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Abstract—Recently, critical infrastructure systems have become 
increasingly vulnerable to attacks on their data systems. If an 
attacker is successful in breaching a system’s defenses, it is 
imperative that operations are restored to the system as quickly 
as possible. This research focuses on damage assessment and 
recovery following an attack. We review work done in both 
database protection and critical infrastructure protection. 
Then, we propose a model using a graph construction to show 
the cascading affects within a system after an attack. We also 
present an algorithm that uses our graph to compute an optimal 
recovery plan that prioritizes the most important damaged 
components first so that the vital modules of the system become 
functional as soon as possible. This allows for the most critical 
operations of a system to resume while recovery for less 
important components is still being performed. 

Keywords-critical infrastructure; damage assessment; 
recovery. 

I. INTRODUCTION 
Critical infrastructure systems are those that are 

considered extremely critical to the functioning of a 
government or a country. As described in [1], critical 
infrastructures are like the vital organs of a body that need to 
perform their own roles for the human body to function 
efficiently and painlessly. The US Department of Homeland 
Security [2] declares that such systems are “so vital to the 
United States that their incapacity or destruction would have 
a debilitating impact on our physical or economic security or 
public health or safety.” Therefore, the protection and smooth 
functioning of our nation’s critical infrastructures are 
indispensable and cannot be ignored. 

These systems are becoming prime targets of attackers – 
primarily state actors – and a major attack on one can cripple 
the economy of the victim nation.  These systems are also 
more likely to be connected to the internet now to provide 
benefits like cost reduction (where large systems can be 
remotely managed over the public network), increased 
capability (by providing sufficient computing resources for 
infrastructure hardware with less capability power), and 
improved efficiency and transaction speed.  This connectivity 
unfortunately makes it easier for attackers to hack into these 
systems. Consider the New York Times report about the 
attack on Colonial Pipeline [3]. While the details of the attack 
are not yet disclosed, a group of cybercriminals were able to 
compromise data systems using the internet, which resulted 
in Colonial Pipeline shutting down their pipeline. This outage 
affected mass transit and other industries across the entire 

U.S. East Coast and exposed a lack of preparation for such a 
crisis. This illustrates how an external system can have a 
relationship with a critical infrastructure system and how 
such relationships can be exploited to carry out an attack. 

It is clear from past incidents and recent reports ([4]-[7]), 
to cite just a few) that attacks on critical infrastructures are 
occurring frequently, which indicates that prevention 
mechanisms are not enough to stop them.  Thus, it is of 
utmost importance to aggressively prepare for post attack 
activities, which include damage assessment and recovery 
mechanisms that are critical to making the affected systems 
available at full functioning mode as soon as possible.  This 
research aims at meeting this important goal. 

We propose a framework that models damage spread 
within a set of data objects based on object dependencies and 
prioritizes making repairs to the most critical objects first. 
The framework is based on some of the models explored in 
critical infrastructure protection and uses a version of 
previously proposed repair methods that is modified to focus 
on meeting specific goals when determining the order in 
which repairs are made. 

The rest of the paper is organized as follows.  Section 2 
offers some work performed in this area.  Section 3 defines 
the problem that we aim to build our model for. We provide 
details on our model in section 4, which includes three 
subsections to explain our definitions, model description, and 
algorithm. Section 5 concludes our work. 

II. RELATED WORKS 
This paper aims to examine methods and frameworks 

used for database and critical infrastructure protection and 
apply it towards protecting a set of data objects. This section 
describes some of the publications that are relevant to our 
proposed framework. One of the major works on damage 
assessment and recovery within a database uses data 
dependency to find data affected by an attack to optimize 
recovery [8]. While this method relies on the direct 
relationships between data items, an alternate model to 
recover data from an attack instead uses the transaction log 
for assessment [9].  

