

Modeling Damage Paths and Repairing Objects in Critical Infrastructure
Systems

Justin Burns, Brajendra Panda, and Thanh Bui
Computer Science and Computer Engineering Department

University of Arkansas
Fayetteville, AR 72701 USA

email: {jdb083, bpanda, tbui}@uark.edu

Abstract—Recently, critical infrastructure systems have become
increasingly vulnerable to attacks on their data systems. If an
attacker is successful in breaching a system’s defenses, it is
imperative that operations are restored to the system as quickly
as possible. This research focuses on damage assessment and
recovery following an attack. We review work done in both
database protection and critical infrastructure protection.
Then, we propose a model using a graph construction to show
the cascading affects within a system after an attack. We also
present an algorithm that uses our graph to compute an optimal
recovery plan that prioritizes the most important damaged
components first so that the vital modules of the system become
functional as soon as possible. This allows for the most critical
operations of a system to resume while recovery for less
important components is still being performed.

Keywords-critical infrastructure; damage assessment;
recovery.

I. INTRODUCTION
Critical infrastructure systems are those that are

considered extremely critical to the functioning of a
government or a country. As described in [1], critical
infrastructures are like the vital organs of a body that need to
perform their own roles for the human body to function
efficiently and painlessly. The US Department of Homeland
Security [2] declares that such systems are “so vital to the
United States that their incapacity or destruction would have
a debilitating impact on our physical or economic security or
public health or safety.” Therefore, the protection and smooth
functioning of our nation’s critical infrastructures are
indispensable and cannot be ignored.

These systems are becoming prime targets of attackers –
primarily state actors – and a major attack on one can cripple
the economy of the victim nation. These systems are also
more likely to be connected to the internet now to provide
benefits like cost reduction (where large systems can be
remotely managed over the public network), increased
capability (by providing sufficient computing resources for
infrastructure hardware with less capability power), and
improved efficiency and transaction speed. This connectivity
unfortunately makes it easier for attackers to hack into these
systems. Consider the New York Times report about the
attack on Colonial Pipeline [3]. While the details of the attack
are not yet disclosed, a group of cybercriminals were able to
compromise data systems using the internet, which resulted
in Colonial Pipeline shutting down their pipeline. This outage
affected mass transit and other industries across the entire

U.S. East Coast and exposed a lack of preparation for such a
crisis. This illustrates how an external system can have a
relationship with a critical infrastructure system and how
such relationships can be exploited to carry out an attack.

It is clear from past incidents and recent reports ([4]-[7]),
to cite just a few) that attacks on critical infrastructures are
occurring frequently, which indicates that prevention
mechanisms are not enough to stop them. Thus, it is of
utmost importance to aggressively prepare for post attack
activities, which include damage assessment and recovery
mechanisms that are critical to making the affected systems
available at full functioning mode as soon as possible. This
research aims at meeting this important goal.

We propose a framework that models damage spread
within a set of data objects based on object dependencies and
prioritizes making repairs to the most critical objects first.
The framework is based on some of the models explored in
critical infrastructure protection and uses a version of
previously proposed repair methods that is modified to focus
on meeting specific goals when determining the order in
which repairs are made.

The rest of the paper is organized as follows. Section 2
offers some work performed in this area. Section 3 defines
the problem that we aim to build our model for. We provide
details on our model in section 4, which includes three
subsections to explain our definitions, model description, and
algorithm. Section 5 concludes our work.

II. RELATED WORKS
This paper aims to examine methods and frameworks

used for database and critical infrastructure protection and
apply it towards protecting a set of data objects. This section
describes some of the publications that are relevant to our
proposed framework. One of the major works on damage
assessment and recovery within a database uses data
dependency to find data affected by an attack to optimize
recovery [8]. While this method relies on the direct
relationships between data items, an alternate model to
recover data from an attack instead uses the transaction log
for assessment [9].

