
IDE Plugins for Secure Android Applications
Development: Analysis & Classification Study

Mohammed El Amin TEBIB
Mariem Graa

Oum-El-Kheir Aktouf
Univ. Grenoble Alpes, Grenoble INP*, LCIS lab., 26000 Valence,France

*Institute of Engineering Univ. Grenoble Alpes
email: mohammed-el-amin.tebib@univ-grenoble-alpes.fr

email: mariem.graa@univ-grenoble-alpes.fr
email: oum-el-kheir.aktouf@univ-grenoble-alpes.fr

Pascal Andre
LS2N

University of Nantes France
email: pascal.andre@ls2n.fr

Abstract—In order to increase the security of Android appli-
cations, much effort is realised to assist developers in building
secure code that is robust against security attacks. In fact,
more attention is given to secure the development life-cycle,
from requirement analysis to design, coding to test, and every
step of the development process. Many security Integrated
Development Environment (IDE) plug-ins have been proposed
to assist developers in building secure applications. However, as
far as we know, there is no study reviewing the existing tools
and their effectiveness in detecting known vulnerabilities. The
objective of this paper is to close this gap. We developed a
classification framework of the current existing security IDE
plug-ins in the context of Android application development.
This classification framework allows to highlight salient features
about 14 selected tools such as: (i) the analysis-based approach,
(ii) the vulnerabilities checks coverage, and (iii) the development
stage on which these tools could be employed. Obtained results
allowed to establish an overview of secure Android applications
development. Limits such as: tools unavailability, benchmarks
incompleteness, and the need of dynamic analysis approaches
are among the significant findings of this study. We believe this
work provides useful information for future research on IDE
plug-ins for detecting Android related vulnerabilities.

Keywords—Android; Secure Coding; Classification Framework;
IDE Plugins.

I. INTRODUCTION

Mobile applications have become an integral part of our
daily life. Android operating systems maintain a leading posi-
tion with the most significant market share ”70 percent on Feb.
2022” [1]. In order to address Android users’ expectations,
the development of Android applications has been growing at
a high rate. As a result, Android applications have become
an ideal target for attackers to exploit users private data.
According to the official MITRE organisation data-source
for Android vulnerabilities [2], recent years witnessed the
most significant increase of Android security threats, ”1034
vulnerabilities the last couple years”. And it continues to
increase with ”34 vulnerabilities for only the two first months
of 2022”. These vulnerabilities could be exploited to create
harmful actions, such as creating malwares and stealing users
private information.

In exploratory studies [3][4], Android developers practices
are pointed out as the main reason for security vulnerabilities:
considering security as a third party activity; lacking awareness
about security measures; and making decision in an ad-hoc
manner are among the main reasons for considering developers
as the first creators of security vulnerabilities. To deal with
these issues, both industry and academia have started recently
to integrate security into the software development life-cycle,
shifting from just ensuring the development speed with letting
the security checks to external stakeholders, to employing new
software development paradigms such as DevSecOps [5]. In
these paradigms, developers are forced to adhere a secure de-
velopment process by means of training sessions and analysis
tools. In this context, it becomes essential to provide Android
developers with an overview of existing security analysis
plugins. This is the main contribution of our paper. After
selecting a sample of open source IDE tools, we proposed
a classification framework based on three dimensions: 1) the
analysis based approach (static or dynamic); 2) the covered
security vulnerabilities by each tool; and 3) the development
stage on which these tools could be employed. To limit the
scope of our study, the following factors are considered:

• We consider only tools integrated in the IDE environment,
• For industrial tools, we select only free and available

ones,
• For academic tools, if the tool is not available, our analy-

sis will be performed through reading the corresponding
published paper.

The rest of the paper is organised as follows. Section II
introduces material to understand the context and the com-
parison methodology. Section III summarises the existing
related works reviewing the IDE plugins used for securing
Android applications development. Section IV presents our
proposed classification frameworks. Based on this framework,
we present the results of our search and the analysis phases
in section V. We give a set of resulting observations in
Section VI. Finally, Section VII concludes the paper and
provides tracks for future work.

48Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

II. BACKGROUND

Android provides a layered software stack composed of
native libraries and a framework as an environment for run-
ning Android applications. Developers implement different
types of applications: (i) natives, that restrict their access to
Application Programming Interfaces (APIs) provided by the
framework and, (ii) hybrids, that could also be web appli-
cations. Since considering the security of hybrid applications
should cover a wide range of potential security issues coming
from the web, our study covers only native applications.
These applications are built using four types of components:
activities, services, broadcast receivers and content providers.

Each Android application runs within its own sandbox,
which is an isolation mechanism during runtime. Conse-
quently, applications cannot communicate without having
proper permissions. Thus, permission system restricts the ac-
cess to applications, to its components and to system resources
(contacts, locations, images, etc) to those having the required
permissions. Permissions are declared by developers in the
manifest file. Their manipulation is shown in many studies
as the source of many security issues[6]: privilege escalation
resulting from the over declaration of permissions [7], com-
munication issues resulting from the use of undocumented
message types of intents [8], etc.

We focus on security vulnerabilities (Vi) that could be
mistakenly introduced by developers and exploited to craft
attacks (Ai). Based on the existing benchmarks such as
Ghera[9] that contains open source applications implementing
vulnerabilities, we started by considering a not exhaustive list
of vulnerabilities that belong to the following class of attacks
(we intend to extend this list in the future).

1) A1. Privilege escalation (PE): this attack occurs when
an application with less permissions gains access to the
components of a higher privileged application by exploit-
ing one of the following vulnerabilities: Pending Intent
with empty base action (A1.V1); Fragments Dynamic
Load (A1.V2); privileged component export (A1.V3);
permissions over-privilege (A1.V4) or weak permissions
checking (A1.V5).

2) A2. Data Injection: It consists of a malicious manipula-
tion of data to gain control over the system by exploiting
Ordered Broadcasts (A2.V1); Sticky Broadcasts (A2.V2);
Components use call(args) to invoke provider-defined
method (A2.V3) or External Storage (A2.V4)

3) A3. Code Injection: consists of injecting potentially ma-
licious code that is then interpreted/executed by the ap-
plication using Dynamic code loading without verifying
the integrity and authenticity of the loaded code (A3.V1)

4) A4. Information leaks: they occur when an application
private data are accessed by unauthorised applications
using Block Cipher algorithm in ECB mode (A4.V1)
or CBC mode (A4.V2) or encryption key stored in the
source code (A4.V3) or loading files from internal to
external storage (A4.V4)

5) A5. Android components hijack by exploiting Activities

that start in a new task (A5.V1); Applications with low
priority activities (A5.V2) or Pending Intent with implicit
base intent (A5.V3).

Note that for sake of space, more details of each vulnerability
are provided in Appendix [10].

The effectiveness of an analysis tool in detecting known
vulnerabilities is closely related to the analysis method used
by the tool. Analysis approaches are generally classified into 3
groups: (i) Static analysis, which inspects the program without
running it to identify coding flaws. It is performed over the
Abstract Syntax Tree (AST) that represents the syntax of a
programming language as a hierarchical tree-like structure.
Furthermore, formal verification can be used to identify er-
rors in code design. (ii) Dynamic analysis, which evaluates
the behaviour of the program while it is running based on
different methods among them: (1) bytecode Instrumentation
to determine how information flows in the program; and (ii)
software testing techniques such as Fuzzing to find unknown
vulnerabilities. Finally, (iii) Hybrid analysis combines both
static and dynamic analysis to improve analysis results.

III. RELATED WORKS

Recent works [11][12] present a general review of existing
tools for mobile applications. They list salient features such as
their supported IDEs, applicable languages and their abilities
to detect security vulnerabilities. However, they do not focus
on the Android ecosystem. We focus on Android, and provide
a more consistent analysis and finer applicability assets.

