
Unsupervised Graph Contrastive Learning with Data Augmentation for

Malware Classification

Yun Gao
Graduate School of Informatics

Nagoya University
Nagoya, Japan

email:gaoyun@net.itc.nagoya-u.ac.jp

Hirokazu Hasegawa
Center for Strategic Cyber Resilience

Research and Development
National Institute of Informatics

Tokyo, Japan
email:hasegawa@nii.ac.jp

Yukiko Yamaguchi
Information Technology Center

Nagoya University
Nagoya, Japan

email:yamaguchi@itc.nagoya-u.ac.jp

Hajime Shimada
Information Technology Center

Nagoya University
Nagoya, Japan

email:shimada@itc.nagoya-u.ac.jp

Abstract—Traditional malware detection methods struggle to
quickly and effectively keep up with the massive amount of newly
created malware. Based on the features of samples, machine
learning is a promising method for the detection and classification
of large-scale, newly created malware. The current research trend
uses machine-learning technologies to rapidly and accurately
learn newly created malware. In this paper, we propose a
malware classification framework based on Graph Contrastive
Learning (GraphCL) with data augmentation. We first extract
the Control-Flow Graph (CFG) from portable executable (PE)
files and simultaneously generate node feature vectors from
the disassembly code of each basic block through MiniLM, a
large-scale pre-trained language model. Then four different data
augmentation methods are used to expand the graph data, and
the final graph representation is generated by the GraphCL
model. These representations can be directly applied to down-
stream tasks. For our classification task, we use C-Support Vector
Classification (SVC) as a classification model. To evaluate our
approach, we made a CFG-based malware classification dataset
from the PE files of the BODMAS Malware Dataset, which
we call the Malware Geometric Multi-Class Dataset (MGD-
MULTI), and collected the results. The evaluation results show
that our proposal achieved Micro-F1 scores of 0.9975 and Macro-
F1 scores of 0.9976. According to our experimental evaluation,
the unsupervised learning approach outperformed the supervised
learning approach in Graph Neural Networks based on malware
classification.

Keywords—malware classification; graph contrastive learning;
data augmentation; unsupervised learning

I. INTRODUCTION

Fueled by the progress of software technology and the
internet’s development, thousands of malware are created
every day due to the proliferation of malware creation and
obfuscation tools. Such a massive flood of data poses a con-
siderable challenge to malware analysts and security response
centers (SOCs). Traditional malware detection methods cannot
continue to quickly and effectively detect such a massive
amount of newly created malware. In past decades, machine
learning has played an important role in information security,

especially in malware detection and classification tasks. It is
also a promising method to detect and classify large-scale
newly created malware using the features of samples.

In the field of static malware detection, the feature extraction
method of portable executable (PE) files used in the Endgame
Malware Benchmark for Research (EMBER) dataset [1] has
been widely applied. This feature extraction method directly
provides consistent feature vectors to researchers, allowing
individuals in the same field to compare their respective pro-
posed methods. The information related to software structure,
such as the Control-Flow Graph (CFG), is rarely extracted,
and most methods are based on surface analysis for extracting
statistical information as features. In addition, in most malware
detection and classification scenarios, the model is supervised
for end-to-end training.

Supervised learning requires manual labeling of a large
amount of data, and the model effect depends on the quality
of the labels. Therefore, the future research trend, which is ex-
ploring unsupervised learning methods, is critical for malware
detection and classification. In recent years, Graph Neural
Networks (GNNs) have made remarkable progress. We can
exploit their powerful representation ability to better represent
malware and improve the effectiveness of its detection and
classification. However, one remaining difficulty is how to
represent malware in graphical form. Since CFG is a natural
graph structure, we can generate the graph structure data of
malware by extracting CFG. Therefore, we seek to classify
malware by constructing a graph dataset and using unsuper-
vised learning. Since no publicly available graph classification
dataset exists for malware classification, we started by creating
such a dataset.