Kotzanikolaou et. al describe a model in [10] that assists
in risk assessment for possible scenarios that can result in
cascading failures within a CI system. For critical
infrastructures with data-rich operations, the use of Cyber-
Physical Systems can cause new vulnerabilities as described
in [11]. Their model analyzes threats that can appear due to

88Copyright (c) IARIA, 2021. ISBN: 978-1-61208-919-5

SECURWARE 2021 : The Fifteenth International Conference on Emerging Security Information, Systems and Technologies

these vulnerabilities and analyzes the potential cascading
damage they can cause. System dynamics modeling can also
be used to analyze disruptive events to characterize such
disruptions to critical infrastructure by risk assessment and
various impact factors as shown in [12].

Rehak et. al [13] model an infrastructure system as
elements and linkages with different types of relationships
establishing dependencies and interdependencies. They note
that these elements can have varying criticality, causing some
elements to cascade more damage into the system than others
in the event of a failure. This work is important because by
establishing criticality, they quantify damage within a
system. We use this concept of criticality later in this paper
to direct the optimal repair path of data objects.

We also consider models that assist with recovery during
an attack. In [14], an algorithm is proposed to restore
damaged element paths by recursively breaking down
demand flows into simpler problems. They use a centrality
metric to rank damaged nodes and determine which ones
should be repaired first and expand on the use of centrality to
make repair decisions in further work [15]. We use the
concept of centrality to rank data objects in a case where two
or more are equally critical. In our algorithm, we also utilize
their method of simplifying damage paths to find the fastest
route to restoring intermediate data objects. However, the
novelty of our approach is twofold: we must repair all
components within the system because data objects cannot
have computations rerouted, unlike the network components
in the work we have reviewed, and we aim to restore the most
important components first so that their functions can be
restored while repairs to the system are still ongoing.

III. PROBLEM DEFINITIONS
In the occasion when an adversary information attack

succeeds, the victim must have the capability to degrade
gracefully and recover damaged data and/or services in real-
time if it is to survive. It is necessary to immediately carry
out damage assessment and recovery process in order to bring
the systems to working states. Otherwise, the damage would
spread to other unaffected systems that are interconnected.
This happens when a valid user or an unaffected system
module reads a damaged object during its computation and
updates another object based on the compromised value,
causing the latter damaged as well. As time goes on, more
and more objects become affected in this manner causing the
spread of damage to fan out through the system quickly.

For damage assessment and recovery purpose,
information about all processes that have been executed must
be stored in the log (more on this presented later). This will
help in determining the relationships among the processes,
thus helping in establishing the damage trail. Moreover,
during recovery, the operations of processes that have spread
the damage have to be undone and then redone in order to
produce correct states of affected objects. The problems with
existing systems are: (1) They do not store process execution
information in the log, and they purge the log periodically,

(2) Their recovery mechanisms are not designed to undo the
effects of executed processes, (3) The size of the log, as it
must not be purged, will make it almost impossible to
continue the recovery process in real-time, and (4) During the
damage assessment and recovery process, the system remains
unavailable to users. This delay induces a denial-of-service
attack, which is highly undesirable in time-critical
applications that the critical infrastructures are designed to
provide. Due to massive amount of data in the log that needs
to be processed, the problem becomes even worse.

The goal of this research is to develop fast, accurate, and
efficient damage assessment and recovery techniques so that
critical information systems not only survive the attacks
gracefully but will continue to operate providing as many
vital services and functions as possible even before the
system is fully recovered. In the next section, we explain how
our model can accomplish this.

IV. THE MODEL
In this section, we describe our model in detail. The first

subsection defines important graphs and metrics that we use
for our model. In the next subsection, we describe how the
model is built and is used to determine an optimal recovery
plan. Finally, we describe the algorithm we use to implement
our model.

