairs that are consistent, and (ii) the
maximization of the performance of applications which may
be affected by the synchronization decisions, as highlighted
by emulations on a commercial SDN controller.

IV. OUR PROPOSAL

The proposed system implements a novel network of mul-
tiple controllers using RAFT consensus algorithm to maintain
stability, scalability, and consistency, it was presented in a
prior work [18]. In this paper we extend our approach using
features from Open-Flow connection methods. It is based in
Master/ Slave connection between controllers and switches.
It supports the connection and coordination of multiple dis-
tributed SDN controllers to serve as backup controllers in case
of a failure. According to our experiments the load conditions
of controllers, our proposed method can dynamically shift
the load across the multiple controllers. Moreover, multiple
controllers allow data load sharing when a single controller
is overwhelmed with numerous flow requests. In general,
our approach can reduce latency, increase scalability, and
fault tolerance, and provide enhanced availability in SDN
deployments.

A. Implementation

The proposed mechanism, consists of multiple SDN con-
trollers that collaborate to manage the network. Each controller
is responsible for a subset of switches in the network. Con-
trollers communicate with each other using a coordination and
synchronization mechanism. Controllers exchange their load
information with other controllers in the network. We use
a consensus-based coordination and synchronization mecha-
nism. Each controller registers with the coordination service
and participates in the distributed coordination protocol. The
coordination service maintains a shared state, such as network
topology information and controller assignments.

Controllers periodically synchronize their local state with
the shared state in the coordination service. This synchro-
nization is achieved by employing a combination of data
replication, using flow tables. When a controller joins or leaves
the system, the coordination service notifies other controllers
to update their view of the network and redistribute the load
if necessary.

Load balancing across controllers can be achieved through
dynamic redistribution of switches and their associated flows.
Controllers use load balancing algorithms based on factors
like controller workload, switch capacity, and network traffic
patterns. When load balancing decisions are made, controllers
negotiate and transfer the ownership of switches and their
flows based on the new load distribution. To handle controller
failures, a fail-over mechanism is necessary. When a controller

78Copyright (c) IARIA, 2023. ISBN: 978-1-68558-092-6

SECURWARE 2023 : The Seventeenth International Conference on Emerging Security Information, Systems and Technologies

fails, the coordination service detects the failure and triggers
a fail-over process. The fail-over process involves selecting
a new controller to take over the responsibilities of the failed
controller. The new controller establishes connections with the
switches managed by the failed controller, ensuring a seamless
transition without disrupting network operations.

Controllers use a standard protocol, the OpenFlow, to com-
municate with the switches and exchange network control
messages. The coordination and synchronization mechanism
discussed above enables controllers to exchange coordination
messages to maintain consistency and distribute control re-
sponsibilities.

B. Load Balancing

Controllers exchange their load information with other
controllers in the network. The Controller Election Process
is been implemented in the controller election process using
the OpenFlow protocol. The controllers negotiate and decide
which controller will be the master and which will be the
backup using protocols, such as OpenFlow’s Role Request
message.

Each controller monitors its own load using metrics such as
CPU utilization, memory usage, or the number of active flows.
The load information is periodically updated and maintained
by each controller, its record. Each controller compares its load
metric with the load metrics received from other controllers.
The comparison helps identify the least loaded controller
among the available options. If the controller determines that it
is the least loaded based on the load comparison, it continues
to handle incoming traffic as usual. If the controller determines
that another controller has a lower load, it takes appropriate
actions for load balancing. The load balancing decisions can
be implemented by modifying the flow table entries in the
switches, redirecting traffic to the appropriate controllers based
on the load balancing algorithm. The SDN controllers use the
OpenFlow protocol to install, update, or remove flow rules
dynamically to achieve load balancing.

When a new request arrives at a switch, the switch forwards
the request to its designated controller. The OpenFlow protocol
allows switches to direct incoming packets to a specific
controller based on rules defined in the flow tables. Configure
the flow tables in the switches to match and forward the
incoming requests to the appropriate controller based on load
balancing policies.