Our contributions can be summarized as follows:
• We propose a malware classification framework based on

graph contrastive learning under unsupervised learning.
• We retain the structural information of the samples ex-

tracted from CFG and embed the text features of each

41Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

node with a pre-trained language model.
• We create a special graph dataset for malware classifica-

tion that can be used directly on GNNs.
• Our pre-trained model can effectively perform a low-

dimensional representation of malware with which a
variety of downstream tasks can be performed. We have
achieved good results on malware family classification
tasks.

The remainder of this paper is organized as follows. Section
II reviews related researches and highlights their methodolog-
ical differences. In Section III, we discuss the principles of
our proposed data augmented GraphCL-based static malware
PE classification system and its application to malware classi-
fication. In Section IV, we briefly discuss the implementation
details of our proposal. In Section V, we describe the cor-
responding experiments and evaluate their feasibility as well
as the advantages and limitations of our proposal. Finally, we
discuss our conclusion and describe future work in Section
VI.

II. RELATED WORK

Static malware detection allows a sample to be classified as
malicious or benign without executing it. In contrast, dynamic
malware detection is based on its runtime behavior and as well
as its analysis, including time-dependent system call sequences
[2]–[4]. Although static detection is not generally deterministic
[5], its advantages are also evident over dynamic detection,
which can identify malicious files before the samples are ex-
ecuted. Since 1995, various machine-learning-based methods
for static PE malware detection have been proposed [6]–[8].

A. Supervised-learning-based Methods

Saxe used histograms through byte-entropy values as input
features and multilayer neural networks for classification [7].
Raff et al. showed that fully connected and recursive networks
can be applied to malware detection problems [9]. They also
used the raw bytes of PE files and built end-to-end deep
learning networks [8]. Chen proposed robust PDF malware
classifiers with verifiable robustness properties [10]. Coull
explored malware detection byte-based deep neural network
models to learn more about malware and examined the learned
features at multiple levels of resolution, from individual byte
embeddings to the end-to-end analysis of models [11]. Rudd
proposed ALOHA, which uses multiple additional optimiza-
tion objectives to enhance the model, including multi-source
malicious/benign loss, count loss on multi-source detections,
and semantic malware attribute tag loss [12].

B. Supervised Graph Classification

Graph classification assigns a label to each graph to map
the graph to the vector space. A graph kernel is dominant in
history. It uses the kernel function to measure the similarity
between graph pairs and maps graphs to a vector space with
a mapping function. In the context of graph classification,
GNNs often employ readout operations to obtain a compact

representation at the graph level. GNNs have attracted a lot of
attention and demonstrated amazing results in this task.

The Dynamic Graph Convolutional Neural Network [13]
(DGCNN) uses K nearest neighbors (KNN), builds a subgraph
for each node based on the node’s features, and applies
a graph convolution to the reconstructed graph. The Graph
Isomorphism Network (GIN) [14] presents a GIN that adjusts
the weights of the central nodes by learning, theoretically
analyzes the GIN’s expressiveness better than such GNN
structures as the Graph Convolutional Network (GCN), and
achieves state-of-the-art accuracy on multiple tasks.

C. Unsupervised Graph Classification

Graph2vec [15] uses a set of all the rooted subgraphs around
each node as its vocabulary through a skip-gram training
process. Infograph [16] applies contrastive learning to graph
learning, which is carried out in an unsupervised manner by
maximizing the mutual information between graph-level and
node-level representations.

Recently, contrast learning has received much attention. It
has also been applied in the field of malware detection and
classification. Yang presented a novel system called CADE,
which can detect drifting samples that deviate from existing
classes, and explained detected drift [17]. EVOLIoT [18] is a
novel approach that combats “concept drift” and the limitations
of inter-family IoT malware classification by detecting drifting
IoT malware families and examining their diverse evolutionary
trajectories. This robust and effective contrastive method learns
and compares semantically meaningful representations of IoT
malware binaries and codes without expensive target labels.

