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Abstract—Globally identifiable, internet-connected embedded
systems can be found throughout critical infrastructures in
modern societies. Many of these devices operate unattended for
several years at a time, which means a remote software update
mechanism should be available in order to patch vulnerabilities.
However, this is most often not the case, largely due to interoper-
ability issues endemic to the Internet of Things (IoT). Significant
progress toward global IoT compatibility has been made in recent
years. In this paper, we build upon emerging IoT technologies
and recommendations from IETF SUIT working group to design
a firmware update architecture which (1) provides end-to-end
security between authors and devices, (2) is agnostic to the
underlying transport protocols, (3) does not require trust anchor
provisioning by the manufacturer and (4) uses standard solutions
for crypto and message encodings. This work presents the design
of a firmware manifest (i.e., metadata) serialization scheme based
on CBOR and COSE, and a profile of CBOR Web Token (CWT)
to provide access control and authentication for update authors.
We demonstrate that this architecture can be realized whether
or not the recipient devices support asymmetric cryptography.
We then encode these data structures and find that all required
metadata and authorization information for a firmware update
can be encoded in less than 600 bytes with this architecture.

Index Terms—ACE; SUIT; COSE; IoT; security.

I. INTRODUCTION

The need for secure firmware updates in the Internet of
Things (IoT) has been apparent for several years. Seen in a
longer perspective, the IoT is still in its infancy, and the current
situation regarding software updates for IoT is comparable to
personal computers in the 1990s [1]. Most embedded systems
do not have a system in place for remote software updates,
which means device operators must manually download and
install them on each device [2]. As a result, many IoT deploy-
ments are simply never updated, even after vulnerabilities are
found, because the labor cost outweighs the perceived benefit.

The IoT is traditionally characterized by a lack of standards,
which incentivizes companies to develop proprietary solutions
[3]. For example, Texas Instruments (TI) and Amazon Web
Services introduced an update framework specifically for TI
devices running Amazon FreeRTOS [4]. This approach leads
to vendor lock-in, where each manufacturer offers mutually
incompatible software ecosystems. This ultimately hurts the
industry and consumers: it prevents end users to freely com-
pose networks of devices from different manufacturers, and
it creates prohibitively high costs for smaller companies to
enter the market and compete, whose only option might be to
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Fig. 1. Our proposed firmware update architecture, combining ACE authoriza-
tion mechanisms with proposed Software Updates for IoT (SUIT) solutions.

become sub-providers to providers of proprietary ecosystems.
Embedded systems come with a wide range of hardware,
operating systems, capabilities and constraints, which should
not be a reason for incompatibility. New standards, such as
6LoWPAN [5], DTLS [6], CoAP [7] and OSCORE [8], enable
secure IPv6 networking on devices with only tens of kilobytes
of RAM, resulting in constrained devices being globally
addressed with internet protocols. Although the content of
firmware updates varies between devices, an industry-wide
standard for the distribution of these updates enables the
desired interoperability, where the same update infrastructure
can serve multiple, or heterogeneous, deployments, instead
of requiring several custom solutions. The need for common
standards in the area and its challenges is identified within the
Internet Engineering Task Force (IETF) standard [9] leading to
the formation of the Software Updates for IoT (SUIT) working
group. To have long term impact, a secure update framework
must support existing embedded systems and systems which
have yet to be conceived. The working group describes a
firmware update solution consisting of three components: a
mechanism for transporting updates, a manifest containing
metadata about the update, and the firmware image [10]. SUIT
suggests the following design requirements for the update
architecture: (i) agnostic to firmware image distribution, (ii)
friendly to broadcast delivery, (iii) built on state-of-the-art
security mechanisms, (iv) not vulnerable to rollback attacks,
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(v) minimal impact on existing firmware formats, (vi) enables
robust permissions controls and (vii) diverse modes of opera-
tion.

Among the challenges of specifying and implementing an
architecture to meet these requirements are how to solve access
control and credential management. Without adequate security,
an update mechanism becomes an attack vector in itself, and
can be used to install malware or simply brick devices. Hence,
IoT devices must be able to verify the origin and integrity of
the firmware specified in the manifests, and the permissions
of the update author. In this paper, we present a solution to
this problem based on the Authentication and Authorization
for Constrained Environments (ACE) framework. A high level
illustration is shown in Figure 1. The main contributions of this
work are presented through the following sections:
IV A firmware manifest design and update architecture,

based on the ACE framework and SUIT recommenda-
tions, to provide both authentication and authorisation
mechanisms for secure updates.