Kotzanikolaou et. al describe a model in [10] that assists 
in risk assessment for possible scenarios that can result in 
cascading failures within a CI system. For critical 
infrastructures with data-rich operations, the use of Cyber-
Physical Systems can cause new vulnerabilities as described 
in [11]. Their model analyzes threats that can appear due to 
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these vulnerabilities and analyzes the potential cascading 
damage they can cause. System dynamics modeling can also 
be used to analyze disruptive events to characterize such 
disruptions to critical infrastructure by risk assessment and 
various impact factors as shown in [12].  

Rehak et. al [13] model an infrastructure system as 
elements and linkages with different types of relationships 
establishing dependencies and interdependencies. They note 
that these elements can have varying criticality, causing some 
elements to cascade more damage into the system than others 
in the event of a failure. This work is important because by 
establishing criticality, they quantify damage within a 
system. We use this concept of criticality later in this paper 
to direct the optimal repair path of data objects.  

We also consider models that assist with recovery during 
an attack. In [14], an algorithm is proposed to restore 
damaged element paths by recursively breaking down 
demand flows into simpler problems. They use a centrality 
metric to rank damaged nodes and determine which ones 
should be repaired first and expand on the use of centrality to 
make repair decisions in further work [15]. We use the 
concept of centrality to rank data objects in a case where two 
or more are equally critical. In our algorithm, we also utilize 
their method of simplifying damage paths to find the fastest 
route to restoring intermediate data objects.  However, the 
novelty of our approach is twofold: we must repair all 
components within the system because data objects cannot 
have computations rerouted, unlike the network components 
in the work we have reviewed, and we aim to restore the most 
important components first so that their functions can be 
restored while repairs to the system are still ongoing. 

III. PROBLEM DEFINITIONS 
In the occasion when an adversary information attack 

succeeds, the victim must have the capability to degrade 
gracefully and recover damaged data and/or services in real-
time if it is to survive.  It is necessary to immediately carry 
out damage assessment and recovery process in order to bring 
the systems to working states.  Otherwise, the damage would 
spread to other unaffected systems that are interconnected.  
This happens when a valid user or an unaffected system 
module reads a damaged object during its computation and 
updates another object based on the compromised value, 
causing the latter damaged as well. As time goes on, more 
and more objects become affected in this manner causing the 
spread of damage to fan out through the system quickly.   

For damage assessment and recovery purpose, 
information about all processes that have been executed must 
be stored in the log (more on this presented later).  This will 
help in determining the relationships among the processes, 
thus helping in establishing the damage trail.  Moreover, 
during recovery, the operations of processes that have spread 
the damage have to be undone and then redone in order to 
produce correct states of affected objects.  The problems with 
existing systems are: (1) They do not store process execution 
information in the log, and they purge the log periodically, 

(2) Their recovery mechanisms are not designed to undo the 
effects of executed processes, (3) The size of the log, as it 
must not be purged, will make it almost impossible to 
continue the recovery process in real-time, and (4) During the 
damage assessment and recovery process, the system remains 
unavailable to users.  This delay induces a denial-of-service 
attack, which is highly undesirable in time-critical 
applications that the critical infrastructures are designed to 
provide.  Due to massive amount of data in the log that needs 
to be processed, the problem becomes even worse. 

The goal of this research is to develop fast, accurate, and 
efficient damage assessment and recovery techniques so that 
critical information systems not only survive the attacks 
gracefully but will continue to operate providing as many 
vital services and functions as possible even before the 
system is fully recovered. In the next section, we explain how 
our model can accomplish this. 

IV. THE MODEL 
In this section, we describe our model in detail. The first 

subsection defines important graphs and metrics that we use 
for our model. In the next subsection, we describe how the 
model is built and is used to determine an optimal recovery 
plan. Finally, we describe the algorithm we use to implement 
our model. 

A. Definitions 
We first define the concept of information flow in a 

system.  This also defines dependencies among various 
objects in the system and is used in our graph-based model. 
Definition 1:  Given two objects Oi and Oj in a system, if the 
value of Oj is calculated using the value of Oi, we say that 
there is information flow from Oi to Oj.  Thus, Oj is said to be 
dependent on Oi and is denoted as Oi → Oj. 