III. PROPOSED DATA AUGMENTED GRAPHCL-BASED
STATIC MALWARE PE CLASSIFICATION

Our proposal is a data augmented GraphCL-based static
malware PE classification framework, which can obtain a
graph-level representation from malware. We directly extract
malware CFG from PE files and through graph contrastive
learning obtain a representation of the malware with a vec-
tor notation. Finally, malware representations can be per-
formed downstream for various tasks. Graph-level representa-
tion shows good performance on malware classification tasks.
Next we scrutinize the framework.

A. Raw Graph Generation

To train the GNNs, we need to produce graph datasets, and
the main task of this module is to convert PE files into raw
graphs. The overview of raw graph generation is shown in Fig.
1.

1) CFG Structure and Disassembly Code: First, the CFG
information is extracted from the original PE file samples,
the structure information of the basic blocks is retained, and
the disassembly code of each basic block is extracted. Each
basic block of CFG has a corresponding disassembly code,
and the relationship between each basic block is directional.
Disassembly codes need to be transformed into feature vectors
of specific dimensions to train GNNs. Since the malware CFG

42Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

Graph Notation of PE File

PE File

Generating PE File Feature with Graph Notation

Pr
e-

tra
in

ed

La
ng

ua
ge

 M
od

el
M

in
iL

M

push \t ebp \n ... jle \t 0x41b031
push ebp
mov ebp, esp
push ecx
mov eax, dword ptr [ebp + 0xc]
push edi
test eax, eax
mov dword ptr [ebp - 4], 0xffffffff
jle 0x41b031

......

......

Basic Block1

Basic Block2

Basic Block4

............

Basic Block3

Basic Block5

Assembly Code1

Assembly Code2

Assembly Code3

Assembly Code4

Assembly Code5

......

Figure 1. Raw graph generation for proposal

is usually a very large graph, extracting the CFG is very
time consuming. Since the disassembly code in each basic
block of CFG contains rich semantic information, we need to
completely exploit that information and suitably embed it, for
example, using a large pre-trained language model.

2) Pre-trained Language Model MiniLM: MiniLM is a
method released by Microsoft based on reducing large-scale
transformer pre-trained models into smaller models [19]. This
Deep Self-Attention Distillation (DSAD) method uses large-
scale data for pre-training. The model we use is called “all-
MiniLM-L12-v2,” which has a 1-billion-sized training set and
is designed as a general-purpose model. MiniLM model is a
12-layer transformer with a 384 hidden size and 12 attention
heads that contain about 33 M parameters. It maps sentences
and paragraphs to a 384-dimensional dense vector space and
can be used for tasks like clustering or semantic search. This
model is the fastest generation of related studies and still
provides good quality. In this step, a 384-dimensional dense
vector is generated for each CFG node using the pre-trained
model. This vector is added to the corresponding nodes of
the directed graph to generate complete graph data with node
feature vectors. These directed graphs are used as our raw
graph data.

B. Data Augmentation for Graphs

We used the following four data augmentation methods. As
shown in Fig. 2, our proposal uses two of them. The best
combination is explored in Section 5.

1) Node Dropping: Randomly discard some parts of the
vertex and its connections. The missing parts of the vertices
do not affect the semantic meaning of the graph, and so the
learned representation is consistent under the disturbance of
nodes. The dropping probability of each node follows a default
Bernoulli uniform distribution (or any other distribution).

2) Edge Perturbation: Randomly add or remove a certain
ratio of edges so that the learned representation is consistent
under edge perturbation. The prior information of the represen-
tation is that adding or removing some edges does not affect
the semantics of the graph. The dropping probability of each
node follows a default Bernoulli uniform distribution. We only
used Edge Removing in this evaluation.

3) Attribute Masking: Randomly removing the attribute
information of some nodes motivates the model to use other

information to reconstruct the masked node attributes. The
masking probability of each node feature dimension follows
a default uniform distribution. We only used simple Feature
Masking.

4) Subgraph Sampling: Use random walk subgraph sam-
pling [20] to extract subgraphs from the original graph. The
basic assumption is that a graph’s semantic information can
be preserved in its local structure.

