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Technische Hochschule Ingolstadt
Ingolstadt, Germany

jakob@löw.com
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Abstract—Clock glitching is an attack surface of many micro-
processors. While fault resistant processors exist, they usually
come with a higher price tag resulting in their cheaper alterna-
tives being used for small embedded devices. After describing
the effects of fault attacks and their application to modern
microprocessors, this paper presents a novel software based
approach at protecting programs from fault attacks. Even though
the protection mechanism is automatically added to a given
program in a special compiler step, its use case is not to protect
the full program. The approach comes with heavy performance
implications, making it only useful for protecting important
parts of programs, such as initialization, key exchanges or other
cryptographic implementations.

Index Terms—computer security, clocks, microcontrollers, pro-
gram compilers, program control structures

I. INTRODUCTION

Hardening software against glitching attacks manually is a
tedious task and requires a trained developer. Hardware based
glitch detection on the other hand increases cost of production.
Thus the most efficient approach in order to protect against
glitch attacks is with generalized and automated software
mechanisms. The goal of this paper is to introduce a novel
software based approach protecting a program from clock
glitching attacks.
In order to introduce this approach, first, the nature and effects
of glitching attacks in general and clock glitching attacks in
particular are described in Section II. Section III discusses
state of the art software based protection mechanisms. Then a
novel approach detecting glitch attacks is introduced in Section
IV. Finally in Section IV-D the performance impact of the
novel approach is rated given its impact on common compiler
optimizations.

II. GLITCHING ATTACK MODELS

In embedded IT Security, glitching attacks are a special kind
of side channel attacks. Their target is to trigger misbehaviours
of the target processor in order to alter execution or data flow.
A typical goal of a glitch attack is changing the execution
flow such that one instruction is skipped. For example, when
glitching the conditional branch instruction of a signature
check, the check is skipped and the program continues even
if the signatures did not match. Triggering a glitch while
the processor is loading a value from memory can cause the
memory load to not finish correctly and often results in a
zero value being loaded instead. Thus, glitching the data flow
is often used to attack cryptographic algorithms by glitching

the load of keys from memory or by glitching arithmetic
operations [1].
The next Subsection will first describe clock glitching attacks,
which this paper focuses on, in detail. Afterwards Section II-B
will cover the exact effects of clock glitches targeting AVR
Microprocessors.

A. Clock Glitching

Clock glitching is a specific form of glitching attacks. A
glitch in the target processor is triggered by altering the pro-
vided clock signal. Normally a clock signal is generated by an
oscillator with a constant frequency; Rising that frequency is
called overclocking. Each processor has a maximum operating
frequency, if the clock frequency rises above this threshold the
processor starts to behave abnormally.
In a classical clock glitching attack, only a single targeted
glitch is inserted into the clock signal, i.e., a second high signal
is inserted causing the current instruction to not complete
before the next one starts its execution. The effects depend on
various parameters as well as on the processors architecture
and design.
Figure 1 shows the electrical potential of a clock line during a
clock glitch attack. The first Section, labeled as cycle A, shows
a regular clock cycle, while cycle B shows a clock cycle with
a glitch inserted [4].

B. Effects of Clock Glitches on AVR Microprocessors

The research by Balasch et. al [4] goes into detail about
what exactly happens when a microprocessor is attacked by a
glitching attack. They used a Field Programmable Gate Array
(FPGA) to generate a clock signal for ATMega163 based smart
cards. The FPGA allows clock signal modifications, such as
inserting a glitch at a specific location. The ATMega runs
a special firmware, which places all registers in a known
state, executes the instruction targeted by the glitch and then
examines the state of all registers of the microprocessors. From
the transformations between the start state and the result state
the executed instruction can be derived. This, however, is a non
trivial task. For example when before the instruction the value
0x0f was in register r18 which changed to 0xf0 afterwards
the executed instruction could either be a 4-bit left shift or
an addition with 0x51. Multiple runs with the same glitch
period, the same instruction but different input states have to
be performed in order to be able to identify the actual executed
instruction.
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Fig. 1: Injection of a Clock Glitch

With these methods [4] shows the actual effect of clock
glitches with different glitch periods on a target instruction.
During instruction fetching the value of the instruction to
execute next changes from the previous instruction to zero and
then to the value of the following instruction. By injecting a
glitch into this transition, depending on the length of the glitch
period, either a decayed version of the previous instruction or
a decayed, i.e. not yet fully loaded, version of the current
instruction can be executed. Figure 2 shows this behaviour
for a Set all Bits in Register (SER( instruction followed by
a Branch if Equal (BREQ) instruction. In this specific case,
for a glitch period up to 28 ns a decayed version of the
BREQ instruction is executed. From 32ns and upwards an
intermediate value of the transition from zero to SER is
executed [4].

