
Maverick: Detecting Network Configuration and
Control Plane Bugs Through Structural Outlierness

Vasudevan Nagendra
Plume Design Inc.

Palo Alto, USA
vnagendra@plume.com

Abhishek Pokala
Stony Brook University

Stony Brook, USA
apokala@cs.stonybrook.edu

Arani Bhattacharya
IIIT Delhi

New Delhi, India
arani@iiitd.ac.in

Samir Das
Stony Brook University

Stony Brook, USA
samir@cs.stonybrook.edu

Abstract—Proactive detection of network configuration bugs
is important to ensure the proper functioning of networks
and reducing the issues associated with network outages. In
this research, we propose to build a control plane verification
tool MAVERICK that detects the bugs in the network device
configurations by effectively leveraging structural deviation i.e.,
outliers in the network configurations. MAVERICK automatically
infers signatures from control plane configurations (e.g., Access
Control Lists (ACL), route-maps, route-policies, and so on) and
allows administrators to automatically detect bugs in the network
configurations with minimal human intervention. The outliers
calculated using signature-based outlier detection mechanism are
further characterized for its severity and ranked or re-prioritized
according to their criticality. We consider a wide set of heuristics
and domain expertise factors for effectively reducing the false
positives. Our evaluation on four medium to large-scale enterprise
networks shows that MAVERICK can automatically detect the
bugs present in the network with ≈86.4% accuracy. Furthermore,
with minimal administrator inputs i.e., with a few minutes
of signature re-tuning, MAVERICK allows the administrators
to effectively detect ≈92 – 100% of the bugs present in the
network, thereby ranking down less severe bugs and removing
false positives.

Keywords— Network; Control Plane; Verification; Outliers;
Machine Learning; Anomaly Detection; Bugs; Severity.

I. INTRODUCTION

Network downtime for an enterprise network costs an average
of USD $140K – $500K per hour, for which the human error
acts as the key contributing factor [1][2]. The fundamental goal of
network management and downtime mitigation is proactive detection
of the control plane and network configuration bugs, and ability to
quickly troubleshoot the errors that occurred due to human errors
and misconfigurations. Today network administrators either rely on
custom home-made scripts ‘or’ model checking-based verification
tools for analyzing the network configurations to detect specific types
of bugs in the network (e.g., reachability analysis, routing issues,
failure impact analysis, and so on) [3][4][5][6]. Such tools provide
limited bug detection capability i.e., does not provide comprehensive
coverage about the list of bugs present in the network configurations.
Therefore, a generic control plane bug detection mechanism that
proactively detects a comprehensive list of bugs present in the net-
work with minimal administrator’s intervention is key for protecting
the networks from downtime and vulnerabilities.

Traditionally, bug detection can be efficiently achieved by defining
unique signatures to each of the network properties and matching
each of the configuration instances with respective signatures. For
example, an ACL that allows web traffic from LAN network to
Internet needs to be specified on to a group of network devices along
the path of the traffic until the traffic reaches the border gateway of
the enterprise network. Therefore, multiple devices should have either

same or similar ACL and deviation from the actual ACL definition
would be considered a bug. As a similar example, route maps are used
for defining the set of route entries that are required to be redistributed
to target routing process, requiring the route maps to be specified on
to multiple routers.

Manually identifying such signatures (or specifications) in a dy-
namically changing network infrastructures and effectively using such
comprehensive list of signatures for detecting bugs is a daunting task.
But, not providing signatures (i.e., about what specifically needs to be
looked for in the network configurations) results in bugs and errors
that either go undetected (with false negatives) or results in false
positives that plague the soundness of the bug detection tool. In our
observation, there are legions of bugs that remain undetected even
with networks “vetted” by verification tools, because of a lack of
capability that allows the signature to be specified and used for bug
detection.

Therefore, the current network verification tools falls short along
following key dimensions: (i) proactively detecting control plane bugs
(e.g., human errors and configuration mistakes) without (or with mini-
mal) administrator’s intervention, (ii) ability to effectively incorporate
domain expertise in fine-tuning the bug detection, (iii) automatically
inferring policies or signatures from the network configurations that
allows administrators and tools to effectively detect configuration
bugs, while providing comprehensive bug detection coverage, (iv)
generalize findings, i.e., signatures or policies inferred from one
network and apply it to other networks or organizations, and (v)
finally, surfacing the bugs that are critical allowing administrators to
channelize their energy in addressing critical bugs rather than wasting
time on false negatives.