Table I overviews the data augmentation for graphs. The
default augmentation (dropping, perturbation, masking) ratio
is set to 0.1, and the walk length is set to 10.

TABLE I. OVERVIEW OF DATA AUGMENTATION FOR GRAPHS

Data Augmentation Type Default Setting
Node Dropping Nodes, edges Bernoulli distribution (ratio = 0.1)

Edge Perturbation Edges Bernoulli distribution (ratio = 0.1)
Attribute Masking Nodes Uniform distribution (ratio = 0.1)

Subgraph Sampling Nodes, edges Random Walk (length = 10)

C. Graph Contrastive Learning

Motivated by recent developments in graph contrast learn-
ing, we propose a graph contrast learning framework for
malware classification. As shown in Fig. 2, in graph contrast
learning, pre-training is performed by maximizing the agree-
ment between two augmented views of the same graph by
contrast loss in the potential space. The framework consists
of the following four main components:

1) Graph Data Augmentation: Throughout the GraphCL
framework, given graph data G, two related augmented graphs,
Ĝi, Ĝj , are generated as positive sample pairs by data augmen-
tation.

2) GIN-based Encoder: GIN-based encoder f(·) is used
to generate graph-level vector representation. There are three
layers in the GIN-based encoder, and the hidden layer has 64
dimensions. Through the readout function, the embedding of
all the nodes is summed to obtain initial graph representation
hi, hj for augmented graphs Ĝi, Ĝj . Graph contrast learning
does not apply any constraint to the GIN-based encoder.

3) Projection Head: Nonlinear transformation g(·), called
a projection head, maps the augmented representations to
another latent space. Contrast loss is computed in the latent
space, and zi, zj are obtained by applying a two-layer percep-
tron (MLP).

43Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

Drop Node

Remove Edge Add Edge

Graph-level representation

Final representation

Malware Graph Contrastive Learning Framework

Node Feature

Augmentation2

Augmentation1

Projection Head

Projection Head

Maximize Agreement
NT-Xent Loss

Shared GIN-Based Encoder

Node Dropping

Edge Perturbation

Graph Notation of PE File

Figure 2. Proposed malware graph contrastive learning framework for graph representation generation

4) Contrastive Loss Function: Contrastive loss function
L(·) is defined to enforce the maximum consistency between
positive pairs zi, zj and negative pairs. Here we exploit the
normalized temperature-scale cross-entropy loss (NT-Xent)
[21] [22] and obtain a graph-level final representation of zG.

D. Graph Classification

By pre-training with GraphCL, we can obtain a valid graph
representation zG. To further verify the effectiveness of our
method, different classification models can be chosen for the
process, such as random forest, logistic regression, SVM,
etc. We chose C-Support Vector Classification (SVC) as the
algorithm to validate our pre-trained model’s effectiveness.

IV. IMPLEMENTATION DETAILS

We verified the effectiveness of our proposed contrastive
learning framework by implementing it with open-source
libraries. The implementation details are introduced in this
section.

A. Malware Geometric Multi-Class Dataset

1) PE Files Source: Our PE file sample was obtained from
the BODMAS Malware Dataset [23]. The software types of
all the PE file samples used in our dataset are executable
files under an x86-architecture Windows platform without any
Dynamic Link Library (DLL) type.

2) Dataset Description: From the BODMAS dataset, we
selected eight families of malware and took 500 samples
from each family, for a total of 4000 samples in our dataset.
Our dataset is named MGD-MULTI. The malware family
distribution information is shown in Table II.