A. Definitions
We first define the concept of information flow in a

system. This also defines dependencies among various
objects in the system and is used in our graph-based model.
Definition 1: Given two objects Oi and Oj in a system, if the
value of Oj is calculated using the value of Oi, we say that
there is information flow from Oi to Oj. Thus, Oj is said to be
dependent on Oi and is denoted as Oi → Oj.

The above definition helps in determining the spread of
damage in the system. That is, if an object is damaged, then
all its dependent objects will be considered damaged. During
recovery, the parent (pre-cursor) object must be recovered
before any of its dependent objects can be recovered.

Next, we define a graph containing the set of objects and
all possible paths among them. We call it Possible Paths
graph and it spans the entire system of objects and all
dependency paths among them. An example of this graph is
shown by Figure 1(a).

Definition 2: Consider a system containing the set of objects
O. The Possible Paths Graph (PPG) is built by having a
node Ni for each object in O. There exists an edge Eij from
Ni to Nj in the PPG if there is a possibility that information
may flow from Ni to Nj, that is, Nj may be modified based on
the value of Ni.

89Copyright (c) IARIA, 2021. ISBN: 978-1-61208-919-5

SECURWARE 2021 : The Fifteenth International Conference on Emerging Security Information, Systems and Technologies

The purpose of building a PPG is that it will help during
the damage assessment preparation phase. By assuming the
point of attack one can identify the set of items that may be
affected consequently. Thus, security officers can be
prepared for different types of eventuality.

The second set of objects contains the actual paths that
were used to make changes in the system within a specified
time span, which for the purposes of the third graph that will
be defined, is usually the time passed since an object has been
damaged. This set is represented by the Active Paths Graph
(APG), and all objects and dependencies in this set exist in
the PPG. This graph will help in determining the damage flow
in case of an attack. Given an initial attack point (an object),
one can determine which objects in the system may be
affected by the attack and which ones will not be. Therefore,
the ability of the system to carry out its intended functions
can be calculated. That is, during the recovery process, the
set of damaged objects will be made unavailable while the
rest can be made accessible. Knowing which objects will
remain unaffected, one will be able to identify what services
the system will be able to offer while the recovery continues.
Definition 3: The Active Paths Graph (APG) contains nodes
N and edges E such that for every Ni є N and every Eij є E,
both Ni and Eij are also present in PPG, and Eij illustrates an
actual information flow; that is Nj was updated based on the
value of Ni.

Figure 1b. The Active Paths Graph (APG)

Figure 1(b) provides an example of an Active Paths
Graph and as can be seen it is a sub-graph of Figure 1(a). As
discussed before, once an initial attack point is determined,
the APG will help in accurately determining the damage flow
and the set of objects affected by the attack. As discussed
before, as time goes on, more and more objects will be
affected as new objects will be updated based on the value of
an affected object. Thus, to stop the spread of damage, all
affected objects must be quickly identified and taken offline
as soon as possible. This can be achieved by doing a flow
assessment using the APG. This leads to the concept of
actual damage spread path showing exactly which objects
were affected by an attack. If a system is damaged, we
represent the spread of damage as a third set of objects, the
Damage Spread Graph (DSG). The set of objects and
dependencies in this graph must exist within the APG, as
damage spread occurs when objects make changes based on
their dependencies. Like how the APG is a subsection of the
PPG, the DSG is a subsection of the APG. Figure 1(c) is an
example of what a damage path may look like. It is important
to note that over time, a damaged object will always cascade
its damage down to dependent nodes included in the APG.
Definition 4 formally defines the DSG.

Definition 4: A Damage Spread Graph (DSG) contains
nodes N and edges E such that for every Ni є N and every Eij
є E, both Ni and Eij are also present in APG and every node
in N is damaged through an attack on the system.
Moreover, an edge Eij depicts that Ni was damaged first and
then Nj was damaged through the flow of information from
Ni to Nj.

