
Longitudinal Study of Persistence Vectors (PVs) in Windows Malware:
Evolution, Complexity, and Stealthiness

Nicholas Phillips
Department of Computer and Information Sciences

Towson University
nphill5@students.towson.edu

Aisha Ali-Gombe
Division of Computer Science and Engineering

Louisiana State University
aaligombe@lsu.edu

Abstract—Malware is the driving force for most cyber-attacks
and, in recent years, has continued to be one of the most
challenging threats facing our cyber infrastructure. Modern
malware’s adaptive design often leverages complex and evolv-
ing technologies to overcome various detection and preventive
security tools. One of these techniques is Persistence - an ability
to survive on victim systems past the current power cycle. The
persistence vector allows the malware to live on host machines
without detection. Thus, this paper conducts a longitudinal study
and characterization of Windows malware Persistence Vectors
(PVs) across more than 1000 malware samples. We explored
the evolution, complexity, and stealthiness of persistence vectors
in modern Windows malware families using the combination of
static and dynamic analysis. The result of our study indicated
that security tools and analysts could utilize PVs as decoys to
strengthen malware defensive strategies.

Keywords: Malware, Persistence Vectors, System Security,
Reverse Engineering

I. INTRODUCTION

Malware is an ever-evolving threat against cyber infrastruc-
ture. With nearly one billion malware attacks in 2021, and
predictions show that, with the rise in remote work, this num-
ber is forecasted to increase a minimum of ten percent over the
next year, making the ever-growing threat more daunting [7].
Current defensive measures are predominately positioned at
the perimeter of networks and scanning the system attempting
to stop potential malware infections [1]. However, they have
an extensive blind spot in dealing with malware once it obtains
a foothold on the system. New generation malware, especially
the Rootkit class, leverages variable stealth and mutation
strategies to persist after infection. With these advantages,
coupled with vulnerabilities present on the system and those
introduced via users, security is constantly on the back foot
in the endless cycle of attack and defense. Therefore, the
practice of identifying, extracting, and utilizing the persistence
mechanisms in defensive measures is one massive step towards
leveling the field.

The rest of the paper is organized as follows: Section 2
presents the problem statement; Section 3 provides an analysis
of the current research into malware; Sections 4 presents a
delve into the background of persistence vectors in malware;
Section 5 and 6 presents our data collection and analysis of
persistence vectors, respectively; and Section 7 presents future
works and concludes the paper.

II. PROBLEM STATEMENT

As security works to develop methodologies to stop mali-
cious threats from obtaining access, malware authors deploy
new methods, such as those presented via zero days [4] [5]
[6] [13] . In 2021, record numbers of zero days utilized, 64
confirmed, and untold number unconfirmed [31]. This cycle
resets with malicious actors constantly holding the edge by
only needing one compromise to be victorious. Even major
advancements, such as Secure Boot have proven insufficient
and susceptible to compromise. Theoretical and wild bootkits
have generated means around this improvement, such as forged
certificates or enabling their loading prior to the safe image
Security Boot loads [16]. Attention primarily focused on the
exterior surface with attempts to stop malware from infecting
the system. Only a small amount of focus has been paid
to internal areas where the attacks land. Persistence vectors,
while not deeply diverse as developed attack vectors, have
undergone a constant evolution, and remained unanalyzed.
Thus, we present a longitudinal analysis on the evolution of
Windows malware persistence vectors providing new insight
into their complexity and stealthiness. The objective of our
study is to provide a new direction for malware defensive
capabilities leveraging persistence vectors rather than the tra-
ditional payload and infection vector scanning.