V Proposals for the use of CBOR Web Tokens (CWT) for
Proof-of-Possession (PoP) in the update architecture.

VI An implementation and evaluation of the manifest and
access tokens described in Sections IV and V.

The rest of the paper is organized as follows. The IoT security
standards providing the basis of our update architecture are
discussed in Section II. Related work is presented in Section
III. In Section VII we discuss the security consideration of the
proposed architecture, and conclude the paper in Section VIII.

II. BACKGROUND AND THREAT MODEL

This section presents IoT security standards and protocols
which form the basis of our proposed update architecture,
followed by the assumed threat model.

We briefly summarize the Constrained Application Proto-
col (CoAP), Concise Binary Object Representation (CBOR),
CBOR Object Signing and Encryption (COSE), Public Key
Infrastructure (PKI), Authentication and Authorization for
Constrained Environments (ACE) and CBOR Web Tokens
(CWT).

A. The Constrained Application Protocol (CoAP)

Typical constrained devices are sensors, actuators or both.
Heavy computations are offloaded to more powerful devices,
while the nodes receive commands, transmit sensor readings
and perform periodic tasks. These types of networks are well-
suited to RESTful services, but traditional web protocols like
HTTP incur an unacceptable overhead for small devices. This
has been alleviated by CoAP, a lightweight version of HTTP
using binary message encodings rather than human-readable
formats and running on top of UDP instead of TCP.

B. CBOR encoding and COSE

In web applications, where computing resources are plen-
tiful and human readability is advantageous, data representa-
tions such as XML and JSON have widespread use. For the
IoT, CBOR has become the preferred encoding scheme as it

Fig. 2. Network protocols for token-based authentication in the IoT (ACE)
along with their web counterparts (OAuth2.0).

is compact, offers lower message overhead and is designed
for efficiency [11]. In applications requiring cryptographic
operations, COSE is a standard with increasing usage in
IoT [12]. COSE provides a standardized format for encryption,
signing and Message Authentication Codes (MAC).

C. Public Key Infrastructure (PKI)

PKI provides the basis of authentication and access control
in modern networked systems, by managing the distribution
and revocation of digital certificates. These certificates rely on
asymmetric cryptography, which is computationally demand-
ing for constrained devices. New standards and proposals for
lightweight certificate enrollment targeting IoT have provided
important PKI building blocks [13][14]. Experimental analyses
of these protocols have demonstrated that PKI enrollment is
now within the capabilities of constrained devices [15][16].
However, many existing IoT networks still rely on Pre-Shared
Keys (PSK), shared with all parties the devices communicate
with, or raw public keys (i.e., asymmetric cryptography with-
out attached certificates).

D. The ACE Framework

ACE is an authentication and authorization framework for
IoT, built on CBOR, COSE, CoAP and OAuth 2.0 [17]. Clients
request access to protected resources from an Authorization
Server (AS). If successful, the AS grants the client a token
which is bound to a secret key in the client’s possession, a
specific resource and an expiration date. This token is then
used as proof of authorization when accessing the Resource
Server (RS). The RS can optionally send an introspection
request to the AS to confirm the token’s validity. A network
stack with ACE is shown in Figure 2. In the context of our
proposed architecture, the recipient IoT devices act as the RS,
as illustrated in Figure 1.

There exists a number of proposals for profiling ACE to be
used together with DTLS [18], OSCORE [14] or MQTT [19].

E. CBOR Web Tokens (CWT)

The ACE framework uses CWT instead of their OAuth
counterpart, JSON Web Tokens (JWT) [20]. A token is es-
sentially a small, serialized object containing claims about a
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subject, with some cryptographic guarantees generated by the
issuer (i.e., the AS). The precise encoding of CWT claims are
use-case dependent, but all signatures, MACs and encryption
are done following COSE format specifications. Access tokens
are bound to a key known to the token bearer. These are
known as Proof-of-Possession (PoP) keys, and the semantics
of binding them to CWTs and requesting them through ACE
are described in two separate documents, [21] and [22].

F. Threat Model

Our assumptions on the capabilities of an attacker follow
the Dolev-Yao adversarial model [23]. An attacker can eaves-
drop and record sent messages, and inject messages into the
communication. We assume that the adversary cannot break
chryptographic functions, and does not have direct access to
tampering with the IoT devices.