Each switch maintains the load information received from
the controllers it is connected to. The switch compares the
load information of the connected controllers. Based on the
comparison, the switch selects the least loaded controller as the
destination for incoming requests.By leveraging the capabili-
ties of the OpenFlow protocol, the switch can make informed
decisions about which controller to forward incoming requests
to, ensuring load balancing among the controllers in the SDN
system.

To implement load balancing, packet fields, such as source
IP address, destination IP address, transport protocol are record
in the flow table entries to direct packets to the desired

controller. We use the OpenFlow protocol to set the flow action
in the flow rules of the switches:

• output action: Specify the output port of the switch to
forward the traffic to the desired controller.

• controller action: Direct the traffic to the controller by
specifying the action to send the packet to the controller’s
port.

Load information from the controllers can be periodically
collected and used to determine the least loaded controller.
Based on this dynamic load information, the flow tables are
updated to reflect the current load balancing requirements.
Depending on the dynamic nature of the load balancing, the
flow rules may need to be updated periodically or in response
to load changes. The SDN controller can monitor the load,
collect load information, and make appropriate updates to the
flow rules as needed.This can be done by sending OpenFlow
messages to the switches to modify or add flow rules.

V. PERFORMANCE EVALUATION

A. Experimental Setup

A simulation has been conducted to assess the performance
of the proposed scheme. The system on which the simulation
was executed was based on an VM with Ubuntu 22.04 OS,
16 GB of memory and OpenFlow Switches. We evaluated
the performance of our system in terms of load balancing
in terms of response time, throughput, packet lost, delay and
the time overhead imposed by the controllers and switches
to coordinate. The coordination performance and scalability
between controllers, switches and hosts also have been de-
picted according to the scenario of routing several packets that
are successfully routed (without traversing any failed link) to
their destinations. We emulate the performance using Mininet
and Ryu [17]component-based software defined networking
framework. Ryu [17] provides software components with well
defined API that make it easy for developers to create new
network management and control applications. and created
a topology of 10 SDN controllers, consisting of one master
controller and nine SDN controllers, along with 20 switches.

• Master Controller:Controller M
• SDN Controllers: Controller C1, Controller C2, Con-

troller C3, Controller C4, Controller C5, Controller C6,
Controller C7, Controller C8, Controller C9

• Switches 1-20: S1, S2, S3, S4, S5, S6, S7, S8, S9, S10,
S11, S12, S13, S14, S15, S16, S17, S18, S19, S20

Initially, it distributes switches evenly among the client con-
trollers. Master Controller M does not handle any switches
directly. Each controller can handle up to three switches.
We have assigned an initial load distribution of switches to
controllers. Controller C1: S1, S2, S3; Controller C2: S4,
S5, S6; and so on. We have set initial metric values for
each controller (CPU utilization, memory usage, number of
active flows) based on the simulation scenarios.Periodically
collect metrics from each controller and switch and update the
metric values based on the simulated workload and network
conditions.

79Copyright (c) IARIA, 2023. ISBN: 978-1-68558-092-6

SECURWARE 2023 : The Seventeenth International Conference on Emerging Security Information, Systems and Technologies

Calculates a score for each controller based on the weighted
metrics. Assigns appropriate weights to each metric based
on their importance and impact on load balancing decisions.
Computes the score for each controller using the weighted
sum of the metrics. Then identifies the controller with the
highest score as the ”over loaded” controller and the one with
the lowest score as the ”under loaded” controller. Defines a
threshold value to determine when a controller is considered
overloaded or under loaded. If the score difference between
the overloaded and under loaded controllers exceeds the
threshold, initiate load redistribution. Determines a subset of
switches to be transferred from the overloaded controller to
the underloaded controller. For example, if Controller C1 is
overloaded and Controller C2 is under loaded, it can transfer
S1 and S2 from Controller C1 to Controller C2. It updates the
flow tables of the affected switches to redirect traffic to the
under loaded controller. The under loaded controller assumes
control of the transferred switches and their associated flows.
According to the Master/slave constraint the switch can be
controlled by more than one SDN controllers but only one
master controller at time. Therefore, we chose Mininet, which
emulates a network of software-based virtual OpenFlow switch
as our experimental testbed. Each controller is connected to the
other controllers and the available switches. Each controller
can handle up to 3 switches, which are used as the traffic
generator to initiate UDP flows to any other host in the
network. The performance of routing application is determined
by the number of packets that are successfully routed to their
destinations. We emulate the performance for three different
scenarios of workload to test the controllers coordination and
the management of the switch. Our system shifts dynamically
the load across the switches and the controllers. We simulated
three different workloads to stress controllers through adjust-
ing the flow rate. For the first scenario we sent 1000 packets in
a time of 100ms, for the second 2000pps and for the third we
flood the network to see how it performs and how the nodes
coordinate under heavy load. The simulation results are shown
in Table 1 and Figure 2.