III. RELATED WORK

Literature dealing with malware persistence is limited in
content, which is presented below. Gittins and Soltys con-
ducted one of the few pieces of research into malware persis-
tence mechanisms. They analyzed the more common currently
used malware persistence elements, and some are believed
to be utilized by Nation State actors through a showing of
independent samples for each of the presented persistence
mechanisms [2]. While the illustrated persistence vectors are
accurate, the sample base shown is only five samples deep,
leaving it only as an overview, not in-depth. Rana et al.
presented research into persistence mechanisms in conjunction
with obfuscation techniques. Based on the solar wind attack,
they cover various persistence utilized on Windows systems,
with proposed solutions to attempt to minimize the effects
of persistence vectors identified [3]. While the persistence
vectors covered are extensive and the suggested solutions can
help mitigate malware persistence, there is a shortcoming in
that malware continues to evolve and tend to avoid detection

28Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

using different obfuscation techniques. Khushali presented
research into the subsection of malware titled fileless mal-
ware. This malware often does not write to the persistent
storage, making them harder to detect [29]. Although very
stealthy, fileless malware remain present on a victim system
until the next power cycle. While these types of malware
are useful for small campaigns, persistence is still vital for
more prolonged operations generally utilized by nation-state
actors and more extensive malware campaigns. Kohout and
Pevný used persistence implanted web traffic as means of
identifying long-placed malware [30]. While this does provide
an effective means of identifying infected systems, it is limited
to targeting the web traffic and not dealing with the various
other persistence mechanisms. Our study presents a deeper
analysis, utilizing a more comprehensive sample base than
previously used and including means of relating persistence
to stealth measures as well.

The remaining literature referencing persistence is focused
on two main categories of research: (1) Research into mal-
ware’s functionality, such as anti-analysis techniques, API
modifications, or evasion techniques, and (2) Deeper analysis
into a specific malware family/sample. Maffia [24], Mills [23],
and Galloro [22] researched into the evolution of malware
evasion techniques over the years. Mills developed a sandbox
modification tool titled MORRIGU, which is utilized to sub-
vert the malware evasion techniques, specifically those that
prevent malware from executing in an analysis environment
[23]. Analysis tools such as this, and some of its predecessors
such as HookMe, Cuckoo Sandbox, and PyREBox, are excel-
lent at dealing with defensive measures that malware deploys
to prevent its analysis [25]. However, they are designed with
extensive implementation and configuration changes, making
them difficult to configure. These analysis environments are
also designed to detect malware behavior mostly from a
payload standpoint. However, they quickly become obsolete
because modern malware evolves and employs sophisticated
obfuscation techniques. Galloro et al. study the history and
development of various evasion techniques. By completing the
analysis comparison, they produced listings of evasion tech-
niques only utilized via malware [22]. Maffia also conducted
research along similar lines. The authors proposed PEPPER
- a Pintool designed to defeat standard malware evasion
techniques, such as Anti-VM [24]. Both provide excellent
detailing of evasion techniques; however, as with the analysis
environments, they detect from the payload standpoint. These
analysis tools may provide false negatives if the evasion
techniques have changed.

IV. BACKGROUND ON PERSISTENCE VECTORS

Persistence vectors are sections of code built within software
packages (both legitimate and malicious) that allow programs
to survive system restart, switching between users, and sim-
ilar system start-up functionality. In general, persistence is
achieved by modifying certain sections of the system or kernel
data structure. This section will enumerate and discuss the
most commonly used persistence vectors. The complete listing

of known Windows persistence vectors can be found in the
MITRE ATT&CK framework® [15].

A. Common Persistence Vectors

1) Registry modification : Registry modifications are the
most common persistence mechanisms utilized by malicious
code [28]. By adding a value to a specific registry key,
malicious code can ensure either it is loaded upon start,
it is utilized before legitimate files, or it is reinstalled
after being deleted. An example of this is the entry of a
modification in the run key. These values can be set under
HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\ or
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\
for the following keys:

• HKCU\....\Run
• HKCU\....\RunOnce
• HKLM\....\CurrentVersion \Run
• HKLM\....\RunOnce
• HKLM\.... \PoliciesExplorer\Run
2) DLL Replacement/Reorder : The next common per-

sistence method is Dynamic Link Library (DLL) Hijacking.
This vector works with modification or complete replacement
of vulnerable DLLs with malicious code. When the modified
DLL is called the malicious code is loaded and executed. A
secondary method utilizing DLLs is through the DLL search
order hijacking, where the original DLL remains intact but is
dropped in priority for the malicious version placed on the
system.