III. RELATED WORK

Firmware updates can be grouped into two categories:
image-based updates and differential updates. A 2017 survey
among embedded software engineers found that almost 60%
of respondents had a way of remotely updating their products
and all of them used systems developed in-house, with a
clear preference for image-based updates [2]. Bootloaders
that utilize this approach, such as MCUboot [24], partition
the device ROM into two sections – one for the old image
and one for the new – in a way that a backup exists if
the new firmware fails to boot. Differential firmware updates
are far more diverse, encompassing module-based approaches
[25][26], binary patching [27], binary compression [28], and
more. Our work regards the secure distribution of firmware
updates, and is agnostic to the firmware content or installation
method.

A. Update Distribution Architectures

Software updates on systems with relatively few resource
constraints are done via package managers, such as RPM
or dpkg, and various commercial app stores. The trust an-
chors required to verify updates with PKI operations, such
as code signing, are pre-installed in the operating system. A
2010 paper argued that because update architectures are an
attractive target to attackers, recipients should never rely on
a single signature [29]. Instead, the authors advocated for a
(t, n) signature threshold scheme, whereby a recipient will
not accept an update unless t out of n trusted signers have
provided a signature. A profile of this scheme for constrained
IoT was later proposed in 2018 [30]. Devices would be
provisioned with the Original Equipment Manufacturer (OEM)
certificate and trust anchors. The OEM would send signed
update metadata to a device owner’s domain controller server.
This server would then sign and forward the message to the
end devices; hence the update is (2, 2) in the (t, n) notation.

Code signing by firmware update authors presents a problem
for the IoT. In order for devices to verify the signatures, they
must be provisioned with a list of authorized authors and
their trust anchors. Moreover, update authors (for instance

the OEM) are likely to be from outside the device owner’s
organization, and the device’s lifetime may exceed that of the
validity period of the update author’s certificate which was
available when initially deploying the IoT device. Our work
solves these problems by incorporating a token-granting Au-
thorization Server, which is capable of handling all certificate-
based authentication on behalf of the IoT devices.

B. Software defined IoT

An approach to software updates for IoT is presented in
[31], where more powerful devices act as controllers for more
constrained IoT devices, building upon earlier work to define
software defined networks for IoT [32]. This approach can
offer solutions for heterogeneous networks which include both
more powerful devices and devices which are themselves too
constrained to act as fully independent endpoints, but does not
address questions of standardisation.

C. Ongoing Standardisation Work

Key points of providing well specified mechanisms for
secure software updates, are to achieve long time support
capabilities and limit the risks of reliance on proprietary
systems. Hence proposals for solutions need to relate to the
ongoing standardisation efforts in the area. The SUIT working
group within IETF has produced three core documents: one
RFC describing the SUIT architecture [33], one RFC on
a firmware manifest information model [34] and one draft
specifying a proposal for a manifest format [35]. The pro-
posal describes one instantiation of firmware manifests with
CBOR/COSE encoding. It includes a new scripting language
and recommendations that a series of commands should be
embedded in SUIT manifests for firmware installation. This
approach has its drawbacks, most notably the steep increase
in parser complexity, which is likely to deter some vendors
from adopting the standard. Including scripts in the manifest
would also introduce new security vulnerabilities. The pro-
posed scripting format contains instructions to verify firmware
digests and check update compatibilities. This generates new
issues about error handling, and how the device should proceed
if an update author neglects to include critical security checks
in the installation script. Our work defines a set of proce-
dures to be followed by all manifest recipients; the manifest
itself contains no instructions. The SUIT documents do not,
however, describe how manifest encryption keys are to be
distributed, nor how recipient devices are meant to verify
author permissions. With the exception of scripting support,
our manifest design follows the recommendations stated in
these documents, and extends it by including lightweight
solutions for authorization.

A 2019 paper by Zandberg et al. was the first to provide an
implementation and performance analysis of a SUIT firmware
manifest [36]. The work focused primarily on the RAM, ROM
and CPU overhead incurred based on the choice of signing
algorithm used for the manifest. Our work, in contrast, is
focused specifically on how a SUIT manifest must be encoded
to support token-based access control and key distribution, and
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considers both PSK and certificate-based use-cases. A recent
survey on IoT update solutions shows that the study of SUIT
related solutions is so far in its infancy, with only one other
work mentioned besides the Zandberg et al. paper [37]. The
short paper by Hernández-Ramos et al. discuss update related
challenges. They conclude that the SUIT proposals might
benefit from being aided by blockchain based mechanisms,
which illustrates their complementary approaches [38].