Mejı́a et al. [13] conducted a systematic review to establish
the state of the art of secure mobile development. They found
seven solutions for assisting secure development. These solu-
tions are classified based on: 1) the type of the use (method-
ologies, models, standards or strategies); and 2) the related
security concern (authentication, authorisation, data storage,
data access and data transfer). After analysing the results of
this research, we consider that the number of solutions is
limited regarding the real existing ones in the literature. In
addition, we found that none of the presented solutions is
proposed as a tool or a plugin for secure development. In
our work, the search and analysis process is more substantial.
Indeed, we present a more important number of solutions,
which are intended to be used as IDE plugins.

The closest work to our research is the assessment study
proposed by Mitra et al. [14]. It evaluates the effectiveness
of vulnerability detection tools for Android applications. The
authors reviewed 64 tools and empirically evaluated 14 vul-
nerability detection tools against the Ghera benchmark [9]
that implements each vulnerability inside a single Android
application. As a result, they found that the evaluated tools
for Android applications are very limited in their ability to
detect known vulnerabilities. The sample of tools in this study
is intended for use by pen-testers after the application release.
In addition, the evaluation process is limited to the academic
tools. In our work, we are interested in academic and industrial
free tools, which are specifically designed as security assisting
tools.

49Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

We did not find existing research work that studies Android
IDE plugins from a security perspective. After analysing the
existing benchmarks, we consider that Ghera repository is the
most useful means for evaluating the analysis tools. Indeed,
Ghera summarises a non-exhaustive list of well known vulner-
abilities related to the development of Android applications.
It provides an open source Android application implementing
each vulnerability. Therefore, to conduct our study, we used
the same benchmark as Mitra et al. [14] to evaluate the list of
selected plugins.

IV. CLASSIFICATION FRAMEWORK AND METHODOLOGY

The classification framework aims to answer the following
questions: (i) Which IDE plugins are used to check Android
application vulnerabilities?; (ii) How the selected tools analyse
the checked vulnerabilities? (the adopted analysis approach);
(iii) What are the vulnerabilities among the presented ones
are covered by the selected tools?; and finally (iv) When
these tools can be used in the development process (speci-
fication, design, coding and testing). We present in Figure 1
the followed search methodology to identify relevant security
assistance tools.

A. Overview of the search methodology

This phase highlights the tools used by designers and/or
developers to prevent security issues in Android applications.
Our primary source of information were published academic
reviews [11] and public GitHub repositories [15] [16]. For
industrial plugins, we consider only free and available ones
extracted from the OWASP list[17]. We also included the tools
we investigated while we were building the PermDroid[18], a
tool to prevent permissions related security issues based on
formal methods. On the other hand, some excluding criteria
are considered: (i) Tools that do not work during the devel-
opment process like Anadroid [19] (malware detection), and
MassVet [20] (analyses packaged applications in Google-Play
store); (ii) Tools that cannot be used within the IDE e.g.
ComDroid [21] warns pen-testers of exploitable inter applica-
tions communication errors related to the released applications
(see investigations [22][14]); (iii) Tools that are integrated in
the IDE but are not concerned by security vulnerabilities,
like PMD [23]. These tools are used for checking coding
standards, class design problems, but cannot be used for
identifying code smells related to security issues.

B. Shallow analysis

The analysis process here is performed through only reading
the available documentation and/or the published correspond-
ing papers. We dug the documentations on many stages.
Some vulnerabilities such as A1.V4 (the over-privilege use of
permissions) have been investigated by some of our students
and revised by the first author of this paper. The remaining
vulnerabilities analysis is realised by the first author and
revised by the second author. Other features relevant to our
study are also extracted.

C. Deep analysis

In this phase we perform an experimental analysis that
completes the preceding one. It consists of performing an
empirical evaluation by running the selected tools against
the defined vulnerabilities according to the evaluation process
summarised in Figure 2.