3) Startup Keys : Start-up key and service modification
vectors utilize a combination of the above two techniques by
setting the malicious code into a priority slot in boot order.
Once loaded the malicious code is restarted on the system,
maintaining the infection.

Files under the startup directory can have a shortcut
created to the location pointed by subkey of startup.
If this value is present then the service will launch
during a system reboot. These values can be set under
HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\ or
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\
for the following keys:

• HKCU\....\Explorer\ShellFolders
• HKCU\....\Explorer\User\ShellFolders
• HKLM\....\Explorer\ShellFolders
• HKLM\....\Explorer\User\ShellFolders

B. Services

Several Windows services are required to be started at
boot for the system to run properly. By placing any malware
keys in this startup folder it is able to execute at startup as
other services. Additionally, because alternative services can
be started if another fails to load, a malware author can append
these failed states to launch the malware.

1) Boot Modifications : Bootkits and other malware have
begun utilizing a type of alteration called boot key mod-
ifications. In persistence technique, the smss.exe launches
before the Windows subsystem, calling the configuration

29Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

subsystem to load the hive present at HKLM\SYSTEM
\CurrentControlSet\Controlhivelist. Any value that contains
the BootExecute key will be launched at system boot by
the smss.exe via the HKLM\ControlSet002\ControlSession
Manager [27]. A normal system should only have the value
of autocheck or autochk*.

2) Shortcut Creation/Modification : Shortcut hijacking
obtains persistence via rewriting of saved icons of applications
that users commonly use. This is created through either replac-
ing the direct calling program with a compromised version or
a wholly malicious one.

3) Event Trigger Execution : One of the oldest forms of
persistence is the event-triggered execution technique. This
method achieves persistence on a system via the setting of
time-trigger automation, such as CHRON to launch upon the
system restart or through program infection when another
program is launched, a redirect to the malware code is present,
restarting it.

4) Kernel Module Changes : Although much more chal-
lenging to implement, malware can leverage changes in the
kernel module to achieve persistence. In this technique, the
malware hides its presence by loading modules from the de-
fault order to include the malware as a high-value loaded item,
either as a change to the BIOS load order or through appending
BOOTSTRAP code. While this is often not as pervasive as the
other techniques discussed due to the possibility of a system
crash, it is nonetheless one of the most effective persistence
vectors.

V. DATA COLLECTION AND ANALYSIS

As stated in the introduction, this paper aims to systematize
knowledge for Windows malware persistence vectors in a
longitudinal study. We will analyze the persistence vector’s
characterization, complexity, and stealthiness. The overarching
goal is to drive new knowledge in understanding the meta-
morphosis of persistence vectors that will help design new
malware defensive strategies. Thus, for the data collection,
we downloaded a total of one thousand malicious software
from virus repositories VirusShare and VirusTotal [26]. All
are samples from within the past ten years, yielding a solid
base for the evolution of malware over time, and were selected
to run the spectrum of malware families. Each sample was
manually processed via static and dynamic malware analysis
to extract APIs, data, and metadata. Then the sample is passed
to IDA Pro for the actual persistence vector extraction. Finally,
a detailed code reconstitution is performed.

1) Environment Setup: The PV extraction process is carried
out on Windows 7 and 10 Virtual Machines (VMs), with
two copies of each: one for dynamic analysis and one for
static analysis. Each machine has two 2.4 GHz cores and 4
GB RAM. Additional steps were taken using Hidetoolz to
minimize the effect of Anti-VM and Anti-Reversing during
the analysis [10]. Configuration settings were then modified
through the utilization of the Vbox info modifier capability.
This allowed for the default options, such as the system
utilized and system manufacturer searched for via VM aware

malware, to be changed. Additional VM capabilities, such as
the Addons, were removed and the sub-keys in the registry
deleted. Commonly installed user software were added, at-
tempting to give the appearance of a real system instead of a
virtual one.