D. Lightweight Machine-to-Machine

The Lightweight Machine-to-Machine (LwM2M) protocol
is a device management protocol targeting IoT. The versions
of the protocol since 2018 include a firmware update object
[39]. This specification is similar to the SUIT model as it
supports a push or pull architecture for firmware metadata,
and firmware images can either be packaged with the metadata
or retrieved from another server. However, security considera-
tions are explicitly left outside the scope and no threat model
is described. Access control, authentication and confidentiality
are left entirely to the transport and application layer security
mechanisms. This means that LwM2M is not a competitor
to the SUIT proposals, but rather a possible framework in
which the update solutions could be used. Early attempts in
this directions have been reported in [40].

IV. PROPOSED FIRMWARE UPDATE ARCHITECTURE

The communication architecture proposed in SUIT is flex-
ible in a way that updates can be triggered either by the
devices or the firmware/update authors (i.e., push or pull). The
manifests can be distributed with or without the corresponding
firmware images [33]. Our proposed architecture abides by
these principles, but deviates in the way authors are authenti-
cated and firmware is verified. SUIT states that a manifest
should be directly signed by its author. This requires the
provisioning of trust anchors and legitimate author identities.
Moreover, the most constrained devices which still rely on
symmetric keys (i.e., PSK) lack the ability to verify digital
signatures. We approach this as an access control problem
and provisioning devices with a list of trusted authors before
deployment is insufficient for a number of reasons, such as:

• Author certificates may expire or are revoked.
• Original trusted Update Authors may fail to issue updates

(e.g., when devices outlive their warranty).
• Device owners may not want to accept all updates issued

by the manufacturer.
Hence we conclude that authentication is not sufficient for
authorization. To address these concerns, we propose inte-
grating the SUIT communication model with access control
mechanisms provided by the ACE framework. This solution
would allow device operators to centrally manage the list
of authorized Update Authors (UA), and could be realized
entirely using existing standard-based building blocks. Addi-
tionally, our proposed architecture can be realized whether or
not the recipient IoT devices can verify digital signatures.

Combining SUIT and ACE results in the architecture illus-
trated in Figure 1. The recipient IoT devices act as firmware

consumers from the SUIT perspective. Update Authors (UA)
in SUIT play the role of the client in ACE (i.e., the en-
tity requesting tokens). The client requests access to the
firmware/update from the Authorization Server (AS). Finally
the firmware updates are stored at, and can be downloaded
from, a SUIT firmware server.

A. Authorization Tokens

A simple approach to distributing firmware updates with
ACE would be to use one of the mentioned proposed profiles
of the framework for secure channel establishment (with
DTLS, OSCORE or MQTT). With an encrypted and mutu-
ally authenticated channel between the Update Author and
recipient, manifests and images would not require further
signatures or authentication codes. However, to enable a larger
range of use-cases, firmware manifests must be standalone
verifiable objects [9]. In our proposed update architecture,
tokens are issued to the UA simply to authorize the distribution
of manifests. The manifests themselves are authenticated and
(partially) encrypted, and can be sent over any channel.

An ACE exchange always begins with establishing a secu-
rity context between the client (i.e., UA) and the Authorization
Server (AS). At this time, the AS authenticates the client and
verifies their permissions to distribute updates before issuing
an access token. If a symmetric PoP key is requested, it
will be sent to the client over this secure channel. Access
tokens are not required for the distribution of firmware images.
Instead, the manifests contain a secure message digest of
the corresponding image. This ensures integrity, and allows
devices to retrieve firmware images from another server. The
firmware retrieval could take place over an encrypted channel,
or a combination of untrusted channels and encryped firmware
images, depending on the confidentiality needs. We leave the
details of this outside the scope of our architecture.

Our update architecture leverages the ACE framework for
the provisioning of CBOR Web Tokens for PoP. There is some
flexibility in how these tokens are protected and authenticated
with COSE, which is discussed in Section V. The CWT
standard defines a set of common claims to include in each
token, but leaves the precise meaning of the fields up to the
particular use-case. We use four of these and define them as:
iss : issuer i.e., the URI of the AS server
aud : audience i.e., the recipient device class’s UUID
iat : issued at i.e, the start of the access token’s validity
exp : expiration i.e., the end of the access token’s validity
In addition, all tokens contain the confirmation field (cnf)
which contains the PoP key, following the specification in [21].