Figure 2. Deep Analysis Process

This evaluation is conducted for only available and free tools
such as Sonarlint , Androidlint , FixDroid and FindBugs. We
attempted to experiment more tools but this was not possible
due to the unavailability of the tools. We contacted the authors
of PerHelper, 9Fix and Vandroid but we did not receive an
answer yet. Consequently, we decided to perform a second
iteration on the documentation analysis for the unavailable
tools instead of experimenting them (which was not possible).
Finally, as our study is on vulnerabilities that could be found
at the code level, our deep analysis could not be applied on
tools such as Sema, PoliDroid−As, Page because the inputs of
these tools are respectively: GUI Storyboards for Sema, Textual
specification for PoliDroid−As and Page of the application, and
not the application source code.

Figure 1. Search Methodology

50Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

TABLE I
IDE SECURITY ANALYSIS TOOLS FOR ANDROID APPLICATIONS

Tool Name Ref. Year SD Stage Focus Approach Method Availability AV
Curbing [7] 2011 CR Permission Over-privilege Static, Manual AST No 2.2
Lintent [24] 2013 CR Communication static FM Ye 4.x
PermitMe [25] 2014 CR Permission Over-privilege Static AST No 5.0
Page [26] 2014 Spec Privacy policies Static NL No -
Vandroid [27] 2018 CR Communication Static FM No 9.0
Androidlint [28] 2019 CR Communication Static AST Yes all
Sema [29] 2019 Design General Security Properties Static FM Yes 10
PerHelper [30] 2019 CR Permission Over-privilege Static AST No 10
PoliDroid-As [31] 2017 Spec Privacy security policies Static NLP No 8
9Fix [32] 2021 CR General Code smells Static AST No 12
Sonarlint [33] 2021 CR General Code smells Static TA Yes 12
FindBugs [34] 2016 CR General Code smells Static AST Yes 7
Cocunut [35] 2018 Spec Privacy policies Static H Yes -
FixDroid [36] 2017 CR General Code smells Static AST Yes 7
1 AST: Abstract Syntax Tree; CR: Code Review; FM: Formal Methods; Spec: Specification;
2 SD Stage: Software Development Stage; AV: Android Version

V. ANALYSIS AND EVALUATION RESULTS

In this Section, we present analysis results of tools with
regards to the classification criteria presented in Section IV.

A. Shallow analysis

1) IDE plugins: As a result of the applied selection process.
We present 14 plugin for Android vulnerabilities analysis
(cf. Table I). We reported for each tool the software de-
velopment stage (SD stage), the type of covered security
vulnerabilities (Focus), the analysis approach, the analysis
method, its availability and the Android Version (AV), a useful
up-to-date information.

2) Analysis approaches: 98% of the analysis approaches
are static, mainly AST analysis and formal methods.

• Static AST Analysis Most of IDE plugins investigate
statically the program AST provided by the IDE such
as Sonarlint , FindBugs and AndroidLint. Other tools, such
as PerHelper, PermitMe and Curbing also investigate the
AST to find the declared permissions in the application
and the list of API calls requiring those permissions. The
goal is to detect extra declared permissions that are not
associated to any API call.

• Formal Methods: Lintent analyses the data-flow to for-
mally check flow information with regards to security
properties. Lintent uses the Formal Calculus for reasoning
on the Android inter-component communication API, and
Type and Effect to statically prevent privilege escalation
attacks on well typed components. In the same line, Sema
uses Formal Verification of security properties in order to
generate a secure code.

When comparing our observations with the security analysis
methods presented in Section II, we found that only some
static ones are adopted by studied plugins. Dynamic and
hybrid approaches are not referred despite their advantages.
We underline this point in detail in Section VI.