2) Static Analysis: Static analysis is defined by collecting
information about the binary, precisely a malware sample in
this case, without executing or creating a runtime memory
space [12]. Before analysis, the first step is to collect a file
hash in the form of MD5 and/or SHA256. This step ensures
that the file downloaded matches the one presented by the
collection sites of VirusTotal and Malshare. We utilized the
Powershell command - get-filehash to accomplish the hashing
process. Next, for each target malware, we ran it against
an unpacker to remove any possible common packers and
cryptors, leaving behind the bare-bones malware code that the
analysis tools would evaluate. For this we utilized PEId to
identify and remove the common packers and compression
utilized by the malware samples. In the static analysis of
the Rovnix bootkit for instance, we found the hash to be
7CFC801458D64EF92E210A41B97993B0, and PEID identi-
fied that two packers were used in the initial sample.

Immediately after unpacking, a target sample is then exe-
cuted against the Strings utility. This utility allows for ASCII
and Unicode string identification. In this task, we are looking
for specific Windows API calls which can be tied back to
the potential persistence modifications and additional files
created, which could contain remaining malicious payloads.
The sample is also loaded into Dependencies, a modern rewrit-
ing of Dependency Walker, which identifies utilized DLLs
for the executable. This tool also determines the potential
persistence vectors utilized via DLL replacements, and those
utilizing the creation of files. In the Rovnix bootkit sample,
the strings showed indications of file creation, such as the
CREATE and FILEACCESS APIs, while Dependencies showed
access to kernel-level modules, kernel32.dl and ntdll.dll. These
match the boot modifications, driver deployment, and registry
changes, along with the items needed to generate the malicious
Volume Boot Record (VBR).

3) Dynamic Analysis: Dynamic analysis is completed by
collecting binary elements while executing the file on the
system. Before launching an executable, we first run a suite
of malware analysis tools: ProcWatch, CaptureBatch, and
RegShot. These tools create baseline analysis to compare
modifications made by the malware sample in processes, batch
files, and registry. After removing standard system processes,
we can notice the unique ones created by the malware and
registry modifications, if any. These creations are the specific
items we targeted as the persistence functions of the malware
as they show the specific files, DLLs, and registry keys that
the malware implants to obtain persistence.

For Rovnix, we identified the file creations for the modified
VBR and malicious DLLs. Additionally we found the registry
modifications generating the boot changes, consisting of the
backup copies of the malware code and the independent ones
used to restart these backups if other elements were removed.

30Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

4) Persistence Identification and Extraction: The persis-
tence vectors of the sample base are identified from this two
tiered reverse engineering process. From here the process of
removing these code segments is conducted. The samples are
loaded in IDA Pro Disassembler, with the information gathered
from analysis used to target the specific functions completing
the persistence modifications. These functions are exported
utilizing the inbuilt exporting capability in the HexRays loaded
with IDA. Data like this can then be exported as raw text or as
set variables or segments of C code. These individual identified
persistence vectors are saved with the naming convention of
”persistence vector-file hash”. Each PV was then saved into a
folder named by file type to be utilized in the follow on code
reconstitution.

Identified in the Rovnix sample were the following persis-
tence mechanisms:

• Construction of malicious VBR in conjunction with com-
pressed original one

• Injection of polymorphic bootstrap code;
• Generation of new malicious DLL, titled BKSetup.dll;
• Multiple registry changes across multiple hives;
• Implanting of unsigned driver at end of file system data;
• Hidden partition with backup copies of malware code at

end of file system data;

Presented below in Figure 1 is the generation of the boot
loader and registry modifications for persistence. In this sam-
ple, several persistence creations spawned from a singular
source function with the individual modifications completed
in their unique functions.

A. Code Reconstitution

Code reconstitution has two phases: (1) Code identification
and (2) Code matching and merging.