The above definition helps in determining the spread of 
damage in the system.  That is, if an object is damaged, then 
all its dependent objects will be considered damaged.  During 
recovery, the parent (pre-cursor) object must be recovered 
before any of its dependent objects can be recovered. 

Next, we define a graph containing the set of objects and 
all possible paths among them. We call it Possible Paths 
graph and it spans the entire system of objects and all 
dependency paths among them. An example of this graph is 
shown by Figure 1(a).  

Definition 2:  Consider a system containing the set of objects 
O.  The Possible Paths Graph (PPG) is built by having a 
node Ni for each object in O.  There exists an edge Eij from 
Ni to Nj in the PPG if there is a possibility that information 
may flow from Ni to Nj, that is, Nj may be modified based on 
the value of Ni. 
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The purpose of building a PPG is that it will help during 
the damage assessment preparation phase.  By assuming the 
point of attack one can identify the set of items that may be 
affected consequently. Thus, security officers can be 
prepared for different types of eventuality. 

The second set of objects contains the actual paths that 
were used to make changes in the system within a specified 
time span, which for the purposes of the third graph that will 
be defined, is usually the time passed since an object has been 
damaged. This set is represented by the Active Paths Graph 
(APG), and all objects and dependencies in this set exist in 
the PPG. This graph will help in determining the damage flow 
in case of an attack.  Given an initial attack point (an object), 
one can determine which objects in the system may be 
affected by the attack and which ones will not be.  Therefore, 
the ability of the system to carry out its intended functions 
can be calculated.  That is, during the recovery process, the 
set of damaged objects will be made unavailable while the 
rest can be made accessible. Knowing which objects will 
remain unaffected, one will be able to identify what services 
the system will be able to offer while the recovery continues. 
Definition 3:  The Active Paths Graph (APG) contains nodes 
N and edges E such that for every Ni є N and every Eij є E, 
both Ni and Eij are also present in PPG, and Eij illustrates an 
actual information flow; that is Nj was updated based on the 
value of Ni. 

 
Figure 1b. The Active Paths Graph (APG) 

Figure 1(b) provides an example of an Active Paths 
Graph and as can be seen it is a sub-graph of Figure 1(a).  As 
discussed before, once an initial attack point is determined, 
the APG will help in accurately determining the damage flow 
and the set of objects affected by the attack.  As discussed 
before, as time goes on, more and more objects will be 
affected as new objects will be updated based on the value of 
an affected object.  Thus, to stop the spread of damage, all 
affected objects must be quickly identified and taken offline 
as soon as possible.  This can be achieved by doing a flow 
assessment using the APG.  This leads to the concept of 
actual damage spread path showing exactly which objects 
were affected by an attack. If a system is damaged, we 
represent the spread of damage as a third set of objects, the 
Damage Spread Graph (DSG). The set of objects and 
dependencies in this graph must exist within the APG, as 
damage spread occurs when objects make changes based on 
their dependencies. Like how the APG is a subsection of the 
PPG, the DSG is a subsection of the APG. Figure 1(c) is an 
example of what a damage path may look like. It is important 
to note that over time, a damaged object will always cascade 
its damage down to dependent nodes included in the APG.  
Definition 4 formally defines the DSG. 

Definition 4: A Damage Spread Graph (DSG) contains 
nodes N and edges E such that for every Ni є N and every Eij 
є E, both Ni and Eij are also present in APG and every node 
in N is damaged through an attack on the system.   
Moreover, an edge Eij depicts that Ni was damaged first and 
then Nj was damaged through the flow of information from 
Ni to Nj. 