To address the above challenges, we propose MAVERICK, an
agile network verification tool that exploits structural deviations
(i.e., Outlierness) among the network configurations for detecting
the bugs. Outlierness is the deviation of the network configurations
from its general population or most popular values. The key enabler
of MAVERICK is its ability to automatically infer signatures from
the network configurations, which are used for efficiently detecting
bugs present in the network, without false negatives. MAVERICK also
incorporates inputs from the administrators allowing the tool to fine-
tune its detection precision. In addition, MAVERICK also proposes the
need for generalization by which the signatures that are developed
for an network can be used with other networks.

We improve the accuracy of our bug detection mechanism and effi-
ciently re-prioritize the bugs to surface them to administrators on the
basis of their severity. We calculate severity of the bugs using follow-
ing key metrics, such as feature importance (i.e., network structural
properties such as ACLs, route-maps, IPSec tunnel configurations
and so on), feature dependency, the locality of the configuration on
specific node, outlierness score from the similarity with signatures,
and customized page ranking used for ranking bugs. These metrics
allow MAVERICK to effectively prioritize bugs on the basis of their
severity, pushing false positives or less critical bugs to the bottom

53Copyright (c) IARIA, 2021. ISBN: 978-1-61208-919-5

SECURWARE 2021 : The Fifteenth International Conference on Emerging Security Information, Systems and Technologies

of the list. We prove the efficacy of MAVERICK by showing that
it provides a mean precision of 86.4% without administrator input,
and 92 – 100% using a few minutes of administrator input on a four
medium to large-scale enterprise networks.
In summary, our paper makes following key contributions:

• We provide background and illustrate the limitations of exist-
ing techniques and motivate the need for signature-based bug
detection mechanisms based on outliers (§II).

• We highlight the techniques we used to automatically infer
the signatures for various properties of network configurations
using their structural outlierness for detecting the bugs. We then
discuss about simple severity and ranking mechanism that we
devised to reprioritize the bugs and reduce the false positives
(§III)

• We discuss about the high level system design and key building
blocks of MAVERICK (§IV).

• We evaluate the efficacy of MAVERICK with four different
medium – large scale campus and enterprise networks with
≈220 – 450 network nodes (e.g., routers, firewalls, switches,
proxies, and gateway nodes) (§V).

II. BACKGROUND & MOTIVATION

Today, majority of the network administrators still rely on plain-
text configuration templates, command-line utilities, and wide variety
of vendor-supplied programming specifications or user-interfaces for
programming their networks [7][8][9] [10]. This results in administra-
tors unintentionally introducing bugs in the network configurations
resulting in network outages or leaving the network vulnerable to
attacks [11][12].

We understand that for programming the network and creating
policies requires same set of rules to be specified on wide range of
devices that are present with in a network. Consider for example, an
ACL that is specified to allow TCP traffic that is destined to WAN
network 100.100.100.0/24 on port 1400 requires a group of
same ACLs to be specified on multiple routers or firewalls along
multiple paths in which the traffic traverses. Similarly, route-map
entries, NAT rules, and route-filters specific to this ACL are also
required to be specified on these routers along the paths in which the
traffic traverses. In general, administrators either use sample templates
or use CLI to configure multiple routers, which may result in human
introduced errors.

Router_1 (Key-value Properties):

{

DNS Servers: ['4.4.4.4']

NTP Servers: ['0.pool.ntp.org’,

'1.pool.ntp.org']

TACACS Servers: ['10.10.10.15']

Logging Servers: ['10.10.10.22']

}

(a) Network Server Properties.

Router_1(Named Structure Property):

{

'action': 'PERMIT',

'matchCondition=dstIps=ipWildcard':

[('100.100.100.0/0', 24)],

'matchCondition=ipProtocols': ['6']

'matchCondition=tptDstPort': [('1400')]

}

(b) IP ACL.

Figure 1: Illustrating key-value properties (e.g., Network Server values) and named-
structure properties (e.g., IP ACL) in network configurations.