1) Code Identification and Conversion: Code identification
and conversion involves turning this persistence mechanism
from the assembly code found in the analysis into source code.
The first means to resolve this is by deep searching for the
sample’s source code. Approximately twenty percent of the
identified persistence mechanisms had source code available.
These entries had their code segments that performed the
system change for persistence removed, generally consisting
of only one or two functions. The code was parred down,
removing any repetitive PV value. These code segments were
also used as base forms for samples lacking publicly available
source code.

A complete comparison was performed against those ex-
tracted from the available source code samples, identifying
code segments with the same structure. For example, sam-
ples within the same family often triggered fifty percent of
searches. This allowed the values to be appended together
instead of multiple individual entries. Those that do not have a
matching structure are marked as new. New entries then have
sections of code generated to house the persistence mechanism
starting from one of three default templates. One specifically
designed for registry changes, with an option presented for the

Fig. 1. Rovnix Registry Bootloader

main areas targeted, the second for changes to DLL ordering,
and the last for the remainder of system changes.

2) Code Matching and Merging: Once each PV is gen-
erated into a code snippet, the elements were pushed into an
element of code standardization. Each snippet was labeled via
code comments on the type of sample it was extracted from,
specifically labeled with sample name and hash. Samples with
similar areas of persistence were grouped and sorted to ensure
that each value was unique. Duplicates were removed. The
process generated a series of white listings containing 800
unique persistence vectors.

VI. EVALUATION

We analyzed the collected and reconstituted persistence
vectors above and examine their evolution, complexity, and
stealthiness. For evolution, we examined the vectors based on
their familial characterization, (e.g., Rootkit, Trojan, Adware,
etc). For complexity, we evaluated each sample’s type and the
number of persistence mechanisms. Finally, for stealthiness,
we assessed their use of obfuscation, such as ease of detection,
junk code insertion, and/or the use of encryption.

A. PV Familial Characterization

The largest among the families of the samples was bootk-
its/rootkits, with just under twenty-five percent of the total
samples. The second largest typing was ransomware, with
twenty-one percent. Adware was the next largest typing with
twenty percent of the total samples. This is due to the transition
to tele-networking in recent years, bringing Adware back
from among the smallest types to most consistent from 2020.
Backdoors and Trojans tied for the third largest typing amongst
the samples, each having around fifteen percent of the samples.
Worms, hackertool, and spyware had the lowest percentages
with around one percent each, with more of the samples
coming from farther back in history, late 1990 to early 2000.
Figure 2 shows this breakdown.

B. PV Type and Complexity

From all the samples, the PVs utilized followed a two
fold progression. As the samples grew more modern both the
number of persistence and the type changes, thus increasing
their complexity. Older samples, up to 2010, generally worked

31Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

Fig. 2. PV Family Characterization

with one established PV per sample. This is most likely
due to the limitations of security tools to properly identify
the infections on systems. From this they did not require
the newer means to ensure their persistence on the system.
Modern samples and those dating back to as early as 2017,
have started to utilized multiple contingent persistence vectors,
allowing for protection of the persistence on the system even
if one or two of these is identified. An example of this is the
Haxdor-Gen rootkit. As a modular based malware sample, the
author is able to tailor the deployment, were included in, as
of writing, twelve different persistence vectors. These include
generated registry keys, root services, and start up scripts,
to name the most common. Included in the source code are
commands to reinstall any deleted or removed persistence from
the surviving, such as the start up service with code to reinstall
an additional copy of the scheduled tasks and to redeploy the
virus code into a secure region of the system.

The most common persistence methods utilized by mal-
ware are: Registry modification, DLL Replacement/Reorder,
startup Keys, Services, and boot modifications [9]. Of the
1000 malware samples studied, all utilized one or multiple of
these to establish persistence. We found Registry modifications
in most of samples, which was to be expected due to the
straightforward ability to generate change. Boot modifications
were the next largest of the PVs found amongst the sample
base. Consistently, these were found in the more modern
malware, as this placed the persistence in areas that are not
checked by security tools or are able to start prior and bypass.
A small percentage of the older samples did contain this PV,
but this was very selective, and found exclusively within the
bootkit and ransomware families.