3) Security vulnerabilities: The shallow analysis covers all
the vulnerabilities of Appendix [10]. For each category, we
observe whether the associated vulnerabilities are covered (or

not) by the tools. We consider True Positive [TP] (resp. False
Negative [FN]) cases: a vulnerability is present and detected
(resp. not detected) by the tool. We identified three main
classes:

• Tools that are specialised in a specific and unique se-
curity concern were easy to investigate. Based on the
corresponding published papers for the plugins: Curbing,
PermitMe and PerHelper. They are clearly specialised in
detecting privilege escalation attacks (A1) resulting from
the extra use of permissions (V4) in the application. For
other tools such as 9Fix, the list of covered vulnerabilities
was explicitly declared in the related paper. Consequently,
it was easy to know that these tools detect A3.V1
vulnerability. Last but not least, Coconut, FindBug, Page
and PoliDroid−As cover other types of vulnerabilities not
included in our study.

• Tools specialised in detecting a specific type of attacks
but the number of covered vulnerabilities is too large are
less easy to investigate. As an example, Lintent could
theoretically detect a large number of vulnerabilities as it
formalises a notion of safety against privilege escalation.
Based on the related published paper, it was not easy to
decide whether the tool detects the vulnerability or not as
the described formal model was too general. Fortunately,
we found the list of covered vulnerabilities mentioned
in the corresponding git repository [37]. Thus, we found
that A1.V1, A1.V4 and A5.V4 are covered by the tool.
For Sema it is explicitly declared that it covers all the
vulnerabilities present in Ghera. However, we could not
experiment the tool as the inputs of Sema are graphical
storyboards and not source code.

• Finally, for industrial tools such as Androidlint , Sonarlint ,
FixDroid, it was hard to investigate the covered vul-
nerabilities based on the documentation. The scope of
these tools is general and the documentation is too
large. We found that the following vulnerabilities: A2.V1,
A4.V1, A4.V2, A4.V3 are covered by Sonarlint . For the
remaining properties, we did not found any information

51Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

indicating whether they are covered by these tools or not.
4) Design Level: It is broadly admitted that security con-

cerns should be handled as early as possible during the
development. Secure development lifecycle (SDLC) method-
ologies have been adopted by many software organisations,
e.g., Microsoft through their Microsoft Security Development
Lifecycle (SDL) [38], OWASP with their SDLC and Software
Assurance Maturity Model (SAMM) processes [39], etc. Ta-
ble I shows that most tools focus on coding:

• Specification: PoliDoid−AS, Page, Cocunut
• Design: Sema, Vandroid
• Coding & Testing: Curbing, Lintent , PermitMe, Androidlint ,

Vandroid, 9Fix, PerHelper , Sonarlint , FindBugs, FixDroid.
On the one hand, we found that most of IDE plugins are
considered at the coding phase of the development life cycle.
They act as code review tools notifying developers about
their ”unconscious” security issues. On the other hand, a few
works allowing security checks at specification, design and
verification phases have been proposed.

B. Deep analysis results

The objective of this part of our study is to confirm shallow
analysis results with an experimental evaluation using Android
application benchmarks. We mainly focused on the considered
vulnerabilities, especially the A1 (privilege escalation) attacks.
Indeed, we found in CVE details [2], that privilege escalation
witnessed the most significant increase among the Android
security threats in the last couple years. Vulnerabilities related
to Privilege escalation also represent 69.9% of attacks against
Android applications. The results are published in the technical
report [10].

We can observe that the deep evaluation confirmed that
the following tools: Curbing, PermitMe, and PerHelper are
specifically oriented to detect over-privilege vulnerabilities
(A1.V4) and not the other vulnerabilities (A1.V1, A1.V2,
A1.V3, A1.V5). Our deep evaluation also confirmed that
none of the privilege escalation vulnerabilities are covered by
Sonarlint , FindBugs, FixDroid and Androidlint . For tools that
are not available (Vandroid and 9Fix), an additional careful
documentation-based analysis also confirmed that none of the
privilege escalation vulnerabilities is covered.

To conclude, none of the studied tools covers all the privi-
lege escalation attacks and we plan to tackle this limitation.