Figure 1c: The Damage Spread Graph (DSG)

Note that the edges between two objects may be
bidirectional or recursive. For example, if an object Oj can
have a dependency on object Oj and vice versa, then there
will be a bidirectional edge between Oj and Oj. Similarly, if
an object can be dependent on itself, it will result in a
recursive graph. To clarify, let us consider an object “salary”.
When an employee receives an increment that is based on a
percentage of the current salary of the employee, it causes the
new salary to be dependent on the old salary and is depicted
by using an edge from salary to salary itself. However, it
must be noted that, for simplicity, we use neither bidirectional
nor recursive edges in APG or DSG. Rather, when an object
is modified, we note that as a new version of the object, thus
creating a new node for the object with the version number.

To minimize the time needed to restore the most
important objects within a system of object dependencies, we
also define criteria used to determine the order in which
repairs are made:
Definition 5: The criticality of a node N is its predetermined
level of importance to the system’s functions. This must be
predetermined for the flexibility of the model to fit various
systems and align the model with the goals of each specific
system. For example, one system may need to prioritize
certain components that other systems do not. The criticality
of a component can be measured by various characteristics
such as the intensity or scope of an impact caused by its
failure as described in [13].

We assign a positive whole number to each node N to
represent criticality. A lower assigned value indicates higher
criticality. For example, a node Ni with a criticality of 2 would
be considered more important than a node Nj with a criticality
of 4. It is important to note that criticality values are not
unique, meaning multiple nodes can have the same criticality
value. When that happens, we use the following metric in the
next definition to serve as a first “tiebreaker”.
Definition 6: Objects that have more damaged dependencies
take longer to repair. Therefore, the repair time of a node N
is defined as how many inward-flowing edges Ei it is
receiving damage from.

When two or more objects are assigned the same
importance, we choose to first repair the one that has a lower
repair time. For example, consider two nodes Ni and Nj that
are equally critical. If Ni needs 5 other nodes repaired to

90Copyright (c) IARIA, 2021. ISBN: 978-1-61208-919-5

SECURWARE 2021 : The Fifteenth International Conference on Emerging Security Information, Systems and Technologies

repair it, and Nj needs 3 other nodes to repair it, then we will
repair Nj first, because its operation can be restored more
quickly than that of Ni.

Figure 2a. A parent node with high centrality

Figure 2b. A parent node with low centrality

Definition 7: The centrality of a node N is the number of
outward-flowing edges Eo it has.

We use the above metric to decide the next object to
repair when two or more are equal in both criticality and
repair time. An object with a higher number of Eo will have
higher centrality. Figure 2a and Figure 2b show two
subsections of a DSG that highlights centrality. As shown in
Figure 2a, N4 has three nodes that are dependent on it: N1, N2,
and N3, while as Figure 2b depicts, N6 only has a single node
N5 dependent on it. Assume that the repair algorithm has
repaired the parent node(s) of N4 and that of N6. To clarify
the situation, N4 and N6 need not have the same parents; it is
just that both are in line to be repaired next. In this scenario,
repairing N4 before N6 reduces the repair time for the three
dependent nodes of N4 instead of only one of N6, which can
make future repairs be performed faster. Therefore, N4 is
considered to have a higher centrality than N6.

B. Model Description
 The model uses the three graphs defined in the previous
section to construct a representation of a given system and its
sustained damage from the time of the initial attack. The PPG
is a preprocessed map of all components and dependency
paths within a system. We assume that we know how much
time has passed since the initial attack and build the APG by
including components and dependency paths that were used
in a transaction log in that period. By knowing the component
where the initial attack occurred, we build the DSG by tracing
the damage through the transaction log. For damage to spread
from one component to the next, it must follow two criteria:
1) there is a damaged node Ni that has an edge Eij flowing
from it to node Nj and 2) Eij is used for a transaction while Ni
is damaged. For the DSG to exist, the initial attack must occur
within the APG, otherwise there is no cascading damage.