 
Figure 1c: The Damage Spread Graph (DSG) 

Note that the edges between two objects may be 
bidirectional or recursive.  For example, if an object Oj can 
have a dependency on object Oj and vice versa, then there 
will be a bidirectional edge between Oj and Oj.  Similarly, if 
an object can be dependent on itself, it will result in a 
recursive graph.  To clarify, let us consider an object “salary”.  
When an employee receives an increment that is based on a 
percentage of the current salary of the employee, it causes the 
new salary to be dependent on the old salary and is depicted 
by using an edge from salary to salary itself.   However, it 
must be noted that, for simplicity, we use neither bidirectional 
nor recursive edges in APG or DSG.  Rather, when an object 
is modified, we note that as a new version of the object, thus 
creating a new node for the object with the version number. 

To minimize the time needed to restore the most 
important objects within a system of object dependencies, we 
also define criteria used to determine the order in which 
repairs are made: 
Definition 5:  The criticality of a node N is its predetermined 
level of importance to the system’s functions. This must be 
predetermined for the flexibility of the model to fit various 
systems and align the model with the goals of each specific 
system. For example, one system may need to prioritize 
certain components that other systems do not. The criticality 
of a component can be measured by various characteristics 
such as the intensity or scope of an impact caused by its 
failure as described in [13]. 

We assign a positive whole number to each node N to 
represent criticality. A lower assigned value indicates higher 
criticality. For example, a node Ni with a criticality of 2 would 
be considered more important than a node Nj with a criticality 
of 4. It is important to note that criticality values are not 
unique, meaning multiple nodes can have the same criticality 
value. When that happens, we use the following metric in the 
next definition to serve as a first “tiebreaker”.  
Definition 6:  Objects that have more damaged dependencies 
take longer to repair. Therefore, the repair time of a node N 
is defined as how many inward-flowing edges Ei it is 
receiving damage from.  

When two or more objects are assigned the same 
importance, we choose to first repair the one that has a lower 
repair time. For example, consider two nodes Ni and Nj that 
are equally critical. If Ni needs 5 other nodes repaired to 
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repair it, and Nj needs 3 other nodes to repair it, then we will 
repair Nj first, because its operation can be restored more 
quickly than that of Ni. 

 
Figure 2a. A parent node with high centrality 

 

 
Figure 2b. A parent node with low centrality 

Definition 7:  The centrality of a node N is the number of 
outward-flowing edges Eo it has.  

We use the above metric to decide the next object to 
repair when two or more are equal in both criticality and 
repair time. An object with a higher number of Eo will have 
higher centrality. Figure 2a and Figure 2b show two 
subsections of a DSG that highlights centrality. As shown in 
Figure 2a, N4 has three nodes that are dependent on it: N1, N2, 
and N3, while as Figure 2b depicts, N6 only has a single node 
N5 dependent on it. Assume that the repair algorithm has 
repaired the parent node(s) of N4 and that of N6.  To clarify 
the situation, N4 and N6 need not have the same parents; it is 
just that both are in line to be repaired next.  In this scenario, 
repairing N4 before N6 reduces the repair time for the three 
dependent nodes of N4 instead of only one of N6, which can 
make future repairs be performed faster. Therefore, N4 is 
considered to have a higher centrality than N6. 

B. Model Description 
 The model uses the three graphs defined in the previous 
section to construct a representation of a given system and its 
sustained damage from the time of the initial attack. The PPG 
is a preprocessed map of all components and dependency 
paths within a system. We assume that we know how much 
time has passed since the initial attack and build the APG by 
including components and dependency paths that were used 
in a transaction log in that period. By knowing the component 
where the initial attack occurred, we build the DSG by tracing 
the damage through the transaction log. For damage to spread 
from one component to the next, it must follow two criteria: 
1) there is a damaged node Ni that has an edge Eij flowing 
from it to node Nj and 2) Eij is used for a transaction while Ni 
is damaged. For the DSG to exist, the initial attack must occur 
within the APG, otherwise there is no cascading damage. 

The goal of the model is to find the optimal sequence of 
repairs to restore the most important operations of a system 
as quickly as possible. We use the metrics defined in the 
previous section to decide which components should be 
repaired first. The first metric is criticality – the most critical 
components must be restored first to resume important 
operations. However, these components may also be 
dependent on other components that are damaged. These 
components must be repaired first before the base component 
can be repaired. At this point, the same problem is applied to 
the dependency components, and the most critical one is 
chosen first. If there is a tie, then components with a lower 

repair time are picked first. For example, a component that 
has two damaged parent components will be prioritized over 
a component with three or more damaged parent components 
if both components are equally critical.  