B. Manifest Distribution

Our proposed architecture is designed to support both
image-based and differential updates with dependencies. In the
latter case, recipient devices must parse the dependency list,
retrieve corresponding manifests, and parse their dependency
lists (illustrated in Figure 3). Installing updates often requires
devices to reboot, and potentially lose track of the state in
the update process. We propose that devices query a known
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Fig. 3. Procedure followed by recipient devices for manifest dependency tree
traversal and firmware update installation.

Fig. 4. Update sequence diagram for one possible use-case. The Update
Author (UA) establishes a secure channel with the AS before pushing firmware
manifest A to a recipient device. Since firmware update A is dependent on
firmware update B, the device pulls the dependency list and parses it. Note
that token introspection is an optional step.

manifest distributor at startup and request the latest manifest
and corresponding access token. The device will know the
update is complete when it receives a manifest matching its
current firmware.

SUIT describes three categories of update architectures:
server-initiated, client-initiated and hybrid updates. The re-
cursive process for dependency installation used in our ar-
chitecture is categorized as a client-initiated update. Figure 4
depicts interactions between actors for an update with a single
dependency. The flow is server-initiated, for the cases where
the update author has a known access path to the IoT device,
but could easily be turned into client initiated through adding
a polling step by the IoT device.

Fig. 5. Our proposed firmware manifest structure. The manifest is encoded as
two separate CBOR maps, with the integer key values indicated in parentheses.

C. Manifest Design

We propose encoding firmware manifests as two separate
CBOR maps: one containing information about the intended
recipient of the update and another containing information
about dependencies and image contents. The latter is en-
crypted, and both are authenticated in a single operation using
an Authenticated Encryption with Associated Data (AEAD)
algorithm. With this design, it is possible for a UA to broadcast
an access token and manifest to a fleet of IoT devices,
and any devices to which the update does not apply can
quickly ascertain this without performing any cryptographic
operations. Hence it is in line with SUIT recommendations to
keep the update mechanism broadcast friendly. It is sensible
to encrypt information about the image contents, in order to
conceal information that is useful to an adversary attempting
to gain insights into the software running on devices and its
potential vulnerabilities. This includes the dependencies and
the exact firmware URI.

In accordance with SUIT’s recommendations, device classes
representing the target IoT devices are given a 128-bit Univer-
sally Unique Identifier (UUID) [41], which is present through
the manifest’s class_uuid field. In our proposed architec-
ture, devices ascertain whether the source of the manifest is
authorized to issue updates by comparing this field to the
aud value in the accompanying access token. A timestamp
is mandatory in order to prevent rollback attacks, in which an
attacker replays an earlier, legitimate firmware manifest with
known vulnerabilities. IoT devices must verify that a manifest
is issued more recently than their current firmware version. By
storing the included timestamp of the current firmware version,
a simple ordering check is sufficient to determine the temporal
relation between manifests, and does not require access to a
well synchronized clock.

The hash of the corresponding firmware image is included
in the image_digest field. The URI of the firmware
server can be specified in the encrypted firmware_uri
field unless the location is already known to the devices.
To handle use-cases where only devices with certain old
firmware versions require a patch, the manifests optionally
include a qualifiers list. This contains a list of firmware
digests that a device must already have installed for the
update to apply; otherwise it is discarded. The encrypted
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TABLE I
CRYPTOGRAPHIC ALGORITHMS EXECUTED BY THE RECIPIENT FOR EACH

APPROACH DESCRIBED IN SECTION V.

AEAD ECDSA ECDH KDF
A manifest, token
B manifest, token token manifest
C manifest token manifest manifest
D manifest token manifest

dependencies field indicates a list of firmware images
which must be installed before installing the present one. This
enables differential updates and is handled as per Figure 3.

D. COSE Wrappers

Our proposed manifest is designed for AEAD algorithms,
several of which are supported natively by the COSE standard.
These algorithms take a Content Encryption Key (CEK), a
plaintext and some Additionally Authenticated Data (AAD) as
inputs, and produce a ciphertext as output. The unencrypted
portion of our manifest design is used as the AAD, and the en-
crypted portion forms the plaintext. The resulting ciphertext is
encapsulated in a COSE_Encrypt object. In total, a recipient
IoT device will receive three separate CBOR-encoded objects,
all of which must be valid in order to accept the update: the
token, the AAD, and the COSE-wrapped encrypted manifest
data. The recipients field in a COSE wrapper is used to
encipher the CEK with Key Encryption Keys (KEK) known
only to the intended recipients. There are several ways to
derive this KEK, which is discussed in further detail in the
upcoming sections.