Glitch
period Instruction Opcode (base 2)

TST R12 0010 0000 1100 1100
- BREQ PC+0x02 1111 0000 0000 1001

SER R26 1110 1111 1010 1111
≤ 57ns LDI R26,0xEF 1110 1110 1010 1111
≤ 56ns LDI R26,0xCF 1110 1100 1010 1111
≤ 52ns LDI R26,0x0F 1110 0000 1010 1111
≤ 45ns LDI R16,0x09 1110 0000 0000 1001
≤ 32ns LD R0,Y+0x01 1000 0000 0000 1001
≤ 28ns LD R0,Y 1000 0000 0000 1000
≤ 27ns LDI R16,0x09 1110 0000 0000 1001
≤ 15ns BREQ PC+0x02 1111 0000 0000 1001

Fig. 2: Instruction decay based on glitch period

III. EXISTING SOFTWARE BASED GLITCH DETECTION
TECHNIQUES

With one of the first papers covering fault based attacks
on cryptographic implementations dating back to 1997 [1],
there are already multiple papers covering protection mecha-
nisms against fault attacks using software or hardware based
countermeasures. The software based countermeasures are
usually based on either duplicating instructions or validating
computations. The following sections describe some of the

common approaches at glitch detection by example, before a
novel approach is discussed in Section IV.

A. Instruction duplication mechanisms

A very common approach at protecting code from glitch
attacks is instruction duplication or even triplication. It is
usually implemented at a very late stage in the compilation
process and works by simply duplicating memory load or
even arithmetic instructions and checking their results for
equality. A simple ARM64 assembly example is shown in
Figure 3. Instead of only loading the value at x0 once into
register w0 it is loaded a second time into w1. If a glitch
occured in one of the two instructions, i.e. a wrong value was
read from memory, the comparasion check fails and an error
handler is called.

l d r w1 , [ x0 ]
l d r w0 , [ x0 ]
cmp w1 , w0
bne g l i t c h e r r o r

Fig. 3: Validation using instruction duplication

While this approach is simple to implement it is flawed,
especially when using modern microcontrollers with multi
stage pipelines. As shown by Yuce et. al in [6] injecting a
single glitch can affect multiple instructions. This is possible,
because the two load instructions are not executed one after
another, but rather go simultaneously through various stages
in the processor pipeline.
In general placing the validation of an instruction too close to
the instruction itself renders the validation vulnerable to single
glitch attacks.

B. Loop count validation

In [8], Proy et. al describe an automated compiler based
glitch detection mechanism. Instead of validating arbitrary
expressions as shown later in this paper, the approach from
[8] focuses on validating loop exit conditions and iteration
counts. The goal is to prevent attacks which weaken the
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security of cryptographic algorithms by reducing the number
of encryption rounds.
A special compilation pass is added to LLVM, a very
common compiler infrastructure. When encountering a loop
with a iteration variable this optimization pass add a a second
iteration variable which gets incremented or decremented the
same as the original variable and thus allows to validate the
loop exit condition after the loop exited. For example, the
loop shown in 4a is modified to include a second variable and
a condition check turning it into code for the loop shown in 4b.

i n t i = 0 ;
w h i l e ( i < 10) {

/ / . . .
i ++;

}

(a) Loop with iteration variable

i n t i = 0 ;
i n t j = 0 ;
w h i l e ( i < 10) {

/ / . . .
i ++;
j ++;

}

a s s e r t ( j >= 1 0 ) ;

(b) Loop from 4a with validation

Fig. 4: Basic loop validation example

This optimization works best for loops with simple iteration
calculation, i.e. adding or subtracting a constant from the
iteration variable each iteration. Loops which contain break
statements or which use a complex iteration modification
however increase complexity of correct validations. The code
listings in Figure 5 demonstrate these special loop forms.
A glitch attack on the calculation of x in Figure 5b would
affect not only the iteration variable, but also a possible
validation variable. Thus for glitch robustness not only the
iteration variable needs to be duplicated and recalculated, but
also all variables used to modify it. In [8] this is achieved by
tracing through the expressions used to modify the iteration
variable and recalculating all these expressions.
The following section describes a similar, but broader ap-
proach, which not only validates loop conditions but rather
all expressions calculated in a function.

i n t i = 0 ;
w h i l e ( i < 10) {

/ / . . .
i n t x = / / . . .
i f ( x == 42)

b r e a k ;
i ++;