 
Figure 3. Recovery sequence decision 

To clarify, let us consider the graph presented in Figure 
3.  As shown in the figure, nodes N1, N2, and N3 are dependent 
on N4.  Assume that the damage assessment method identified 
N4 as damaged; thus, nodes N1, N2, and N3 are also identified 
as damaged.  During the recovery process, N4 was recovered 
before the other three nodes.  However, since it has three 
dependents all of which are damaged, the question is, which 
one should be repaired first. As our goal is to have the vital 
functions of the system to be made available before the other 
operations, our algorithm would choose the node among N1, 
N2, and N3 having the most criticality.   

C. The Algorithm 
 First, we discuss the primary objective of our work.  Let 
us consider the notations used in the following table: 

TABLE I.  NOTATIONS 

Notations Descriptions 
𝑃𝑃 = (𝑉𝑉,𝐸𝐸) Possible Path Graph 
𝐴𝐴 = (𝑉𝑉𝐴𝐴,𝐸𝐸𝐴𝐴) Active Path Graph ( 𝑉𝑉𝐴𝐴 ⊆ 𝑉𝑉,𝐸𝐸𝐴𝐴 ⊆ 𝐸𝐸) 
𝐷𝐷 = (𝑉𝑉𝐷𝐷,𝐸𝐸𝐷𝐷) Damage Spread Graph ( 𝑉𝑉𝐷𝐷 ⊆

𝑉𝑉𝐴𝐴,𝐸𝐸𝐷𝐷 ⊆ 𝐸𝐸𝐴𝐴) 
𝐷𝐷 = (𝑉𝑉𝐶𝐶 ,𝐸𝐸𝐶𝐶) Critical Node Graph (  𝑉𝑉𝐶𝐶 ⊆ 𝑉𝑉𝐷𝐷,𝐸𝐸𝐶𝐶 ⊆

𝐸𝐸𝐷𝐷) 
𝛿𝛿𝑖𝑖𝑖𝑖 Decision to fix edge 𝑖𝑖 to 𝑗𝑗 
𝛿𝛿𝑖𝑖 Decision to fix node 𝑖𝑖 
𝑡𝑡𝑖𝑖 Time to fix node 𝑖𝑖 
𝑐𝑐𝑖𝑖 Centrality of node 𝑖𝑖 
𝑃𝑃𝑖𝑖𝑖𝑖 Dependency indicator of node 𝑖𝑖 and 𝑗𝑗 

Our objective is to find min∑ 𝑡𝑡𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖∈𝑉𝑉𝐷𝐷  subject to  
𝛿𝛿𝑖𝑖 ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑗𝑗∈𝑉𝑉𝐶𝐶 ≤ ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗∈𝑉𝑉𝐶𝐶   ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉𝐶𝐶          (1) 
𝛿𝛿𝑖𝑖𝑐𝑐𝑖𝑖 ≥  ∑ 𝛿𝛿𝑖𝑖𝑖𝑖(𝑖𝑖,𝑗𝑗)∈𝐸𝐸𝐶𝐶    ∀𝑖𝑖 ∈ 𝑉𝑉𝐶𝐶                         (2) 
𝑃𝑃𝑖𝑖𝑖𝑖 ∈ {0,1}    ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉𝐶𝐶                                    (3) 
𝛿𝛿𝑖𝑖, 𝛿𝛿𝑖𝑖𝑖𝑖 ∈ {0,1}   ∀𝑖𝑖 ∈ 𝑉𝑉𝐶𝐶 , (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸𝐶𝐶               (4) 