DLL order modifications and startup key were in approx-
imately half of the sample base. However, we noticed none
of the hackertools and the spyware families included this
PV. Broken down even further, the DLL modifications were
a two-to-one in regards to order modifications versus DLL
replacement. The more modern malware leaned more on the
replacement of the DLL, placing instead its code wrapped in a
legitimate version of the DLL. Services were the next largest
percentage of the PVs from the sample base. Of the samples
there was the common theme that majority were generated

Fig. 3. Trend Pattern of PV Type and Complexity

at the Windows system level. Only five percent generated
services at the user level, paired with other persistence meth-
ods, to launch higher privilege execution. Services PVs were
found across majority of malware families, however the largest
concentration came from the ransomware, adware, spyware,
and rootkit families.

Event triggers were the most diverse PVs, fitting only
together based upon the requirement of an action to cause the
triggering. Triggers involved various programs being executed,
certain accounts being logged in, a specific interrupt, user
key inputs, and even screen saver launching. The largest
family utilizing event triggers were Trojans with roughly
sixty percent implementing at least one event trigger. Least
amongst the identified PVs in the sample base was the shortcut
modifications. These modifications were generally found in
only twenty-two percent of the samples, specifically more in
the Trojans, the hacker tool, and portions of the adware. Figure
3 shows a breakdown of all the samples based upon their
persistence vectors.

As the age of the samples evolved, the complexity of the
malware persistence methodologies improved. Early pieces
were only able to manage and maintain one persistence method
within their code base. More modern samples, such as our
example of Rovnix, can support multiple persistence vectors.
These allow for the piece to regain persistence even if one of
its vectors is identified and removed.

C. PV Stealth Factor Categorization

In this analysis, we examined the security elements uti-
lized by our samples’ persistence mechanisms. Inverse to the
commonality, registry key modification is proven easiest to
detect. Multiple tools, such as Regshot which was partly used
to identify persistence vectors, could isolate these changes.
However, there is the caveat to this detection in the common-
ality of false positives and negatives. Limited listings show
these modifications made from the malware and those made by
more legitimate programs. The most challenging persistence
modification to identify was the boot modifications, generally
the changes created by Rootkit/Bootkits and certain types of
Ransomware. These are difficult for both the user and analyst
due to their execution prior to most of the OS functionality.
One example is Nemsis bootkit, which contained multiple
changes to the core operating system elements. One of the key

32Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

persistence mechanisms is the rewriting of the VBR, which
allows it to start before loading the basic operating system
elements. The changes reach the point where the bootkit can
reapply itself once the hard drive is changed. Finding and
cataloging all these changes proved a substantial challenge.
Due to their loading prior to the operating system, several
took extended static analysis to identify as dynamic analysis
could not be relied upon.

Anti Reversing is one of the elements under consistent
evolution, with the complexity increasing nearly exponentially
as time progresses. Samples with the dates of late 1990s
and the early 2000s generally are lacking in complexity of
defensive measures. These samples generally had their code
as is, due to the lack of diverse options with security tools
and the limited knowledge of detecting these samples. These
covered the majority of the hackertools and worms. Security
improved across the samples with the next section involving
masking the sample type within the legitimate functionality.
The majority of Trojans and roughly a quarter of the adware
samples were predominant in this category. These PVs were
masked with generally legitimate changes that would be made
to the system, such as with one sample that installed a
playable game in conjunction with its malicious payload.
While this was a drastic move forward regarding security,
the PVs were still straightforward. As with the standard code
PVs discussed previously, simple analysis can locate and
identify these. Continued progression led to the next level of
defensive measures deployed via malware to obfuscate their
PVs, covering another twenty-five percent of the adware and
roughly fifty percent of the spyware. Segmentation was one
of the methodologies in many of the newer samples. Through
this process, only a portion of the malicious code is involved
in the initially executed malware. Additional elements were
requested via system resources once the initial infection was
complete. Without a malicious payload, scans of the current
code would yield a non-malicious identification.