}

(a)

i n t i = 1 0 ;
w h i l e ( i > 0) {

/ / . . .
i n t x = / / . . .
i −= x ;

}

(b)

Fig. 5: Advanced loop validation examples

IV. DETECTING GLITCHES USING EXPRESSION
VALIDATIONS

Traditionally, glitch detection techniques use instruction
duplication or even triplication. While this works for some
architectures, as described in Subsection III-A, a duplicate
instruction is still vulnerable to a single fault on processors
featuring a multi stage pipeline. Thus in order to increase the
robustness of glitching detection mechanism the validation has
to be placed as far away from the original computation as
possible. In compiler engineering functions a divided into mul-
tiple blocks through which execution flows linearly. Moving
validations out of the basic block of the original computation,
means the number of instruction executed between computa-
tion and validation can vary between just a few computations
to multiple calls to other functions. Placing validations farther
away from their original computations makes it harder for an
attacker to glitch both computation and validation.
The following sections describe how to find the optimal lo-
cations for validations and how to validate both computations
and conditional branches.

A. Identifying Locations for Validations
As described in Subsection III-A glitch detection mecha-

nisms are still vulnerable to a single glitch fault when the
duplicated instruction, in our case the second computation, is
placed close to the original instruction. Placing the validation
as far away from the original computation as possible ensures
its robustness against single fault attacks.
The last possible location for a validation check is usually the
end of the scope a value is defined in. For a value defined
in a conditional or loop body this results in the check being
placed at the end of the conditional or loop respectively. For
a value defined in a function the last possible check is right
before the function returns. Figure 6 shows an example with
these two cases.
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i n t main ( i n t a rgc , c h a r ** a rgv )
{

i n t x = a r g c * 10 − 2 ;
i f ( a r g c > 1)
{

i n t y = x * 3 ;

i f ( a r g c > 2)
p u t s ( a rgv [ 1 ] ) ;

/ / <−− v a l i d a t e ‘y ‘ h e r e
}

/ / <−− v a l i d a t e ‘x ‘ h e r e
r e t u r n x ;

}

Fig. 6: Example Code

While it is trivial to find the optimal location for immutable
variables in program code, a mutable variable might be
changed between its first initialization and the end of the
scope. In order to correctly validate all values of a mutable
variable the location has to be determined during a later stage
in the compilation process. The Static Single Assignment
(SSA) form is a very common form of representing a program
in compilers. In SSA form each variable is immutable and only
assigned once, variables which are originally mutable and set
multiple times are split up into seperate variables for each
assignment. Additionally a function in SSA form is usually
represented as basic blocks rather than loops and branches.
Figure 7 shows how gcc represents the code listed in Figure
6 internally after SSA creation.
The validation of x, labeled x_5 in Figure 7, can be placed
in block 5 (B5). But there does not exist a block for the
optimal location to validate y_7. It cannot be placed in B5,
as that block is also reachable from B2 where y_7 does not
exist. Thus a new block has to be created, with B3 and B4 as
predecessors and B5 as successor. The edges B3 → B5 and
B4 → B5 have to be removed. The validation of y_7 can
then be placed inside the newly created block.
In general a variable x created in block Bx can only be
validated in Bx itself or in a block Bi where all predecessors
prec(Bi) are direct or indirect successors of Bx. The optimal
location for the validation is by definition the block that is
the farthest away from Bx while still meeting the required
condition.
Figure 8 shows the SSA block graph of Figure 6 with
validations. Block B5 is the newly inserted block and B6 the
former block 5.

Fig. 7: Basic Block graph in SSA form of 6 without validations
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Fig. 8: Basic Block graph in SSA form of 6 with validations

B. Validating Calculations

Without deeper knowledge of the implemented algorithm
validating calculations often boils down to simply recomputing
all values and thus duplicating the entire calculation.
For example, the statement int x = argc * 10 - 2;
from Figure 6, results in the SSA shown in the following
listing:

1 = a rg c 9 (D) * 1 0 ;
x 10 = 1 + −2;

For a full validation both the SSA values _1 and x_10 have
to be recalculated and validated:

5 = a rg c 9 (D) * 1 0 ;
b u i l t i n v a l i d a t e ( 1 , 5 ) ;

6 = 5 + −2;
b u i l t i n v a l i d a t e ( x 10 , 6 ) ;

A simpler approach is to only validate the outermost result
of one or more chained calculations. For the above exam-
ple this is achieved simply by removing the first instance
of __builtin_validate resulting in the code shown
in 8. For larger entangled calculations removing redunant
validations allows to greatly reduce the amount of validations
required. For instance all variables in the following C code can
be validated using a single validation of z instead of having
to validate all variables or even all intermediate SSA values
one by one.

i n t x = a * 10 + 3 ;
i n t y = x / 7 ;
i n t z = x * y * 1 3 ;

The __builtin_validate function acts similar to an
assert equals function, it continues with execution if the two
values are identical and cancels execution otherwise. In a pro-
duction environment the function can be inlined producing an
inequality check and a conditional jump to an error function,
resulting in code similar to what gcc produces for calls to
assert. Figure 9 shows the validation of x from Figure 6.