 That is, the goal is to minimize the time required to fix 
all critical nodes subjected to conditional constraints of the 
system. To make sure that each preceding nodes of 𝑖𝑖 are fixed 
before node 𝑖𝑖 being processed, condition (1) is used. For 
example, if there is a node 𝑗𝑗 connecting to 𝑖𝑖 but in a prequel 
order, the sum product of all nodes 𝑗𝑗 status and dependency 
indicator 𝑃𝑃𝑖𝑖𝑖𝑖  should be greater or equal than the product of 
sum of all dependency indicator 𝑃𝑃𝑖𝑖𝑖𝑖  with node 𝑖𝑖. To make 
sure that there would not be more out-going flows than the 
given capability of node 𝑖𝑖, equation (2) is imposed to make 
sure the total out-going edge would not surpass the centrality 
of node 𝑖𝑖. Conditions (3) and (4) were built to impose the 
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binary attribute of the dependency indicator 𝑃𝑃𝑖𝑖𝑖𝑖 , the decision 
whether to fix node 𝑖𝑖 or edge from node 𝑖𝑖 to node 𝑗𝑗. 
The algorithms provided in this section use the model 
described in the previous section to compute the optimal 
order of repairs to restore the most important functions of a 
system first. When an attack occurs, we expect an Intrusion 
Detection System (IDS) to identify the attack and provide the 
initial point of damage.  The working principles of IDSs are 
not within the scope of this work and so, not described here. 
 After receiving notification from an IDS, a precise 
damage assessment is performed.  If the damage assessment 
process is unable to make accurate assessment, i.e., in case a 
damaged node is not correctly identified, it and its dependent 
nodes, which are also damaged, will remain unrecovered.  
This will result in valid users or procedures reading them and 
spreading damage by updating other objects, as discussed 
earlier.  For a detailed discussion on damage assessment, one 
may review [8] and [9], which were developed particularly 
for database systems.  However, the methods are still 
applicable to critical infrastructure systems.  Below we 
provide a basic mechanism to carry out the assessment. 
 Damage assessment begins with the APG, which shows 
the actual dependency relationships among the objects in the 
system (Note that the APG can be built as transactions are 
executed and dependencies are established among various 
nodes of the PPG).  Given the initial attack point, the 
corresponding node is then marked as damaged.  This is the 
starting node of the DSG. Then by scanning the log from the 
corresponding location of the attack point, transactions that 
read the marked node are identified.  Any objects written by 
those transactions are then marked as damaged in the APG.  
This process continues until the end of the log.  Finally, all 
unmarked nodes and the edges showing their dependencies 
are removed.  The resulting graph is the completed DSG. 
 Once damage assessment is carried out, recovery 
procedure must begin immediately in order to make the 
system operational quickly.  We use Algorithm 1 as the main 
procedure to initialize an object set for repairs. The algorithm 
starts by initializing the set of damaged objects O. Each node 
N within O consists of a system component and its 
relationships with other nodes in O. As mentioned previously 
under Definition 4, some system components may have 
recursive or bidirectional dependencies between each other. 
Therefore, system components can have repeat nodes within 
O to represent their different versions. Each node is assigned 
values for criticality, repair time, and centrality. Using those 
metrics, the algorithm determines an initial target node N0 
based on criticality. If there are two or more nodes with the 
highest criticality, then the node with the lower repair time is 
selected. In the event of another tie, the node with higher 
centrality is selected. Further ties are broken by random 
selection. N0, along with O and the repair queue Q, are used 
to make the first call to the recursive function Algorithm 1.1 
at step 4.5. Algorithm 1 proceeds until O is completely 
empty, and then the repair queue is finalized, and Q is printed. 