VI. DISCUSSION

Our analysis study raised some lessons:
• Tools outdatedness and availability: Since the creation

of the first version of Android in 2008, the system
and the framework levels have shown many security
improvements to protect users privacy. A new Android
version is released every six months. As a consequence,
most of the security assisting IDE plugins become out-
dated, and not able to deal anymore with new types
of application components, or new released APIs. Four
factors are of interest when considering outdated tools:
(i) the date of the last commit, (ii) the supported IDE

type, (iii) information leaks, (iv) the integration of the
tools within the last IDE versions. Besides observing that
the date of the last commit for many tools is old, most
tools are still supported by Eclipse only, which is no more
used for developing Android applications. Furthermore,
among the proposed tools, only a few is available for use
in real Android development projects. Hence, among the
14 analysed tools, eight academic tools are not available
for use.

• Tools Effectiveness: Tools such as Lintent , PerHelper,
PermitMe are based on Felt et al. [40] permission mapping
over-privileged applications detection. This permission
mapping is outdated and does not consider an accurate
permission set. Our study shows that none of the assessed
industrial plugin covers over-privilege vulnerabilities.

• Analysis approaches for security: as observed in Sec-
tion II, most tools use static approaches to extract in-
formation that enables to check the validity of security
properties patterns. As a first direction of improvement,
static analysis performances of IDE plugin could be
improved by adopting complementary analysis techniques
such as Symbolic Execution, to allow sound results in
case of inter-component communication analysis. Other
static analysis techniques have started being used by static
analysis tools like SonarQube. The latter tool performs
Static Taint Analysis to detect vulnerabilities related to
fault injection. Finally, we were surprised to observe
that none of the investigated tools takes advantage from
the integrated IDE Android simulator to perform dy-
namic analysis. Adopting dynamic analysis approaches
could be an interesting direction to improve security
IDE plugin analysis results. This enables to analyse API
calls performed dynamically. Furthermore, other dynamic
analysis techniques could be used such as dynamic code
instrumentation to exploit run-time source code, and
fuzzing as a software testing technique for automatic
input generation.

• Benchmark availability and incompleteness: Ghera is an
excellent reference to be used to evaluate the security
analysis plugins that deal with open source projects, as it
implements an open source application with most known
vulnerabilities. However, it suffers from the lack of some
vulnerabilities, such as service hijack. It also suffers from
the lack of a complete description (component hijacking
description). Availability of more relevant benchmarks
could be a real breakthrough towards more thorough
security analysis.

VII. CONCLUSION AND FUTURE WORK

In order to secure Android applications development against
software vulnerabilities, it is necessary to integrate security
in the software development cycle for assisting developers.
In this paper, we provided Android developers an overview
of existing security analysis plugins capabilities with regards
to Android application development. To provide meaningful
and exploitable results, we performed two types of analysis: a

52Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

shallow analysis, then an experimental analysis for evaluating
the selected IDE plugins security coverage against the defined
vulnerabilities. In the empirical part of our study, we mainly
focused our efforts on privilege escalation vulnerabilities as
these ones are among the hardest vulnerabilities to mitigate,
and are related to a complementary research work within our
team. Our study highlighted two main research gaps, which
could benefit from future work such as: the need of developing
tools that cover the whole life-cycle; and enrich the existing
benchmarks by new open source applications implementing
other Android related vulnerabilities.

The main perspectives related to our work will consider:
1) Extending the list of analysed vulnerabilities to better
cover the presented attacks; 2) adding new attacks related
to networking, web and phishing; 3) and completing the
empirical analysis step.

REFERENCES

[1] Global market share held by mobile operating systems since
2009. [Online]. Available: https://www.statista.com/statistics/272698/
global-market-share-held-by-mobile-operating-systems-since-2009/

[2] Cve details: Android vulnerability statistics. Retrv: 12, 2021. [Online].
Available: https://www.cvedetails.com/product/19997/

[3] R. Balebako, A. Marsh, J. Lin, J. I. Hong, and L. Cranor, “The Privacy
and Security Behaviors of Smartphone App Developers,” in USEC
Workshop, NDSS 2014. The Internet Society, 2014.