We broadly classify overall network configurations into two prop-
erty classes (Figure 1): (i) Key-value properties, and (ii) Named-
structure properties. As illustrated in Figure 1a, key-value property
is a simple key:value/s pair that represents a discrete and independent
network configuration (e.g., NTP Server configured for Router 1 in
Figure 1a). While the named-structure properties are structures with
multiple key:value pairs nested as a complex discrete entity required
to configure the network.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Z-Score
Conformer VRFs- 14
Ambigious VRFs- 2
Outlier VRFs- 0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Modified Z-Score
Conformer VRFs- 16
Ambigious VRFs- 0
Outlier VRFs- 0

3 2 1 0 1 2

GMM based structural-outlierness
Mixture 0- 14
Mixture 1- 2

3 2 1 0 1 2 3

Z-Score
Conformer ACLs- 124
Ambigious ACLs- 0
Outlier ACLs- 18

3 2 1 0 1 2 3

Modified Z-Score
Conformer ACLs- 124
Ambigious ACLs- 11
Outlier ACLs- 7

4 3 2 1 0 1 2

GMM based structural-outlierness
Mixture 0- 124
Mixture 1- 18

Figure 2: Bug detection using statistical approaches (z-score, modified z-score, GMM)
for VRFs, ACLs of network (DS-1).

A. Problems with existing approaches
For effectively detecting the bugs present in the network configu-

rations, existing approaches aim to supplement the manual effort of
network administrators by flagging probable network configuration
and data plane bugs [13][14], which broadly fall into two categories:
(a) Statistical approach, and (b) logical or rule-based approach.
Statistical techniques. Statistical approaches such as z-score, mod-
ified z-score and Gaussian Mixture Model (GMM) aim to iden-
tify outliers in the configurations, and flag them as probable
bugs [15][16][17][18] as illustrated in Figure 2. While we note that
the outlying configurations have a much higher probability of being
bugs, that in itself is not sufficient to detect real bugs and highlight
its severity. The key disadvantages of such statistical approaches are
as follows:

• High mis-classification rate: Since many of the configurations
lie at the boundary of the threshold used to classify as bugs, a
large number of either false positives (i.e., incorrectly flagged
as bugs) or false negatives (i.e., incorrectly flagged as valid)
are identified. Correctly identifying the actual bugs from these
lists again requires a lot of manual effort on the part of the
administrator.

• Flagging intentional configuration changes: Administrators
might intentionally change configurations in specific ways to
handle an uncommon use case. However, statistical techniques
identify even such changes as configuration bugs.

• Critical bugs vs false positives: In general, not all network
configuration bugs are equally critical. Some bugs require
immediate attention from administrators, whereas other bugs
can be fixed slowly. However, we lack mechanism to identify
the bugs that are critical in nature.

Logical or rule-based techniques. This approach is to let users
specify grammar rules, any violation of such grammar rules is flagged
as a configuration bug [4][19][20][21]. However, this approach too
suffers from a number of drawbacks:

• Requirement of low-level vendor-specific rules: We see different
vendors using different syntax to specify network configurations
which introduces an additional level of complexity in specifying
these rules. It requires administrators to specify complex low-
level grammar rules. Thus, this is usually a cumbersome and
technically involved process, that is also prone to mistakes.

• Lack of coverage: Even for proficient administrators, it is
challenging to anticipate all the types of invalid configurations
and proactively fix them. Thus, many configuration bugs may
pass through without getting identified.

Therefore, it is becoming increasingly difficult to proactively detect
the network configuration bugs before deploying them on to the
production networks. In Section III, we present the overview of
MAVERICK system that addresses the challenges discussed here.

54Copyright (c) IARIA, 2021. ISBN: 978-1-61208-919-5

SECURWARE 2021 : The Fifteenth International Conference on Emerging Security Information, Systems and Technologies

III. MAVERICK OVERVIEW

We present the overview of MAVERICK control plane network
verification engine that is a tangible step toward addressing the
limitations discussed above (§II-A). Figure 3 provides an overview
of the MAVERICK system architecture, with the following two key
capabilities: (i) signature-based outlier detection engine, and (ii)
severity & ranking engine. These capabilities allow administrators
to proactively detect control plane bugs and fine-tune them to reduce
the false positives, while reducing their time vested in triaging critical
bugs rather than spending time on false-positives.

Vendor specific
Configurations

Vendor
Independent

Representation

Signature
tuning

Reinforcement

Severity &
Ranking

Domain expertise:
Exception mappings

1 2 3

4

Config
auto- clustering

Signature
Inference

Outlier
Detection

1 2

Signature-
based outliers

detection

Signature-based outliers detection

a b

Batfish

Figure 3: MAVERICK System Architecture.