The goal of the model is to find the optimal sequence of
repairs to restore the most important operations of a system
as quickly as possible. We use the metrics defined in the
previous section to decide which components should be
repaired first. The first metric is criticality – the most critical
components must be restored first to resume important
operations. However, these components may also be
dependent on other components that are damaged. These
components must be repaired first before the base component
can be repaired. At this point, the same problem is applied to
the dependency components, and the most critical one is
chosen first. If there is a tie, then components with a lower

repair time are picked first. For example, a component that
has two damaged parent components will be prioritized over
a component with three or more damaged parent components
if both components are equally critical.

Figure 3. Recovery sequence decision

To clarify, let us consider the graph presented in Figure
3. As shown in the figure, nodes N1, N2, and N3 are dependent
on N4. Assume that the damage assessment method identified
N4 as damaged; thus, nodes N1, N2, and N3 are also identified
as damaged. During the recovery process, N4 was recovered
before the other three nodes. However, since it has three
dependents all of which are damaged, the question is, which
one should be repaired first. As our goal is to have the vital
functions of the system to be made available before the other
operations, our algorithm would choose the node among N1,
N2, and N3 having the most criticality.

C. The Algorithm
 First, we discuss the primary objective of our work. Let
us consider the notations used in the following table:

TABLE I. NOTATIONS

Notations Descriptions
𝑃𝑃 = (𝑉𝑉,𝐸𝐸) Possible Path Graph
𝐴𝐴 = (𝑉𝑉𝐴𝐴,𝐸𝐸𝐴𝐴) Active Path Graph (𝑉𝑉𝐴𝐴 ⊆ 𝑉𝑉,𝐸𝐸𝐴𝐴 ⊆ 𝐸𝐸)
𝐷𝐷 = (𝑉𝑉𝐷𝐷,𝐸𝐸𝐷𝐷) Damage Spread Graph (𝑉𝑉𝐷𝐷 ⊆

𝑉𝑉𝐴𝐴,𝐸𝐸𝐷𝐷 ⊆ 𝐸𝐸𝐴𝐴)
𝐷𝐷 = (𝑉𝑉𝐶𝐶 ,𝐸𝐸𝐶𝐶) Critical Node Graph (𝑉𝑉𝐶𝐶 ⊆ 𝑉𝑉𝐷𝐷,𝐸𝐸𝐶𝐶 ⊆

𝐸𝐸𝐷𝐷)
𝛿𝛿𝑖𝑖𝑖𝑖 Decision to fix edge 𝑖𝑖 to 𝑗𝑗
𝛿𝛿𝑖𝑖 Decision to fix node 𝑖𝑖
𝑡𝑡𝑖𝑖 Time to fix node 𝑖𝑖
𝑐𝑐𝑖𝑖 Centrality of node 𝑖𝑖
𝑃𝑃𝑖𝑖𝑖𝑖 Dependency indicator of node 𝑖𝑖 and 𝑗𝑗

Our objective is to find min∑ 𝑡𝑡𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖∈𝑉𝑉𝐷𝐷 subject to
𝛿𝛿𝑖𝑖 ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑗𝑗∈𝑉𝑉𝐶𝐶 ≤ ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗∈𝑉𝑉𝐶𝐶 ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉𝐶𝐶 (1)
𝛿𝛿𝑖𝑖𝑐𝑐𝑖𝑖 ≥ ∑ 𝛿𝛿𝑖𝑖𝑖𝑖(𝑖𝑖,𝑗𝑗)∈𝐸𝐸𝐶𝐶 ∀𝑖𝑖 ∈ 𝑉𝑉𝐶𝐶 (2)
𝑃𝑃𝑖𝑖𝑖𝑖 ∈ {0,1} ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉𝐶𝐶 (3)
𝛿𝛿𝑖𝑖, 𝛿𝛿𝑖𝑖𝑖𝑖 ∈ {0,1} ∀𝑖𝑖 ∈ 𝑉𝑉𝐶𝐶 , (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸𝐶𝐶 (4)