[4] G. L. Scoccia, A. Peruma, V. Pujols, I. Malavolta, and D. E. Krutz,
“Permission issues in open-source android apps: An exploratory study,”
in 2019 19th International Working Conference on Source Code Analysis
and Manipulation (SCAM). IEEE, 2019, pp. 238–249.

[5] Z. Ahmed and S. C. Francis, “Integrating security with devsecops: Tech-
niques and challenges,” in 2019 International Conference on Digitization
(ICD). IEEE, 2019, pp. 178–182.

[6] A. K. Jha, S. Lee, and W. J. Lee, “Developer mistakes in writing
android manifests: An empirical study of configuration errors,” in 2017
IEEE/ACM 14th International Conference on Mining Software Reposito-
ries (MSR). IEEE, 2017, pp. 25–36.

[7] T. Vidas, N. Christin, and L. Cranor, “Curbing android permission
creep,” in Proceedings of the Web 2.0 Security and Privacy 2011 work-
shop (W2SP 2011), 2021.

[8] W. Ahmad, C. Kästner, J. Sunshine, and J. Aldrich, “Inter-app com-
munication in android: Developer challenges,” in 2016 IEEE/ACM 13th
Working Conference on Mining Software Repositories (MSR). IEEE,
2016, pp. 177–188.

[9] Ghera repository. Retrv: 07, 2022. [Online]. Available: https:
//bitbucket.org/secure-it-i/android-app-vulnerability-benchmarks/

[10] “Ide plugins evaluation against privileges escalation attacks,” TR-
2022. [Online]. Available: https://uncloud.univ-nantes.fr/index.php/s/
mzwoC44xs5xiowN

[11] J. Li, S. Beba, and M. M. Karlsen, “Evaluation of open-source ide
plugins for detecting security vulnerabilities,” in Proceedings of the
Evaluation and Assessment on Software Engineering, 2019, pp. 200–209.

[12] A. Z. Baset and T. Denning, “Ide plugins for detecting input-validation
vulnerabilities,” in 2017 IEEE Security and Privacy Workshops (SPW).
IEEE, 2017, pp. 143–146.

[13] J. Mejı́a, P. Maciel, M. Muñoz, and Y. Quiñonez, “Frameworks to
develop secure mobile applications: A systematic literature review,” in
World Conference on Information Systems and Technologies. Springer,
2020, pp. 137–146.

[14] V.-P. Ranganath and J. Mitra, “Are free android app security analysis
tools effective in detecting known vulnerabilities?” Empirical Software
Engineering, vol. 25, no. 1, pp. 178–219, 2020.

[15] Android references. Retrv: 03, 2022. [Online]. Available: https:
//github.com/impillar/AndroidReferences

[16] Android security assessment tools. Retrv: 09, 2021. [Online]. Available:
https://bitbucket.org/secure-it-i/android-app-vulnerability-benchmarks/

[17] Owasp - source code analysis tools. Retrv: 03, 2022. [Online]. Available:
https://owasp.org/www-community/Source Code Analysis Tools

[18] M. E. A. Tebib, P. André, O.-E.-K. Aktouf, and M. Graa, “Assisting
developers in preventing permissions related security issues in an-
droid applications,” in European Dependable Computing Conference.
Springer, 2021, pp. 132–143.

[19] S. Liang, A. W. Keep, M. Might, S. Lyde, T. Gilray, P. Aldous, and
D. Van Horn, “Sound and precise malware analysis for android via
pushdown reachability and entry-point saturation,” in Proceedings of the
Third ACM workshop on Security and privacy in smartphones & mobile
devices, 2013, pp. 21–32.

[20] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou,
and P. Liu, “Finding unknown malice in 10 seconds: Mass vetting
for new threats at the {Google-Play} scale,” in 24th USENIX Security
Symposium (USENIX Security 15), 2015, pp. 659–674.