V. AUTHENTICATION OPTIONS

Access control and cryptography in the IoT must be dis-
cussed in the context of device capabilities; this ultimately
determines the available options. To this end, we group devices
into two broad categories: (i) devices that rely entirely on PSK,
(ii) devices that possess unique asymmetric key pairs (e.g., dig-
ital certificates) and can verify digital signatures. In this section
we describe four distinct applications of COSE for protecting
firmware manifests and the corresponding access tokens. Only
the first option is applicable to devices restricted to only
using PSK; the others are applicable wherever asymmetric
cryptography is available, where devices are provisioned with
certificates via a PKI. The message overhead of each option
is analyzed in Section VI.

A. Symmetric PoP Key with PSK

Reliance on PSK for security precludes the use of digital
signatures and Diffie-Hellman key exchange algorithms. In
addition, since the network’s security is based entirely on the
secrecy of the PSK, these keys should never be sent to a third
party (i.e., an Update Author). We address these constraints by
issuing a unique symmetric PoP key with each access token.
The key is sent to the author over its secure channel with the
AS, and is also included in the cnf field of the access token.
The token is encapsulated in a COSE_Encrypt0 object using

the network PSK for encryption by the AS, and the manifest is
encapsulated in another using the PoP key. It should be noted
that this approach is subject to attack vectors not present in
the other authentication methods (see Section VII).

B. Symmetric PoP Key

Symmetric PoP keys are an option also where asymmetric
cryptography is available. We suggest the following approach,
which is not conventional, but well-suited to this particular
application. The AS generates the PoP key and encrypts it with
itself in a COSE_Encrypt0 object. This is then included in
the cnf field of the access token, and the token is encapsulated
as the payload of a COSE_Sign1 object signed by the AS.
(The following later verification of this signature is what
requires asymmetric cryptography capabilities by the receiving
IoT device.) The UA distributes the CEK to recipient devices
via the recipients field in the manifest’s COSE wrapper.
Recipients can then verify that this CEK is the one contained in
the signed token by decrypting the cnf field. The motivation
for this approach is to avoid including any recipients in the
token itself, as this would require the AS to have knowledge
of the intended recipients’ public keys. The UA must know
the recipients’ public keys in order to encipher the CEK.

C. Asymmetric PoP Key, Direct Key Agreement

In the case of asymmetric PoP keys, the cnf field of the
CWT contains the COSE encoding of a public key belonging
to the UA. The token is then encapsulated in a COSE_Sign1
wrapper. The UA now has two options for deriving a CEK
for the manifest. The first is through direct key agreement.
This type of algorithm applies a key exchange protocol – in
this case Elliptic Curve Diffie-Hellman (ECDH) – and a Key
Derivation Function (KDF) to generate the CEK directly. The
author must use the key pair bound to the token to prove their
authorization.

D. Asymmetric PoP Key, Key Wrap

The second asymmetric PoP key approach is to use the
key derived through ECDH as a Key Encryption Key (KEK)
to encipher a randomly-generated ephemeral CEK. These
two approaches have implementation nuances and security
considerations which are discussed in Sections VI and VII.
Table I summarizes the cryptographic operations that recipient
devices much perform in order to process manifests and tokens
with each of the four described authentication options.

VI. IMPLEMENTATION

The encoding scheme for each authentication options dis-
cussed in the previous section is shown in Table II. In this
section, we generate firmware manifests and access tokens for
each of the four cases. The purpose of this exercise is both to
demonstrate the viability of the proposed architecture, and to
evaluate the differences in storage and transmission overhead.
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TABLE II
COSE WRAPPERS FOR EACH MANIFEST-TOKEN COMBINATION

DESCRIBED IN SECTION V.

Authentication Manifest Token
A PSK COSE_Encrypt0 COSE_Encrypt0
B Symmetric PoP key COSE_Encrypt COSE_Sign1
C Asymmetric PoP key COSE_Encrypt COSE_Sign1
D Asymmetric PoP key COSE_Encrypt COSE_Sign1
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Fig. 6. Encoded sizes of the manifest, token and AAD for each approach
in Section V.