Due to the difficulty of collecting benign samples and the
imbalanced data problem, we did not include white samples
in our multi-class dataset. In our previous malware detec-
tion work [24], the MGD-BINARY dataset contained benign
samples. We used almost the same GIN model to represent
the PE samples, with a slightly different operation of the
READOUT layer this time compared to the GIN model in

TABLE II. MALWARE FAMILY DISTRIBUTION OF MGD-MULTI

Family Name Category Name Origin Count Selected Count Graph Data Size
sfone worm 4729 500 3.2 GB
upatre trojan 3901 500 879.4MB
wabot backdoor 3673 500 4.1 GB

benjamin worm 1071 500 263.1MB
musecador trojan 1054 500 1.5 GB

padodor backdoor 655 500 2.9 GB
gandcrab ransomware 617 500 6.6 GB
dinwod dropper 509 500 3.3 GB
Total - 16209 4000 22.7 GB

our previous work, giving the final representation a higher
vector dimensionality. Based on our previous research, we
believe that the GIN model can effectively distinguish benign
samples from malicious ones. In future work, we will add
benign samples to our dataset.

Among the different types of malware, we chose families
that are more common and have a relatively large number in
BODMAS. Due to some limitations of the CFG extraction tool
for the PE files we used, many samples couldn’t be recognized,
causing extraction failure. In addition, for large PE file sam-
ples, the process of extracting CFG is very time-consuming.
Since the extraction of some samples will fail, we selected a
family with more than 500 samples in BODMAS and relatively
small original PE files. We further improved the efficiency
by only selecting successful samples whose total extraction
time is less than 20 seconds in which the total extraction
time includes the time of the feature vectors generated by the
pre-trained language model. We finally got our MGD-MULTI
whose extracted graph data statistical information is shown in
Table III.

TABLE III. GRAPH STATISTICS OF MGD-MULTI

Dataset # Graphs #Classes #Features Avg. #Nodes Avg. #Edges
MGD-MULTI 4000 8 384 3861.75 5494.82

3) Dataset Splitting: We split 4000 pieces of data in MGD-
MULTI into training, validation, and testing sets of 50%, 20%,

44Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

and 30%, respectively. Since the results of the validation set
and the test are similar, only the test set results are shown.

4) Pre-trained Language Model MiniLM: SentenceTrans-
formers is a python framework for state-of-the-art sentence,
text, and image embeddings. The initial work was described
in a paper from the Sentence-Bidirectional Encoder Represen-
tations from Transformers (Sentence-BERT) [25]. We used the
MiniLM model provided by the SentenceTransformers library
with the model name, all-MiniLM-L6-v2. The model details
used in this paper are shown in Table IV.

TABLE IV. PRE-TRAINED MINILM MODEL DETAILS

Name all-MiniLM-L12-v2
Base Model microsoft/MiniLM-L12-H384-uncased

Max Sequence Length 256
Dimensions 384

Normalized Embeddings true
Size 120 MB

Pooling Mean Pooling
Training Data 1B+ training pairs

5) Graph Contrastive Learning: PyGCL [26] is a PyTorch-
based open-source Graph Contrastive Learning (GCL) library,
which features modularized GCL components from published
papers, standardized evaluation, and experiment management.
The batch size of all the experiments is 128, and the optimizer
is Adam with a learning rate of 0.0001.

V. EVALUATION AND DISCUSSION

In this section, we apply the GraphCL model and discuss
the experiment results and limitations of our method.

A. Evaluation Metric

We used the following evaluation metrics to assess the
performance of our proposed models:

• The Micro-averaged F1 score is defined as the harmonic
mean of the precision and recall:

MicroF1-score = 2× Micro-Precision × Micro-Recall
Micro-Precision + Micro-Recall

• The Macro-averaged F1 score is defined as the mean
of the class-wise/label-wise F1-scores:

MacroF1-score =
1

N

i=0∑
N

F1-scorei

where i is the class/label index and N is the number of
classes/labels.

B. Evaluation Results

Next we apply the GraphCL model and discuss the experi-
ment results of our method.