[21] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in android,” in Proceedings of the 9th inter-
national conference on Mobile systems, applications, and services, 2011,
pp. 239–252.

[22] I. Ul Haq and T. A. Khan, “Penetration frameworks and development
issues in secure mobile application development: A systematic literature
review,” IEEE Access, 2021.

[23] Pmd-idea. Retrv: 03, 2022. [Online]. Available: https://plugins.jetbrains.
com/plugin/4596-qaplug--pmd

[24] M. Bugliesi, S. Calzavara, and A. Spanò, “Lintent: Towards security
type-checking of android applications,” in Formal techniques for dis-
tributed systems. Springer, 2013, pp. 289–304.

[25] E. Bello-Ogunu and M. Shehab, “Permitme: integrating android per-
missioning support in the ide,” in Proceedings of the 2014 Workshop on
Eclipse Technology eXchange, 2014, pp. 15–20.

[26] M. Rowan and J. Dehlinger, “Encouraging privacy by design concepts
with privacy policy auto-generation in eclipse (page),” in Proceedings of
the 2014 Workshop on Eclipse Technology eXchange, 2014, pp. 9–14.

[27] A. Nirumand, B. Zamani, and B. T. Ladani, “Vandroid: A framework
for vulnerability analysis of android applications using a model-driven
reverse engineering technique,” Softw. Pract. Exp., vol. 49, no. 1, pp.
70–99, 2019. [Online]. Available: https://doi.org/10.1002/spe.2643

[28] Improve your code with lint checks. Retrv: 03, 2022. [Online].
Available: https://developer.android.com/studio/write/lint

[29] J. Mitra, V.-P. Ranganath, T. Amtoft, and M. Higgins, “Sema: Extending
and analyzing storyboards to develop secure android apps,” arXiv
preprint arXiv:2001.10052, 2020.

[30] G. Xu, S. Xu, C. Gao, B. Wang, and G. Xu, “Perhelper: Helping
developers make better decisions on permission uses in android apps,”
Applied Sciences, vol. 9, no. 18, p. 3699, 2019.

[31] R. Slavin, X. Wang, M. B. Hosseini, J. Hester, R. Krishnan, J. Bhatia,
T. D. Breaux, and J. Niu, “Toward a framework for detecting privacy
policy violations in android application code,” in Proceedings of the 38th
International Conference on Software Engineering, 2016, pp. 25–36.

[32] A.-D. Tran, M.-Q. Nguyen, G.-H. Phan, and M.-T. Tran, “Security
issues in android application development and plug-in for android studio
to support secure programming,” in International Conference on Future
Data and Security Engineering. Springer, 2021, pp. 105–122.

[33] Sonarlint ide extension for code security. [Online]. Available:
https://www.sonarlint.org/

[34] Findbugs-idea. Retrv: 02, 2022. [Online]. Available: https://plugins.
jetbrains.com/plugin/3847-findbugs-idea

[35] T. Li, Y. Agarwal, and J. I. Hong, “Coconut: An ide plugin for de-
veloping privacy-friendly apps,” Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, vol. 2, no. 4, pp. 1–35,
2018.

[36] D. C. Nguyen, D. Wermke, Y. Acar, M. Backes, C. Weir, and S. Fahl,
“A stitch in time: Supporting android developers in writingsecure code,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 1065–1077.

[37] Lintent: Towards security type-checking of android applications. Retrv:
03, 2022. [Online]. Available: https://github.com/alvisespano/Lintent

[38] Explore the microsoft security sdl practices. Retrv: 04, 2022. [Online].
Available: https://www.microsoft.com/en-us/securityengineering/sdl

[39] Software assurance maturity model. Retrv: 04, 2022. [Online].
Available: https://owasp.org/www-project-samm/

[40] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM conference
on Computer and communications security, 2011, pp. 627–638.

53Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