Fig. 9: Validation in production

C. Validating Comparasions and Conditional Jumps

In gcc the condition of a branch can not only be a single
SSA value, but also a comparasion operation. An example is
the if (argc_4(D) > 1) statement at the end of block
2 in Figure 7. This is because in most processor architectures
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a comparasion of two values used for a conditional jump is
done without storing the result in a common register, i.e. the
comparasion result is only stored in a flags register which
is then immediately used by the following conditional jump
instruction.
As there exists no SSA name for the result of such compara-
sions in gcc it cannot be validated as described in Subsection
IV-B. A block with a conditional branch at the end always
has two successors, one for when the condition is true,
one for when its false. Therefore in order to validate the
condition, two validations, one for each successor have to be
created. Each validation follows the same rules as described
in Subsection IV-A with their initial blocks being the targets
of the conditional edges.
In general, for a block Bi with multiple successors, the
branching condition can be validated using one validation
placed as if a value j has been created in Bj for all edges
Bi → Bj .
If one of the successors Bj is also a direct or indirect successor
of any of the other successors of Bi a new block between Bi

and Bj has to be inserted. This is usually the case for loops
and if statements without an else block. For example, in Figure
7 the validation for the condition of B2 being false cannot be
placed in B5, as B5 is also a successor of B3.

D. Performance Considerations of Expression Validations

Simple instruction duplication mechanisms as described in
III-A duplicate the runtime of the protected instructions. This
holds true for simple microprocessors where each instruction
takes a fixed amount of clock cycles. For advanced processors
which incorperate memory caching a second load of a specific
address will result in a cache hit, which is usually faster than
a load from memory.
The novel glitch detection approach described in Section
IV also duplicates instructions and thus has similar effect
during runtime. The bigger impact, howver, is its prevention
of possible compiler optimizations resulting in the generation
of less performant instructions. Normally a compiler analyzes
the lifetime of variables and the collisions between those
lifetimes. The lifetime of a variable starts when the variable
is first set and ends with its last usage. Two lifetimes collide
when they are both alive at any given point in the function.
When two lifetimes do not collide they can be placed in the
same processor register. With too many lifetime collisions
the compiler might run out of registers to assign and has
to place variables in memory instead [5]. By definition, the
optimal location for validation, as given in Subsection IV-A,
extends the lifetime of variables to the maximum possible.
Thus, with the novel detection approach, the register allocator
of the compiler will have to place variables in memory
more often, resulting in more memory accesses and decreased
performance.
For example the SSA variable y_12 of Figure 8 would
normally live only for a short time in B3. Its validation in B5

extends its lifetime, making it collide with the SSA variables
_2, _3 and _4.

In order to decrease the performance impact expression val-
idation can only be enabled for security relevant functions
such as cryptographic implementations or credential checks
by disabling validations for all functions and adding a special
compiler attribute to relevant ones.

V. CONCLUSION

After giving an introduction to glitching attacks and clock
glitches in particular, we discussed various software based
approaches at hardening against glitching attacks. While the
common protection mechanism discussed in Subsection III-A
can easily be applied to a program via an additional compila-
tion pass, it is also shown to be ineffective [6]. The protection
mechanism discussed in Subsection III-B by Proy et. al [8]
can easily be applied to existing codebases, but only validates
loop conditions and loop iterators.
The novel approach described in Section IV tries to combine
the best traits of the three described previous mechanisms. It
is similar to the mechanism by Proy et. al [8] as it also comes
in the form of a compiler pass and it also adds validations of
existing computations to the program. However, it not only
validates loop conditions, but rather generalizes validation
of arbitrary computations and branch conditions. This allows
it to also protect the program from glitch attacks targeting
value computations or substitutions, instead of only protecting
against attacks aimed at modifying loop execution counts.
As discussed in Subsection IV-D this novel approach comes
with a big performance impact, doubling the execution time
in the best case scenario, but usually having an even worse
impact. Thus the approach is best applied only selectively to
specific parts of a program, keeping performance impact low
while still providing protection to curcial code parts.
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