Signature-based outlier detection. This module digests the network
configurations provided in vendor-specific format and translates them
to vendor-independent specification for detecting the outliers in the
network configurations (1). We leverage the specification mecha-
nism used in batfish network verification tool [4]) for representing
the configurations in vendor-independent format. We calculate the
structural outlierness among the network configurations (i.e., repre-
sented in vendor-independent format) for effectively detecting bugs
in the networks. We define, structural outlierness as the deviation
of a network property (i.e., key-value property or named-structure)
from its group or cluster of configurations (i.e., most popular entries
of the cluster) that are programmed onto multiple nodes to achieve
the same functionality (discussed in §II) (a).

For the derived most popular entries within a group or cluster,
we apply domain expertise (i.e., captured as exception mappings)
for automatically inferring the signatures (b). We supply such
automatically inferred signatures to administrator for inspection and
fine-tuning these signatures for detecting bugs in the network config-
urations (2). Though administrator’s intervention is optional in our
case, we use human-in-loop for reducing false positives (4). These
signatures we inferred could be used to detect bugs in the network
configurations before applying them to the network (Signature-based
outlier detection). The capabilities discussed above are performed
by following three key modules of signature-based outlier detection
engine (see §IV): (a) Config auto-clustering module, (b) signature-
inference engine, and (c) Outlier detection engine.

Severity & ranking. For the bugs that are detected from the
signature-based outlier detection module, we apply the severity and
ranking mechanism that we developed to re-prioritize the bugs for
identifying their severity. Deriving severity of each bug helps to
reduce the administrator’s effort and time in handling false positives
(3). We use following three key metrics for calculating the severity
for ranking the outliers (see §IV-B): (a) Similarity and outlierness
scores, (b) Well connected-ness of nodes, (c) Feature-dependency.

Design goal. Our goal is to mitigate the problems in existing
enterprise and campus networks by reducing the amount of effort
involved in detecting bugs, automatically inferring signatures that
acts as reference to verify the network configurations for its sanity
and bugs, while increasing the network coverage (for detecting
generic bugs). Unlike, existing techniques which requires network

configurations to be manually grouped for building the templates [15],
MAVERICK automatically clusters the configurations into separate
groups for building the signatures. However, a key drawback of such
signature inference is that it falsely flags configurations that network
administrators have designed for customized use cases. To mitigate
this problem, we allow administrators to re-tune inferred signatures.
Since there can be multiple valid signatures, this also automatically
allows more customized configurations.

We recognize that even with multiple signatures, it is possible
to false classify multiple configurations as bugs. However, not all
configuration bugs are equally important in a network. Based on the
estimated severity score, we assign priority to each of the identified
bugs and rank them accordingly. This allows the administrators to
focus on the most important bugs, while letting the less important
ones remain for longer time.

IV. HIGH LEVEL SYSTEM DESIGN

In this section, we discuss the network verification mechanism
that we developed to address the limitations discussed in §II-A. As
shown in Figure 3, MAVERICK supports following key functional
components to address these limitations: (i) Signature-based outlier
detection, and (ii) Severity and ranking mechanism.

A. Signature-based Outlier Detection
We use the specification language discussed in the Batfish [4] to

translate the network configurations from vendor-specific languages
(e.g., Cisco’s IOS, Juniper’s JunOS) to vendor-independent (VI)
representation, which avoids the need for designing parsers for each
of the vendor-specific language in MAVERICK. We extract network
configurations i.e., named structure properties (e.g., ACL’s, route-
maps, route-policies), and network server properties (e.g., DNS
server, NTP server, Authentication servers), and configurations on
all the network devices and encode such categorical data into binary
encoded format i.e., using Multi-label binarizer [22], which allows
us to apply statistical and Machine Learning (ML) techniques on the
network configuration data.