1) Different Data Augmentation Combination Results: We
selected five different data augmentation methods: Identical
(I), Edge Removing (ER), Node Dropping (ND), Feature
Masking (FM), and Random Walk Subgraph (RWS). To
compare the different data augmentation approaches on the
GraphCL model, we used both data augmentation approaches
for the input graph itself (Identical + Identical) as the GraphCL

model baseline. We also tried different combinations of data
augmentation, such as ER and ND, FM and ND, FM and
ER, RWS and ER, RWS and ND, and RWS and FM. The
experimental results are shown in Table V. The best two data
augmentation combinations were RWS and FM. We obtained
the best Micro-F1 (0.9958) and Macro-F1 (0.9959).

TABLE V. DIFFERENT AUGMENTATION COMBINATIONS

Method (+SVC) Augmentation1 Micro-F1 Macro-F1
GraphCL I + I 0.9883 0.9883
GraphCL ER + ND 0.9925 0.9924
GraphCL FM + ND 0.9942 0.9942
GraphCL FM + ER 0.9942 0.9942

GraphCL RWS2+ ER 0.9950 0.9949
GraphCL RWS + ND 0.9950 0.9949
GraphCL RWS + FM 0.9958 0.9959

1 Default ratio setting is 0.1.
2 RWS uses a default walk length setting of 10.

2) Best Combination with Different Ratio Results: In the
previous set of experiments, we found that the best data
augmentation combination is RWS + FM. Based on this
combination, we also investigated the results on different ratios
on the FM side, and the FM results on different ratios are
shown in Table VI.

TABLE VI. BEST COMBINATION WITH DIFFERENT RATIO RESULTS

Method (+SVC) Augmentation (Ratio) Micro F1 Macro F1
GraphCL RWS1+ FM (0.1) 0.9958 0.9959
GraphCL RWS + FM (0.2) 0.9967 0.9967
GraphCL RWS + FM (0.3) 0.9975 0.9976
GraphCL RWS + FM (0.4) 0.9958 0.9958
GraphCL RWS + FM (0.5) 0.9942 0.9941

1 RWS uses a default walk length setting of 10.

3) Comparison of Different Methods: Our previous studies
focused on supervised learning. This study is a graph con-
trastive learning method in an unsupervised setting. Baseline
1 is a direct graph-level encoding of an input graph using GIN
as an encoder, and then the embedding effect is evaluated using
SVC. Baseline 2 is data augmentation using the input graph
itself. Baseline 3 is our previous work [24] on graph classifica-
tion, trained using the GIN model in a supervised setting, with
a two-layer MLP directly connected after the readout layer
for direct classification. A comparison of different methods is
shown in Table VII. GraphCL with a setting of RWS + FM
(0.3) achieved the best classification results.

TABLE VII. COMPARISON OF DIFFERENT METHODS

Name Method Type Micro-F1 Macro-F1
Baseline 1 GIN-Encoder + SVC U1 0.9617 0.9620
Baseline 2 GraphCL (I + I) + SVC U 0.9883 0.9883

Baseline 3 GIN + MLP (Previous work [24]) S2 0.9958 0.9957
Proposal GraphCL (RWS + FM 0.3) + SVC U 0.9975 0.9976
1 U denotes unsupervised learning.
2 S denotes supervised learning.

We used t-SNE technology to visualize the embedding
of Baseline 1 and our proposed method. As shown in Fig.
3, the method of Baseline 1 has already clustered some

45Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

75 50 25 0 25 50 75
80

60

40

20

0

20

40

60

80

sfone
upatre

wabot
benjamin

musecador
padodor

gandcrab
dinwod

(a) Baseline 1: GIN-Encoder + SVC

60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

80

sfone
upatre

wabot
benjamin

musecador
padodor

gandcrab
dinwod

(b) Proposal: GraphCL (SS+FM 0.3)

Figure 3. t-SNE visualization of Baseline 1 and Proposal

categories, such as the malware of the “padodor” family, but it
cannot cluster the “gandcrab” family well. On the other hand,
our comparative learning model proposal can better cluster
different categories in the eight classes, and a large distance
between different categories is maintained.