As previously discussed, a node must have its parent 
nodes repaired before it can be considered eligible for repairs. 
Algorithm 1.1 ensures that nodes are scheduled for repairs in 
the proper order while still adhering to the rules set for 
determining priority. It does this by using a while loop to 
check the currently selected node N for repair eligibility. If N 
is eligible for repairs, then it is removed from O and Q is 
updated, then returned. If N is not eligible, then O’, a 
subsection of O made up of all dependency paths above the 
currently selected node is created and used to find the next 
highest priority node N’ within O’. Algorithm 1.1 is 
recursively called using N’ and O’, which can either result in 
the node’s repair or another node being selected for repair 
again. The recursive nature of this algorithm ensures that 
each time a decision needs to be made on which node needs 
to be repaired next, it will prioritize criticality and efficiency 
among all the nodes that can be repaired at any given step. In 
this way, the bulk of the work done by the algorithm is 
choosing the next object for repair within each iteration. Each 
function call will result in one object being repaired and 𝑛𝑛 −
1 additional function calls, where 𝑛𝑛 is the number of nodes 
within the set of nodes being passed. Since repaired objects 
need to be removed from the DSG, function calls will need to 
update and return the global DSG and Q. 

Algorithm 1: Initialization for object set repair 
Result: Queue of objects ordered by repair priority 
1 Initialize set of damaged objects O 
2 Preprocess object priority using criticality, repair   
   time, and centrality 
3 Initialize repair queue Q  
4 while O has damaged nodes remaining 
   4.1 Select the highest critical node(s) N within O 
   4.2 if Two or more nodes are tied for highest  
         criticality 
         4.2.1 Select the node(s) N with the lowest repair  
                  time R within O 
   4.3 if Two or more nodes are tied for lowest repair  
         time 
         4.3.1 Select the node(s) N with the highest  
                  centrality within O 
   4.4 if Two or mode nodes are tied for highest  
         centrality 
         4.4.1 Select a single node at random from those  
                  still tied 
   4.5 Update repair queue(N0, O, Q) → Q  
5 Print Q 
Algorithm 1.1: Recursive repair function  
Result: Schedules a node N for repairs and returns the 
updated repair queue Q 
1 Update repair queue(Selected node N, object set O, repair queue 
Q): 
2 while Current object has unrepaired dependencies: 
   2.1 Create subset of damaged nodes O’ of all nodes  
         N’ and edges E’ that N is dependent on 
   2.2 Select the highest critical node(s) N’ within O’ 
   2.3 if Two or more nodes are tied for highest  
         criticality 
         2.3.1 Select the node(s) N’ with the lowest  
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                  repair time R within O 
   2.4 if Two or more nodes are tied for lowest repair  
         time 
         2.4.1 Select the node(s) N’ with the highest  
                  centrality within O 
   2.5 if Two or mode nodes are tied for highest  
         centrality 
         2.5.1 Select a single node at random from those  
                  still tied 
   2.6 Update repair queue(N’0 , O’, Q) → Q 
   2.7 Remove the most recent object in repair queue  
         from O 
3 Repair N 
4 Add N to Q 
5 Return Q 

The algorithm produces a list of system nodes in the 
order in which they should be repaired. Recovery procedure 
then continues to the next step to begin repairs on the system. 
It is important to note that while repairs are simulated by the 
algorithm, the process for repairing the actual components of 
the system is not within the scope of this work. 

V. CONCLUSION 
In this research, we have presented a method to repair 

data objects that prioritizes quick recovery for the most 
important components of a system. This allows for the partial 
restoration of functions during the recovery process with an 
emphasis on restoring service to the most necessary 
functions. This was first done by building out three graphs to 
represent the entire system, what changes the system made 
after an attack, and the cascading damage as a result of those 
changes. Next, we developed an algorithm to optimally 
schedule repairs by using those graphs to find damage paths 
that affect the most critical nodes of a system and calculate 
the fastest repair order to fully restore those nodes. Our work 
is most applicable to protecting critical infrastructure systems 
where services need to be restored as quickly as possible to 
avoid economic or societal disruptions.  

Further work includes considering the frequency at 
which an object is used to update its dependencies. Objects 
that are updated at a higher frequency would be prioritized as 
more important. A method to select the order of repairs for 
non-critical objects after all critical objects have been 
repaired is also needed.  Finally, a performance analysis of 
this model is required to be carried out to evaluate the model 
under various conditions. 
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