The key challenge in bug detection is the ability of administrator
to craft the specification or signature that allows the tool to detect the
bugs and errors. Therefore, automatically generating (i.e., inferring)
the signatures is the key step towards effective detection of bugs
in the network configurations. MAVERICK’s signature-based outlier
detection engine supports following three key capabilities for auto-
matically detecting the bugs present in the network configurations
represented in vendor independent format.
Configuration auto-clustering. As a first step, we run clustering
on each of the named structures (such as ACLs, router-filters, route-
maps) independently, to group them on the basis of their categories
and properties. For example, a network with thousands of ACLs are
clustered into group of tens or groups of hundred on the basis of their
similarity i.e., for automatically inferring signatures from each of the
ACL groups, which is required to compute its signature. As manually
grouping thousands of ACLs into groups on the basis of their name or
other properties is a challenging and tedious process, we use simple
K-means a ML-based technique to cluster the named structures. The
clustered named structures are then used for signature inference. To
obtain the right value of K, we use Elbow [23], and Silhouette [24]
methods to regress on different values of K to decide the optimum.
We heuristically choose a lower limit of K (i.e., regressed from the
above three techniques) equal from the number of unique set of names
used to configure different named structures. Therefore, clustering
reduces the number of signatures inferred, thereby reducing the
amount of manual effort involved with administrator in verifying the
signatures to re-tune them for increasing the precision of signature-
based outlier detection.
Signature inference & generalization. The signature inference en-
gine automatically infers and builds the signatures from the clustered

55Copyright (c) IARIA, 2021. ISBN: 978-1-61208-919-5

SECURWARE 2021 : The Fifteenth International Conference on Emerging Security Information, Systems and Technologies

Algorithm 1 Signature Inference Algorithm.
1: F ← generateV I()
2: P ←getNamedStructProps(F)
3: P ←encode(P)
4: K ← elbow(P)
5: C ← clusters using K-Means of P
6: Let F (c, p) be the value-frequency pair ∀c ∈ C, p ∈ P .
7: Compute threshold T (c, p) from F (c, p), ∀c ∈ C, p ∈ P .
8: Let ϵ be the margin of uncertainty
9: for c ∈ C do

10: for p ∈ P do
11: for (k, v) ∈ F (c, p) do
12: if v > T (c, p) + ϵ then
13: Mark p as bug
14: else if v > T (c, p) & v < T (c, p) + ϵ then
15: Mark p as probable bug
16: else
17: Mark p as normal property

named structures. The signature inference engine composes all the
named part of the cluster to frame a single signature. We use
following grammar in our signature for effectively capturing and
generalizing the signatures, which includes following operators: ‘*’,
‘!’ ‘=’ ‘[]’, ‘{}’, ‘OR’, ‘AND’, ¡IP-Subnet¿ (i.e., IP specific to that
subnet will be considered as legitimate in the signature).

As shown in Figure 4, the signature of a named structure includes
set of key-value pairs (i.e., complex nested). The Key is property
name and the values are array of tuples. The tuples captures one of
the values of property and its weight, where as weight represents the
frequency of occurrences or the density of the value for that property
with in that cluster.

IP_ACL_1 (Signature): {

action: {PERMIT: 45},

matchCondition=Class: {temp1: 36, temp2: 1, temp3:8},

matchCondition=headerspace=ipProtocols: {TCP: 36, UDP: 9],

matchCondition=headerSpace=tcpFlagsMatchConditions: {True: 1},

…

srcPorts: [51102-51102: 37, 51102-51103: 5 51102-51104: 3]

}

Figure 4: Signature Inferred by MAVERICK for IP ACL with the popularity weights are
shown above. Only part of the signature is shown for brevity.

Also, the ability of these techniques to effectively accommodate
the domain expertise and inputs from administrators allows them
to effectively detect bugs present in the network. The signature-
mappings enforces constraints on the property’s key:value pairs that
are part of the signature. The signature-mapping which is provided as
the domain knowledge from the administrator restricts the signature
inference engine to treat specific key:value pairs differently. For
example, the inference engine can discard any specific key and value
associated with it from being part of the signature. For example, we
do not want our bug detection engine to consider the configuration
patch added by administrator to specific issue or corner as outliers.
This allows us to white-list, create exception, or black-list specific
keys to the signature inference engine about the way it should
consider the respective key:value pairs.
Re-tuning outlier detection. Signatures auto-generated using ML-
based techniques could be further fine-tuned by administrator by
supplying the domain knowledge as signature-mappings or manual
inspection. On the contrary, for simple server properties (e.g., DNS
servers, TACACS server properties) the names used on different
nodes are required to be same, which simplifies our task of grouping
configurations for clustering to detect outliers. Hence, they could be
simply grouped together for calculating the outliers.

To verify if a named structure is an outlier, we compare the
properties of this named structure with the respective properties of
the cluster signature. If all the properties in the named structure that
is compared with the signature matches, then the named structure
is considered as valid and bug otherwise. We also calculate their
similarity scores Si and outlier scores Oi, to determine the amount
by which a named structure matches with the signature.