TABLE I
NETWORK PERFORMANCE PACKETS SEND PER SECOND

packets Average Time in ms Packet loss
Workload A- 1000 0.041 1.2 %
Workload B- 2000 0.049 3 %
Workload C-5000 0.060 3.5 %

Also, we tested the communication between all nodes of
the network for a time duration of 100 sec, as in a OpenFlow
network the controller response time directly affects the flow
completion times. We evaluated the average response time
at 0.041 ms, for sending packets throughout the network.
The performance of routing application is determined by
the number of packets that are successfully routed (without
traversing any failed link) to their destinations. To analyze
the load balancing algorithm, we simulated different network
scenarios and workload conditions. Vary the weights assigned

to different metrics and observed the resulting load distribution
among controllers.

We emulate the performance for three different scenarios
where all the controller synchronize at the same rate equal to
(i) 0.041ms (ii)0.049 ms, (iii)0.060 ms, (messages per second)
and the results are depicted in Figure 4.

We used iperf [16] to evaluate and plot the mean throughput
with varying workloads as illustrated in Figure 2. We perform
additional emulations to test the performance of a load bal-
ancing application. The switches generate flows uniformly at
random. The flows can be routed and queued to any of the 10
controllers. Each controller is aware of the load of each one
of them manages. We can ensure that this is the least loaded
server, since the controllers are synchronized at all times.

B. Results

During the tests we compared the proposed system to
another system that is also based on OpenFlow switch con-
nections [5], in terms of response time and throughput. Our
approach exhibits shorter response times when transferring
packets over the network comparing to the system that was
previously introduced in [5]. To evaluate and plot the mean
throughput of the proposed system we compared it with [5]
with varying workloads as illustrated in Figure 4. In proposed
method, as the figure shows, when the system is under heavy
load it is steady and it needs 0.041 ms of average time to
send all the packets, while in [5] it needs 0.3 ms for the first
workload test and increases as the the packet requests increase.

Fig. 2. Basic packet forwarding with OpenFlow in a switch.

In a OpenFlow network where flow entry setup is performed
reactively, the controller response time directly affects the
flow completion times. We evaluate the response time of the
systems by hping command. As Figure 4 shows, the workload
significantly affected response time. Comparing the response
time in [5], it increases marginally up under workload B and
goes up higher under workload C. That is because once the
packet interval rate exceeded the capacity of the controller,
queuing causes response time to shoot up. Finally, we measure
the the time overhead caused by assigning roles to the switches

80Copyright (c) IARIA, 2023. ISBN: 978-1-68558-092-6

SECURWARE 2023 : The Seventeenth International Conference on Emerging Security Information, Systems and Technologies

Fig. 3. Packet loss

and the cost of switch migration process in the compared
system [5]. We observe the migration process takes about 2ms
under workload A and increases as the. The failover process
takes about an average of 20ms, which mostly affected by
the failure detection based on heartbeat messages provided by
JGroups. In our proposed system, the average required time
for assigning Master role to a controller node is 10,06 ms.

We also tested the packet loss. We define the delay to have a
normal distribution, which provides a more realistic emulation
of networks. As a result, all packets leaving the controller
C1 on its interface C1-eth0 will experience delay time which
is normally distributed between the range of 10ms ± 20ms,
we have consider this delay due to the master election. Also
NETEM permits user to specify a distribution that describes
how delays vary in the network.

Usually delays are not uniform, so it may be convenient to
use a non-uniform distribution such as normal. For this test, we
specified a normal distribution for the delay in the emulated
network. In a network, packets may be lost during transmission
due to factors such as bit errors and network congestion. The
rate of packets that are lost is often measured as a percentage
of lost packets with respect to the number of sent packets. The
results indicated that there was a small and stable packet loss
starting with 1.2% up to 3.5 % and almost all packets were
received successfully.