 That is, the goal is to minimize the time required to fix
all critical nodes subjected to conditional constraints of the
system. To make sure that each preceding nodes of 𝑖𝑖 are fixed
before node 𝑖𝑖 being processed, condition (1) is used. For
example, if there is a node 𝑗𝑗 connecting to 𝑖𝑖 but in a prequel
order, the sum product of all nodes 𝑗𝑗 status and dependency
indicator 𝑃𝑃𝑖𝑖𝑖𝑖 should be greater or equal than the product of
sum of all dependency indicator 𝑃𝑃𝑖𝑖𝑖𝑖 with node 𝑖𝑖. To make
sure that there would not be more out-going flows than the
given capability of node 𝑖𝑖, equation (2) is imposed to make
sure the total out-going edge would not surpass the centrality
of node 𝑖𝑖. Conditions (3) and (4) were built to impose the

91Copyright (c) IARIA, 2021. ISBN: 978-1-61208-919-5

SECURWARE 2021 : The Fifteenth International Conference on Emerging Security Information, Systems and Technologies

binary attribute of the dependency indicator 𝑃𝑃𝑖𝑖𝑖𝑖 , the decision
whether to fix node 𝑖𝑖 or edge from node 𝑖𝑖 to node 𝑗𝑗.
The algorithms provided in this section use the model
described in the previous section to compute the optimal
order of repairs to restore the most important functions of a
system first. When an attack occurs, we expect an Intrusion
Detection System (IDS) to identify the attack and provide the
initial point of damage. The working principles of IDSs are
not within the scope of this work and so, not described here.
 After receiving notification from an IDS, a precise
damage assessment is performed. If the damage assessment
process is unable to make accurate assessment, i.e., in case a
damaged node is not correctly identified, it and its dependent
nodes, which are also damaged, will remain unrecovered.
This will result in valid users or procedures reading them and
spreading damage by updating other objects, as discussed
earlier. For a detailed discussion on damage assessment, one
may review [8] and [9], which were developed particularly
for database systems. However, the methods are still
applicable to critical infrastructure systems. Below we
provide a basic mechanism to carry out the assessment.
 Damage assessment begins with the APG, which shows
the actual dependency relationships among the objects in the
system (Note that the APG can be built as transactions are
executed and dependencies are established among various
nodes of the PPG). Given the initial attack point, the
corresponding node is then marked as damaged. This is the
starting node of the DSG. Then by scanning the log from the
corresponding location of the attack point, transactions that
read the marked node are identified. Any objects written by
those transactions are then marked as damaged in the APG.
This process continues until the end of the log. Finally, all
unmarked nodes and the edges showing their dependencies
are removed. The resulting graph is the completed DSG.
 Once damage assessment is carried out, recovery
procedure must begin immediately in order to make the
system operational quickly. We use Algorithm 1 as the main
procedure to initialize an object set for repairs. The algorithm
starts by initializing the set of damaged objects O. Each node
N within O consists of a system component and its
relationships with other nodes in O. As mentioned previously
under Definition 4, some system components may have
recursive or bidirectional dependencies between each other.
Therefore, system components can have repeat nodes within
O to represent their different versions. Each node is assigned
values for criticality, repair time, and centrality. Using those
metrics, the algorithm determines an initial target node N0
based on criticality. If there are two or more nodes with the
highest criticality, then the node with the lower repair time is
selected. In the event of another tie, the node with higher
centrality is selected. Further ties are broken by random
selection. N0, along with O and the repair queue Q, are used
to make the first call to the recursive function Algorithm 1.1
at step 4.5. Algorithm 1 proceeds until O is completely
empty, and then the repair queue is finalized, and Q is printed.