A. Profile and Assumptions

For our implementation and analysis, we populate the
manifest fields illustrated in Figure 5 with example data. In
order to do so we make the following assumptions:

• Images are identified with 32-byte digests.
• Timestamps are represented in relative time.
• The manifest has two qualifiers and two dependencies.
• The firmware server URI is coaps://example.com.
• The Authorization Server URI is coaps://example.com.
The authenticated and encrypted example manifest com-

ponents are 138 and 116 bytes, respectively, after CBOR
serialization. COSE offers a variety of algorithms with a
range of key sizes for each cryptographic operation. For our
implementation, we have chosen the following:

• ECDSA signatures with 256-bit keys.
• AES-CCM with 128-bit keys, 64-bit tag and a 13-byte

nonce for content encryption.
• AES 128-bit key wrap.
• ECDH Ephemeral-Static (ES).
• HMAC-Based Extract-and-Expand Key Derivation Func-

tion (HKDF) with SHA-256.

B. Results and comparison with other SUIT proposals

The update and authentication information is separated into
three separate CBOR-encoded objects: the token, the en-
crypted manifest data, and the plaintext authenticated manifest
data (a.k.a. the additionally authenticated data, or AAD). The
results are shown in Figure 6. Option A has the smallest total
size, with all three CBOR objects totalling 380 bytes. Option
C has the largest footprint, totalling 537 bytes. Since the
differences are relatively minor, the choice of method should
be guided by the offered security properties, as discussed
below in VII.
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Fig. 7. Encoded sizes of the manifest, AAD and token when the update has
multiple recipients.

In the most recent SUIT manifest proposal there are exam-
ple manifest samples, which allow us to compare our proposals
with the draft. In [35] the minimal manifest is only 237 bytes,
but for example manifests with content similar to the sample
used in our evaluation, the size is between 270 and 400
bytes. The main difference is the addition of our relatively
large access tokens, since they are designed to be independent
authorization tokens, compliant with ACE requirements. Given
this added security functionality we find the added overhead
to be clearly acceptable.

In some deployments, it may be preferable for UAs to
upload both manifests and firmware images to a dedicated
firmware server to be retrieved by devices at a later time. This
is feasible within our framework as long as the corresponding
access token is stored alongside the manifest. The storage
overhead for manifests encoded with multiple recipients is
shown in Figure 7. The plot shows the encoded size of the
required objects for 1-4 recipients for each authentication
method. In Option A, all recipients receive an identical man-
ifest since they possess the same PSK. In Option B and D,
the CEK is wrapped, each additional recipient only requires
an additional entry in the recipients field of the COSE object.
Option C, however, derives a unique CEK for each recipient,
which means the manifest must be re-encrypted for every
target device, making C the least efficient option for broadcast
scenarios.

VII. SECURITY CONSIDERATIONS

The proposals in this paper are founded on well-vetted stan-
dards and encryption algorithms. However, there are protocol
details that must be fully understood in order to avoid security
lapses. A malicious firmware image could permanently disable
expensive hardware and compromise an entire network, there-
fore, great care must be taken to ensure an update distribution
mechanism does not become an attack vector in itself.

A. Non-Repudiation

The PSK use-case described in Section V-A precludes any
guarantees for the access token. Since the AS uses a symmetric
key known to all recipients, an adversary with control over
any device would be capable of generating fraudulent tokens
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and PoP keys. This is problematic, although PSK networks are
already subjected to similar risks. Any adversary in possession
of a PSK could cause significant damage and disruption, even
without the ability to issue firmware updates. If a symmetric
PoP key is used and the token is signed by the AS, as in
Section V-B, non-repudiation is only guaranteed for the token,
but not necessarily the manifest. The UA must encipher the
PoP key for each recipient, so if any of the recipients are
controlled by an adversary, that adversary would then be in
possession of a valid token and the associated PoP key. The
use of symmetric PoP keys also breaks end-to-end security
between the author and recipients, because the key is known to
the AS. The analysis presented in Section VI demonstrated that
asymmetric PoP keys with Key Wrap has a similar overhead
but without the risks, making that approach clearly preferable.

B. Key Agreement

The manifest exchange between the author and recipients
is one-way, i.e., there is no nonce exchange or handshake
like in DTLS or EDHOC. The manifest’s CEK is either
wrapped (Options B and D) or derived directly (Option C),
as described in Section V from the author and recipients’ key
pairs. In COSE, ECDH key derivation comes in two types:
Static-Static (SS) or Ephemeral-Static (ES). In the former
case, the author of the COSE object declares that the CEK
is either wrapped or derived from the key pairs bound to
the author and recipient. In the latter case, the author of the
COSE object provides an ephemeral key pair generated for
a single encryption operation. ECDH-ES is generally safer to
use, because even if an adversary obtains the author’s private
key, it is not usable for decryption of other manifests or
impersonation of the author. It is therefore preferable for UAs
to request access tokens bound to an ephemeral public key,
not the public key found in their certificate.