Fig. 4. Comparingworkload and response time.

VI. CONCLUSION

SDN aims to simplify network architecture and makes it
possible to build programmable and agile flexible networks.
According to the experimental results that were presented, the
proposed system can efficiently coordinate and synchronize the
controllers and switches of the network in stable and low time,
thus ensuring good performance at all times irrespective of
the traffic dynamics. Also, it supports high- throughput, fault-
tolerance, and controller synchronization. The result of evalu-
ation showed that our method can improve the communication
of all network nodes and improve the throughput and response
time of control plane. It can maintain system coordination and
network stability and the average response time in all workload
tests are low.

ACKNOWLEDGEMENT

This work has been partly supported by the University of
Piraeus Research Center.

REFERENCES

[1] “Open Networking Foundation.” , https://opennetworking.org (Retrieved
July 2023).

[2] Y. E. Oktian, S. Lee, H. Lee, and J. Lam, “Distributed SDN
controller system: A survey on design choice,” Computer
Networks, vol. 121, no. 5, pp. 100–111, Jul. 2017, doi:
https://doi.org/10.1016/j.comnet.2017.04.038.

[3] ”OpenDayLight”, https://www.opendaylight.org (Retrieved July 2023).
[4] P. Berde et al., “ONOS,” Proceedings of the third workshop

on Hot topics in software defined networking, Aug. 2014, doi:
https://doi.org/10.1145/2620728.2620744.

[5] L. Chu, et al. ”Scalable and Crash-Tolerant Load Balancing Based on
Switch Migration for Multiple,” 2014.

[6] OpenFlow Switch Consortium, https://opennetworking.org/?s=openflow
(Retrieved July 2023).

[7] A. R. Curtis, et al., “DevoFlow,” ACM SIGCOMM Computer Com-
munication Review, vol. 41, no. 4, pp. 254–265, Oct. 2011, doi:
https://doi.org/10.1145/2043164.2018466.

[8] V. Yazici, M. S. ”Controlling a software-defined network via distributed
controllers”, 2014.

[9] R. Y. Shtykh and T. Suzuki, “Distributed Data Stream Processing
with Onix,” in IEEE International Conference on Big Data and Cloud
Computing (BdCloud), IEEE, 2014.

[10] S. Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient and
scalable offloading of control applications,” Semantic Scholar, 2012.

[11] A. Tootoonchian and Y. Ganjali, ”HyperFlow: a distributed con-
trol plane for OpenFlow”, in Proceedings of the 2010 internet net-
work management conference on Research on enterprise networking
(INM/WREN’10), USENIX Association, USA, 2010.

[12] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. Kompella,
“Towards an elastic distributed SDN controller,” ACM SIGCOMM
Computer Communication Review, vol. 43, no. 4, pp. 7–12, Aug. 2013,
doi: https://doi.org/10.1145/2534169.2491193.

[13] M. Yu, J. Rexford, et al. ”Scalable Flow-Based Networking with
DIFANE,” ACM SIGCOMM Comput. Commun. Rev., pp. 351–362,
2010.

[14] K. Poularakis, et al. Learning the Optimal Synchronization Rates in.
arXiv:1901.08936v1 [cs.NI], 2019.

[15] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feld-
mann, “Logically centralized?,” Proceedings of the first workshop
on Hot topics in software defined networks, Aug. 2012, doi:
https://doi.org/10.1145/2342441.2342443.

[16] “Iperf.” http://iperf.sourceforge.net (Retrieved July 2023).
[17] “Ryu omponent-based software,”https://ryu-sdn.org/ (Retrieved July

2023).
[18] S. Lalou, et al. “Efficient Consensus Between Multiple Controllers in

Software Defined Networks (SDN),” in The Sixteenth International Con-
ference on Emerging Security Information, Systems and Technologies,
IARIA, pp. 35–40, 2022.

81Copyright (c) IARIA, 2023. ISBN: 978-1-68558-092-6

SECURWARE 2023 : The Seventeenth International Conference on Emerging Security Information, Systems and Technologies