The final category of defensive measure, predominately
found in the newer malware samples, minimizes the items
generated to the system’s hard drive. This malware evolution
has the samples run exclusively on system volatile memory,
removing itself once the system is restarted and making it
much harder to collect a sample for analysis. None of the
samples utilized for the evaluation was this type. Presented
in Figure 4 is a breakdown of the stealth functionalities that
were found in the sample base. Similar to the complexity of the
persistence vectors, the stealth factors evolved exponentially.
This stealth is reflexive of the enhancements to security
tools designed to catch the common malware attempting to
compromise the system.

VII. CONCLUSION AND FUTURE WORKS

This study examines how persistence vectors evolve in com-
plexity and stealthiness over time. It explores the differences in
the adaptation of PVs by the different classes of malware, thus
paving the way for potential new advancements in malware
defense. By shifting focus to these targeted areas for defensive

Fig. 4. Trend Pattern of PV Stealthiness

measures, scanning can reduce time, and processor utilization
[14]. While not infallible, these persistence scanning elements
could be added as an additional layer or decoy in a fully
deployed defense-in-depth methodology. Scanning through
more diverse operating systems, such as the various ones
on Linux and mobile platforms, would be helpful to gain
more diverse areas of persistence. Based on this study, our
evaluation showed a directed trend in the classification/family
of malware away from simple samples like common viruses
and evolved into complex multi-module bootkits. Also, we
found an exponential trend for complexity and stealthiness,
with samples only becoming more adapted to overcome the
security tools in place to protect systems. In conclusion,
malware is already a significant threat, only increased by
persistence, allowing it to remain on the system to perform
further malicious activities. Further study of the persistence
vectors present across other operating systems could yield
similar results. As a recommendation and for future work,
persistence utilization can serve as another strong layer for
malware prevention in a properly deployed defense in depth.

REFERENCES

[1] M. Abhijit, and S. Anoop. ”Persistence Mechanisms.” In Malware Analy-
sis and Detection Engineering, pp. 213-236. Apress, Berkeley, CA, 2020.

[2] Z. Gittins, and M. Soltys. ”Malware persistence mechanisms.” Procedia
Computer Science vol. 176, pg 88-97, 2020.

[3] M. U. Rana, M. Ali-Shah, and O. Ellahi. ”Malware Persistence and Obfus-
cation: An Analysis on Concealed Strategies.” In 2021 26th International
Conference on Automation and Computing (ICAC), pp. 1-6. IEEE, 2021.

[4] R. Brewer. ”Ransomware attacks: detection, prevention and cure.” Net-
work security 2016, no. 9, pg 5-9, 2016.

[5] M. Abhijit, and S. Anoop. Malware Analysis and Detection Engineering:
A Comprehensive Approach to Detect and Analyze Modern Malware.
Apress, 2020.

[6] N. Virvilis, and D. Gritzalis. ”The big four-what we did wrong in
advanced persistent threat detection?.” In 2013 international conference
on availability, reliability and security, pp. 248-254. IEEE, 2013.

[7] R. Anusmita , , and N. Asoke. ”Introduction to Malware and Malware
Analysis: A brief overview.” International Journal 4, no. 10, 2016.

[8] M. O’Leary, and McDermott. Cyber Operations. Apress, 2019.
[9] I. Kirillov, D. Beck, P. Chase, and R. Martin. ”Malware attribute enumer-

ation and characterization.” The MITRE Corporation, 2011.
[10] L. Zeltser. ”Reverse engineering malware.”, 2010.
[11] W. Yan, Z. Zhang, and A. Nirwan. ”Revealing packed malware.” ieee

seCurity PrivaCy 6, no. 5. Pg 65-69. 2008.
[12] S. Megira, A. R. Pangesti, and F. W. Wibowo. ”Malware analysis and

detection using reverse engineering technique.” In Journal of Physics:
Conference Series, vol. 1140, no. 1, p. 012042. IOP Publishing, 2018.