C. Current Limitations

GraphCL (I + I) is a combination of two Identical, and
the effect is equivalent to turning a training set of N samples
into 2N samples. The same data model is learned twice for
the same data, so the obtained result naturally outperforms
GIN-Encoder. The RWS + FM method is most effective
because neither method changes the structural information of
the original graph. The RWS method samples a subgraph that
is smaller than the structure of the original graph, but still
retains most of the original graph’s structure. For the FM
method, the original graph structure is not changed at all, but
the values of some dimensions of the node feature vectors
are masked, which makes the node features more robust. On
the contrary, the other two methods (ER and ND) change the
original graph structure more, so the results are lowered.

Because of the relatively large graph structure we extracted
from the PE file and the high dimensionality of the nodes in
each graph (384 dimensions), our result still leads to a slow
training of the GraphCL model even though the dataset size
is not too large, only 4000 pieces of data.

The training stage requires around ten minutes with GeForce
RTX 3090. We desire a better way to generate node features,
such as a lower dimensional in a method that retains its
effectiveness.

VI. CONCLUSION

We proposed the unsupervised learning of different families
of malware using graph comparison learning and the multi-
classification of learned vectors using SVC and obtained good

results. We extracted the CFG of the malware, embedded the
disassembly code in a basic block through a large pre-trained
language model MiniLM, and obtained a directed graph with
node features. The advantage of a directed graph is that it
contains the call structure information of the sample in addi-
tion to the features of each node. We also produced a multi-
classification dataset: MDG-MULTI. Unsupervised GraphCL-
based malware classification methods have surpassed graph-
based supervised learning methods, such as the Graph Isomor-
phism Network (GIN) for graph classification. In future work,
we will shift our focus to unsupervised learning.

ACKNOWLEDGMENTS

This research was partially supported by MEXT/JSPS
KAKENHI, Grant Numbers JP19H04108 and 19K11961, and
financially supported by JST SPRING, Grant Number JP-
MJSP2125. We also thank the “Interdisciplinary Frontier Next-
Generation Researcher Program of the Tokai Higher Education
and Research System.”

46Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

REFERENCES

[1] H. S. Anderson and P. Roth, “EMBER: an open dataset for training static
PE malware machine learning models,” CoRR, vol. abs/1804.04637,
pp. 1–8, 2018.

[2] B. Athiwaratkun and J. W. Stokes, “Malware classification with LSTM
and GRU language models and a character-level CNN,” ICASSP 2017,
pp. 2482–2486, 2017.

[3] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu, “Large-scale malware
classification using random projections and neural networks,” ICASSP
2013, pp. 3422–3426, 2013.

[4] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and A. Thomas,
“Malware classification with recurrent networks,” ICASSP 2015,
pp. 1916–1920, 2015.

[5] F. Cohen, “Computer Viruses: Theory and Experiments,” Computers &
security, Vol. 6, No. 1, pp. 22–35, 1987.

[6] J. O. Kephart, G. B. Sorkin, W. C. Arnold, D. M. Chess, G. Tesauro,
and S. R. White, “Biologically Inspired Defenses Against Computer
Viruses,” IJCAI 1995, Vol. 2, pp. 985–996, 1995.

[7] J. Saxe and K. Berlin, “Deep neural network based malware detection
using two dimensional binary program features,” MALWARE 2015,
pp. 11–20, 2015.

[8] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. K.
Nicholas, “Malware Detection by Eating a Whole EXE,” AAAI Work-
shops 2018, pp. 268–276, 2018.

[9] E. Raff, J. Sylvester, and C. Nicholas, “Learning the PE Header,
Malware Detection with Minimal Domain Knowledge,” AISec@CCS
2017, pp. 121–132, 2017.

[10] Y. Chen, S. Wang, D. She, and S. Jana, “On Training Robust PDF
Malware Classifiers,” USENIX Security 2020, pp. 2343–2360, 2020.

[11] S. E. Coull and C. Gardner, “Activation Analysis of a Byte-Based
Deep Neural Network for Malware Classification,” SP Workshops 2019,
pp. 21–27, 2019.