Si =

∑n
i=1 Wi∑s
j=1 Wj

, Oi = 1− Si, ∀i = 1, . . . , n; ∀j = 1, . . . , s, (1)

where n is total number of properties in the signature, s is total
number of signatures, and Wi represents the weight associated with
each of the property in the signature.

B. Severity and Ranking
This list of outliers that is generated as outcome of the signature-

based outliers engine contains the outlier definition, the named
structure it belongs to, and it’s outlier score. The outlier score is
an indication of how strongly our engine believes a particular outlier
to be a bug and its value is between 0 and 1. But an entry with a very
high score could mean that it is a single separate configuration and
does not belong to any signature. Our severity and ranking mechanism
takes this into consideration for effectively calculating the severity.
To rank these outliers, we devise different metrics and assign each
outlier a metric score. Then, using a particular combination of these
metric scores, we calculate the final score of each outlier and rank
them based on this score. MAVERICK uses following three different
metrics to calculate the severity and ranking of the outliers:

(i) Similarity and outlierness scores that we derived from the
outcome of signature-based outlier engine is used as one factor
in deciding the severity of the final bug outcome.

(ii) Well-connectedness of nodes: We use the page-rank algorithm
to establish the importance of each node with the general
idea being that a possible bug in a more important or well-
connected node would be more severe than a bug that has fewer
connections.

(iii) Feature-Dependency Score: This metric tells us the importance
of the features that the named structure is a part of. The general
idea is that the importance of named-structure is network-
specific and therefore, dynamically evaluating these scores helps
provide a much finer and network-specific bug severity analysis.
Consider for example, when a ACL rule marked as outlier
will results in impacting the NAT rules, route-filters and VRFs
associated with it. Hence, outliers in features that has higher
dependency with other features will result in high severe bugs.
The final outcome of the severity and ranking module results in
generating bugs that result in lesser in FPs and FNs (see TABLE
I) and effectively ranked according to its severity (Figure 5).

Finally, the human-in-the-loop correlation score helps re-tune the
signature and reduces false-positives. Once the network administrator
flags a certain outlier as a bug or a FP, all the corresponding outliers
in the population (i.e., cluster in our case) show an increase or a
decrease in their severity score respectively. This metric allows the
administrator to manually inspect numerous bugs of a specific type
from a very large network with relative ease.

V. PROTOTYPE EVALUATION

Dataset. We evaluate the performance of MAVERICK over a total
of four networks using their network configuration. Of the four
networks, three are of medium size network of 157, 132 and 221
nodes (e.g., switches, routers, firewalls, etc.,) and large network of
454 nodes. Medium networks has around 5000 – 10000 properties,
while large scale network has around 60000 properties. The properties
consist of ACLs, Route Filters, VRFs and Routing Policies with

56Copyright (c) IARIA, 2021. ISBN: 978-1-61208-919-5

SECURWARE 2021 : The Fifteenth International Conference on Emerging Security Information, Systems and Technologies

TABLE I: FINAL RANKED BUG OUTCOME MAVERICK TOOL IN ACCORDANCE WITH ITS SEVERITY.

Outlier Signature Definition Conformer
Nodes Outlier Definition Outlier

Nodes
Outlier

Properties
Outlierness

Value
Severity

Score

outlier:Route
Filter List 0

{’action’: [[’PERMIT’, 16]],
’ipWildcard’:[[’100.100.100.0/23’, ’*’, 9],
... [’25-25’, ’*’, 10]]}

[’rt1-dc1’, ’rt2-dc1’.
.., rt91-dc1]

{’action’: ’PERMIT’, ’ipWildcard’:
’100.100.0.0/16’, ’lengthRange’: ’16-20’}

[’rt19-dc1’,
’rt28-dc1’]

[[’lengthRange’,
’16-20’]] 0.978 1.177

ACLs predominant in the large network, whereas RouteFilters are
predominant in the medium sized networks.
Performance. We first compare the performance of MAVERICK in
terms of precision and recall for comparison with baseline techniques
for medium scale enterprise network dataset (DS-3) (see TABLE II)

The baseline techniques include Z-score, modified Z-score, GMM,
and MAVERICK using signature-based outliers. We make two major
observations: (i) We note that MAVERICK’s outlier detection per-
forms better than Z-score, modified Z-score and GMM in terms of
both precision and recall. However, the precision is still only around
0.86, which has further scope of improvement. This is primarily due
to presence of false positives, as a large number of outliers are de-
tected using the inferred signatures. (ii) Manual retuning of signatures
can then further increase the precision to 0.92, thus increasing by
additional 7 – 8% compared to just outlier-based detection. Careful
retuning of ≈97 clusters/signatures detected by MAVERICK for DS-
3 required less than 2 hours for manual inspection. This shows that
manual retuning of signatures can further improve the precision.