[13] P. Vinod, R. Jaipur, V. Laxmi, and M. Gaur. ”Survey on malware
detection methods.” In Proceedings of the 3rd Hackers’ Workshop on
computer and internet security (IITKHACK’09), pp. 74-79. 2009.

33Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

[14] R. Tian, I. Rafiqul, L. Batten, and S. Versteeg. ”Differentiating malware
from cleanware using behavioural analysis.” In 2010 5th international
conference on malicious and unwanted software, pp. 23-30. Ieee, 2010.

[15] R. Al-Shaer, J. M. Spring, and E. Christou. ”Learning the associations
of mitre att ck adversarial techniques.” In 2020 IEEE Conference on
Communications and Network Security (CNS), pp. 1-9. IEEE, 2020.

[16] C. Kallenberg, S. Cornwell, X. Kovah, and J. Butterworth. ”Setup for
failure: defeating secure boot.” In The Symposium on Security for Asia
Network (SyScan)(April 2014). 2014.

[17] P. Black, and J. Opacki. ”Anti-analysis trends in banking malware.” In
2016 11th International Conference on Malicious and Unwanted Software
(MALWARE), pp. 1-7. IEEE, 2016.

[18] B. Min, V. Varadharajan, U. Tupakula, and M. Hitchens. ”Antivirus
security: naked during updates.” Software: Practice and Experience 44,
no. 10, pg 1201-1222, 2014.

[19] J. Mankin. ”Classification of malware persistence mechanisms using
low-artifact disk instrumentation.” PhD diss., Northeastern University,
2013.

[20] M. S. Webb. ”Evaluating tool based automated malware analysis through
persistence mechanism detection.” PhD diss., Kansas State University,
2018.

[21] R. Tahir. ”A study on malware and malware detection techniques.”
International Journal of Education and Management Engineering 8, no.
2, vol 20, 2018.

[22] N. Galloro, M. Polino, M. Carminati, A. Continella, and S. Zanero.
”A Systematical and longitudinal study of evasive behaviors in windows
malware.” Computers Security vol 113, 2022.

[23] A. Mills, and P. Legg. ”Investigating anti-evasion malware triggers using
automated sandbox reconfiguration techniques.” Journal of Cybersecurity
and Privacy 1, vol. 1, pg 19-39, 2020.

[24] L. Maffia, D. Nisi, P. Kotzias, G. Lagorio, S. Aonzo, and D. Balzarotti.
”Longitudinal Study of the Prevalence of Malware Evasive Techniques.”
arXiv preprint arXiv:2112.11289, 2021.

[25] J. Rutkowska. ”System virginity verifier: Defining the roadmap for
malware detection on windows systems.” In Hack in the box security
conference. 2005.

[26] Total, V. (2012). Virustotal-free online virus, malware and url scanner.
Online: https://www. virustotal. com/en, 2.

[27] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J.
A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten. ”Lest
we remember: cold-boot attacks on encryption keys.” Communications
of the ACM 52, vol 5, pg 91-98, 2009.

[28] G. Cabau, M. Buhu, and C. P. Oprisa. ”Malware classification based on
dynamic behavior.” In 2016 18th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC), pp. 315-
318. IEEE, 2016.

[29] V. Khushali. ”A Review on Fileless Malware Analysis Techniques.” vol
9, pg. 46-49, 2020.

[30] J. Kohout, and T. Pevný. ”Unsupervised detection of malware in persis-
tent web traffic.” In 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1757-1761. IEEE, 2015.

[31] M. Guo, G. Wang, H. Hata, and M. A. Babar. ”Revenue maximizing
markets for zero-day exploits.” Autonomous Agents and Multi-Agent
Systems 35, no.2. pg 1-29. 2021.

34Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