[12] E. M. Rudd, F. N. Ducau, C. Wild, K. Berlin, and R. E. Harang,
“ALOHA: Auxiliary Loss Optimization for Hypothesis Augmentation,”
USENIX Security 2019, pp. 303–320, 2019.

[13] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic Graph CNN for Learning on Point Clouds,” ACM
Transactions on Graphics (TOG), Vol. 38, Issue 5, pp. 1–12, 2019.

[14] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?,” in Proceedings of the 7th International Conference
on Learning Representations (ICLR 2019), pp. 1–17, 2019.

[15] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu,
and S. Jaiswal, “graph2vec: Learning Distributed Representations of
Graphs,” CoRR, vol. abs/1707.05005, pp. 1–8, 2017.

[16] F. Sun, J. Hoffmann, V. Verma, and J. Tang, “Infograph: Unsupervised
and semi-supervised graph-level representation learning via mutual
information maximization,” in Proceedings of the 8th International
Conference on Learning Representations (ICLR 2020), pp. 1–16, 2020.

[17] L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing, and
G. Wang, “CADE: Detecting and Explaining Concept Drift Samples for
Security Applications,” USENIX Security 2021, pp. 2327–2344, 2021.

[18] M. Dib, S. Torabi, E. Bou-Harb, N. Bouguila, and C. Assi, “Evoliot:
A self-supervised contrastive learning framework for detecting and
characterizing evolving iot malware variants,” in Proceedings of ASIA
CCS ’22: ACM Asia Conference on Computer and Communications
Security, pp. 452–466, 2022.

[19] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou, “MiniLM:
Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-
Trained Transformers,” CoRR, vol. abs/2002.10957, pp. 1–15, 2020.

[20] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 855–864,
2016.

[21] A. van den Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” CoRR, vol. abs/1807.03748, pp. 1–13,
2018.

[22] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph
contrastive learning with augmentations,” CoRR, vol. abs/2010.13902,
pp. 1–12, 2020.

[23] L. Yang, A. Ciptadi, I. Laziuk, A. Ahmadzadeh, and G. Wang, “BOD-
MAS: An Open Dataset for Learning based Temporal Analysis of PE
Malware,” DLS 2021, pp. 78–84, 2021.

[24] Y. Gao, H. Hasegawa, Y. Yamaguchi, and H. Shimada, “Malware
detection using attributed cfg generated by pre-trained language model
with graph isomorphism network,” in Proceedings of the 12th IEEE
International Workshop on Network Technologies for Security, Admin-
istration and Protection (NETSAP 2022), pp. 1495–1501, 2022.

[25] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks,” CoRR, vol. abs/1908.10084, pp. 1–11,
2019.

[26] Y. Zhu, Y. Xu, Q. Liu, and S. Wu, “An empirical study of graph
contrastive learning,” CoRR, vol. abs/2109.01116, pp. 1–25, 2021.

47Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

	Introduction
	Related Work
	Supervised-learning-based Methods
	Supervised Graph Classification
	Unsupervised Graph Classification

	Proposed Data Augmented GraphCL-Based Static Malware PE Classification
	Raw Graph Generation
	CFG Structure and Disassembly Code
	Pre-trained Language Model MiniLM

	Data Augmentation for Graphs
	Node Dropping
	Edge Perturbation
	Attribute Masking
	Subgraph Sampling

	Graph Contrastive Learning
	Graph Data Augmentation
	GIN-based Encoder
	Projection Head
	Contrastive Loss Function

	Graph Classification

	Implementation Details
	Malware Geometric Multi-Class Dataset
	PE Files Source
	Dataset Description
	Dataset Splitting
	Pre-trained Language Model MiniLM
	Graph Contrastive Learning

	Evaluation and Discussion
	Evaluation Metric
	Evaluation Results
	Different Data Augmentation Combination Results
	Best Combination with Different Ratio Results
	Comparison of Different Methods

	Current Limitations

	Conclusion
	References