TABLE II: EFFICACY OF MAVERICK FOR MEDIUM SCALE ENTERPRISE NETWORK
DATASET (DS-3).

Approach TP FP FN Precision Recall
Z-score 392 1031 240 0.275 0.620

Modified Z-score 417 692 132 0.386 0.760
GMM 298 608 220 0.329 0.575

Maverick (Outliers) 472 74 32 0.864 0.937
Maverick (Retuning) 498 32 8 0.92 0.984

Severity score. We now look at how severity score can change the
sequence of bugs shown to administrators (Figure 5). We plot the
bugs reported in the sequence of their outlier score, along with their
severity scores for one of the medium-sized network. We note that the
sequence of bugs shown to the administrators changes considerably,
with P16 rising up to the most severe rank, followed by P15 and P13.
On the other hand, P6 reduces to the least severe rank, followed by
P5. This shows that using severity score alters the sequence of bugs
shown to the users, and can lead to less important bugs being given
less priority even if they have high outlier scores.

Figure 5: Bugs discovered by MAVERICK with and without severity applied.

Correlation of outliers with real network issues. To further observe
the type of bugs MAVERICK discovers, we utilize a sankey diagram
to show how outliers in different properties correspond to different
types of bugs (Figure 6) in one of the medium-sized network (DS-
3). Correlation of bugs discovered by MAVERICK with real-world

network problems. The left layer corresponds to the type of property
in which outlier is detected. The middle layer corresponds to the
type of signature that is violated. The right layer is the type of real-
world network problem. A higher thickness of flow denotes a higher
number of bugs corresponding to a specific signature in the middle
layer of vertices and then to types of network problems in the last
layer. We observe that most of the bugs arise due to problems in IP
access lists, followed by routing policy, route filter list and VNF’s.
We also observe that the most common type of network problem
is undefined references, but each type of outlier roughly has equal
probability of leading to an undefined reference.

Figure 6: Correlation of bugs discovered by MAVERICK.

VI. CONCLUSION

This paper presented a novel signature inference framework for
detecting the control plane bugs based on structural deviations (i.e.,
outliers or bugs), while their severity is estimated and bugs are
ranked accordingly. The key strength of this work lies in its ability to
automatically infer the signatures from raw network configurations
without much administrator’s intervention and generalize these in-
ferred signatures for transportability. We combine disparate metrics to
rank the severity of the detected outliers. We evaluated our approach
using four different datasets of campus networks and achieved high
bug detection of up to 92% with supply of domain expertise in
the form of signature-mappings. While our approach was simple,
with inferred signatures we were able to discover numerous bugs,
including those that would be impossible to discover with existing
network validation tools.

We made our tool and overall framework that supports wide
range of statistical and ML algorithms along with signature-based
outlier analysis tool as open source to stimulate additional research
specifically in enhancing the network verification, and control and
data plane bug detection mechanism [25].

ACKNOWLEDGEMENTS

This work was done by Vasudevan Nagendra, Abhishek Pokala,
and Arani Bhattacharya when at WINGS Lab, Computer Science de-
partment, Stony Brook University. This work was partially supported
by NSF grant CNS-1642965.

57Copyright (c) IARIA, 2021. ISBN: 978-1-61208-919-5

SECURWARE 2021 : The Fifteenth International Conference on Emerging Security Information, Systems and Technologies

REFERENCES

[1] The Cost of Downtime. https://blogs.gartner.com/andrew-lerner/2014/
07/16/the-cost-of-downtime/, July 2014.

[2] The Ugly Truth about Downtime Costs and How to Calculate Your
Own. https://www.itondemand.com/2018/05/29/costs-of-downtime/,
May 2018.

[3] A. Gember-Jacobson, R. Viswanathan, A. Akella and R. Mahajan. Fast
control plane analysis using an abstract representation. In Proceedings
of the 2016 ACM SIGCOMM Conference, pages 300–313. ACM, 2016.