C. Firmware Image Digests

Firmware manifests are only linked to firmware images via
the inclusion of a secure message digest. If a weak algorithm
with the possibility of a hash collision is used for this purpose,
such as SHA-1, devices may be exposed to fraudulent images
referenced by authentic manifests.

VIII. CONCLUSION

In this work we have presented an architecture based on
existing standards, which can address the urgent need for
secure firmware updates in the IoT. We have described the
challenges and limitations of access control in constrained
environments, and why a token-based framework, such as
ACE, is a promising candidate solution. In addition, we have
proposed encoding schemes for firmware manifests using the
CBOR and COSE standards, and detailed how these would
work in conjunction with CWT to provide authorized updates.
Examples of these objects were encoded and the result totaled
no more than 600 bytes for the firmware manifest data,
including authentication and authorization.

ACKNOWLEDGMENTS

This research is partially funded by the Swedish Foundation
for Strategic Research (SSF) Institute PhD grant, the SSF
aSSIsT project and by the H2020 CONCORDIA (Grant ID:
830927) project.

REFERENCES

[1] B. Schneier, “The Internet of Things is Wildly Insecure–
And Often Unpatchable,” January 2014. [Online]. Avail-
able: https://www.wired.com/2014/01/theres-no-good-way-to-patch-the-
internet-of-things-and-thats-a-huge-problem/

[2] E. Stenberg. (2017, September) Key Considerations for
Software Updates for Embedded Linux and IoT. [Online].
Available: https://www.linuxjournal.com/content/key-considerations-
software-updates-embedded-linux-and-iot

[3] J. P. Vasseur and A. Dunkels, Interconnecting Smart Objects with IP:
The Next Internet. Morgan Kaufmann, 2010.

[4] N. Lethaby, “A more secure and reliable OTA update architecture for
IoT devices,” Texas Instruments, Tech. Rep., 2018. [Online]. Available:
http://www.ti.com/lit/wp/sway021/sway021.pdf

[5] G. Montenegro, J. Hui, D. Culler, and N. Kushalnagar, “Transmission
of IPv6 Packets over IEEE 802.15.4 Networks,” RFC 4944, Sep. 2007.

[6] “Datagram Transport Layer Security Version 1.2,” RFC 6347, Jan. 2012.
[7] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application

Protocol (CoAP),” RFC 7252, Jun. 2014.
[8] G. Selander, J. Mattsson, F. Palombini, and L. Seitz, “Object

Security for Constrained RESTful Environments (OSCORE),” RFC
8613, RFC Editor, Tech. Rep. 8613, Jul. 2019. [Online]. Available:
https://rfc-editor.org/rfc/rfc8613.txt

[9] H. Tschofenig and S. Farrell, “Report from the Internet of
Things Software Update (IoTSU) Workshop 2016,” RFC 8240,
RFC Editor, Tech. Rep. 8240, September 2017. [Online]. Available:
https://tools.ietf.org/html/rfc8240

[10] B. Moran, M. Meriac, H. Tschofenig, and D. Brown, “A Firmware
Update Architecture for Internet of Things Devices,” Internet Engineer-
ing Task Force, Internet-Draft draft-ietf-suit-architecture-05, Apr. 2019,
work in Progress.

[11] C. Bormann and P. Hoffman, “Concise Binary Object Representation
(CBOR),” Internet Requests for Comments, RFC Editor, RFC 7049,
October 2013.

[12] J. Schaad, “CBOR Object Signing and Encryption (COSE),” RFC
8152, RFC Editor, Tech. Rep. 8152, Jul. 2017. [Online]. Available:
https://rfc-editor.org/rfc/rfc8152.txt

[13] P. van der Stok, P. Kampanakis, M. Richardson, and S. Raza, “EST-
coaps: Enrollment over Secure Transport with the Secure Constrained
Application Protocol,” Internet Requests for Comments, RFC Editor,
RFC 9148, April 2022.

[14] G. Selander, S. Raza, M. Furuhed, M. Vučinić, and T. Claeys,
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