[4] A. Fogel, S. Fung, L. Pedrosa, M. Sullivan, R. Govindan, R. Mahajan,
and T. Millstein. A general approach to network configuration analysis.
In 12th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 15), pages 469–483, 2015.

[5] A. Panda, K. Argyraki, and M. Sagiv, M. Schapira, and S. Shenker.
New directions for network verification. In 1st Summit on Advances
in Programming Languages (SNAPL 2015). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2015.

[6] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and B. Godfrey. Veriflow:
Verifying network-wide invariants in real time. In Presented as part
of the 10th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 13), pages 15–27, 2013.

[7] Use templates to define a common device configuration. Product
Documentation, 2017.

[8] Managing Multiple Networks with Configuration Templates. Product
Documentation, 2018.

[9] Google Cloud Networking Incident #19009. Google Cloud Networking
Incidents, 2019.

[10] 451 Research: Enterprise Network Automation Gets Competitive. Tech-
nical Report, 2020.

[11] A. Bednarz. Top reasons for network downtime: Network outages linked
to human error, incompatible changes, greater complexity. Technical
Report, 2018.

[12] A. Patrizio. The biggest risk to uptime? Your staff: Human error is the
chief cause of downtime, a new study finds. Imagine that. Technical
Report, 2019.

[13] T. Xu, and Y. Zhou. Systems approaches to tackling configuration errors:
A survey. ACM Comput. Surv., 47(4), July 2015.

[14] Y. Li, X. Yin, Z. Wang, J. Yao, X. Shi, J. Wu, H. Zhang and Q. Wang.
A survey on network verification and testing with formal methods:
Approaches and challenges. IEEE Communications Surveys Tutorials,
21(1):940–969, 2019.

[15] S. Kakarla, T. Alan, R. Beckett, K. Jayaraman, T. Millstein, Y. Tamir
and G. Varghese. Finding Network Misconfigurations by Automatic
Template Inference. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), pages 999–1013, Santa Clara,
CA, February 2020. USENIX Association.

[16] C. Christian, S. Vaton, and M. Pagano. A new statistical approach
to network anomaly detection. In 2008 International Symposium on
Performance Evaluation of Computer and Telecommunication Systems),
pages 441 – 447, 2008.

[17] booktitle=International Static Analysis Symposium T. Kremenek, and
D. Engler. Z-ranking: Using statistical analysis to counter the impact of
static analysis approximations. pages 295–315. Springer, 2003.

[18] T. Kremenek, K. Ashcraft, J. Yang, and D. Engler. Correlation exploita-
tion in error ranking. In ACM SIGSOFT Software Engineering Notes,
volume 29, pages 83–93. ACM, 2004.

[19] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. A general approach
to network configuration verification. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, pages 155–
168, 2017.

[20] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. Bairavasundaram, and S. Pasupathy.
An empirical study on configuration errors in commercial and open
source systems. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, SOSP ’11, page 159–172, New York,
NY, USA, 2011. Association for Computing Machinery.

[21] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou, and S.
Pasupathy. Do not blame users for misconfigurations. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles,
SOSP ’13, page 244–259, New York, NY, USA, 2013. Association for
Computing Machinery.

[22] A. Mallidi. Encoding categorical data in machine learning. Technical
Article, 2019.

[23] P. Bholowalia and A. Kumar. Ebk-means: A clustering technique
based on elbow method and k-means in wsn. International Journal
of Computer Applications, 105:17–24, 2014.

[24] Silhouette (clustering). https://en.wikipedia.org/wiki/Silhouette
(clustering), July 2021.

[25] Maverick: Detection of Control plane and configuration bugs using out-
lier analysis. https://github.com/vasu018/outlier-analyzers/, May 2021.

58Copyright (c) IARIA, 2021. ISBN: 978-1-61208-919-5

SECURWARE 2021 : The Fifteenth International Conference on Emerging Security Information, Systems and Technologies

https://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime/
https://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime/
https://www.itondemand.com/2018/05/29/costs-of-downtime/
https://en.wikipedia.org/wiki/Silhouette_(clustering)
https://en.wikipedia.org/wiki/Silhouette_(clustering)
https://github.com/vasu018/outlier-analyzers/

	Introduction
	Background & Motivation
	Problems with existing approaches

	MAVERICK Overview
	High level system design
	Signature-based Outlier Detection
	Severity and Ranking

	Prototype Evaluation
	Conclusion
	References