As previously discussed, a node must have its parent
nodes repaired before it can be considered eligible for repairs.
Algorithm 1.1 ensures that nodes are scheduled for repairs in
the proper order while still adhering to the rules set for
determining priority. It does this by using a while loop to
check the currently selected node N for repair eligibility. If N
is eligible for repairs, then it is removed from O and Q is
updated, then returned. If N is not eligible, then O’, a
subsection of O made up of all dependency paths above the
currently selected node is created and used to find the next
highest priority node N’ within O’. Algorithm 1.1 is
recursively called using N’ and O’, which can either result in
the node’s repair or another node being selected for repair
again. The recursive nature of this algorithm ensures that
each time a decision needs to be made on which node needs
to be repaired next, it will prioritize criticality and efficiency
among all the nodes that can be repaired at any given step. In
this way, the bulk of the work done by the algorithm is
choosing the next object for repair within each iteration. Each
function call will result in one object being repaired and 𝑛𝑛 −
1 additional function calls, where 𝑛𝑛 is the number of nodes
within the set of nodes being passed. Since repaired objects
need to be removed from the DSG, function calls will need to
update and return the global DSG and Q.

Algorithm 1: Initialization for object set repair
Result: Queue of objects ordered by repair priority
1 Initialize set of damaged objects O
2 Preprocess object priority using criticality, repair
 time, and centrality
3 Initialize repair queue Q
4 while O has damaged nodes remaining
 4.1 Select the highest critical node(s) N within O
 4.2 if Two or more nodes are tied for highest
 criticality
 4.2.1 Select the node(s) N with the lowest repair
 time R within O
 4.3 if Two or more nodes are tied for lowest repair
 time
 4.3.1 Select the node(s) N with the highest
 centrality within O
 4.4 if Two or mode nodes are tied for highest
 centrality
 4.4.1 Select a single node at random from those
 still tied
 4.5 Update repair queue(N0, O, Q) → Q
5 Print Q
Algorithm 1.1: Recursive repair function
Result: Schedules a node N for repairs and returns the
updated repair queue Q
1 Update repair queue(Selected node N, object set O, repair queue
Q):
2 while Current object has unrepaired dependencies:
 2.1 Create subset of damaged nodes O’ of all nodes
 N’ and edges E’ that N is dependent on
 2.2 Select the highest critical node(s) N’ within O’
 2.3 if Two or more nodes are tied for highest
 criticality
 2.3.1 Select the node(s) N’ with the lowest

92Copyright (c) IARIA, 2021. ISBN: 978-1-61208-919-5

SECURWARE 2021 : The Fifteenth International Conference on Emerging Security Information, Systems and Technologies

 repair time R within O
 2.4 if Two or more nodes are tied for lowest repair
 time
 2.4.1 Select the node(s) N’ with the highest
 centrality within O
 2.5 if Two or mode nodes are tied for highest
 centrality
 2.5.1 Select a single node at random from those
 still tied
 2.6 Update repair queue(N’0 , O’, Q) → Q
 2.7 Remove the most recent object in repair queue
 from O
3 Repair N
4 Add N to Q
5 Return Q

The algorithm produces a list of system nodes in the
order in which they should be repaired. Recovery procedure
then continues to the next step to begin repairs on the system.
It is important to note that while repairs are simulated by the
algorithm, the process for repairing the actual components of
the system is not within the scope of this work.

V. CONCLUSION
In this research, we have presented a method to repair

data objects that prioritizes quick recovery for the most
important components of a system. This allows for the partial
restoration of functions during the recovery process with an
emphasis on restoring service to the most necessary
functions. This was first done by building out three graphs to
represent the entire system, what changes the system made
after an attack, and the cascading damage as a result of those
changes. Next, we developed an algorithm to optimally
schedule repairs by using those graphs to find damage paths
that affect the most critical nodes of a system and calculate
the fastest repair order to fully restore those nodes. Our work
is most applicable to protecting critical infrastructure systems
where services need to be restored as quickly as possible to
avoid economic or societal disruptions.

Further work includes considering the frequency at
which an object is used to update its dependencies. Objects
that are updated at a higher frequency would be prioritized as
more important. A method to select the order of repairs for
non-critical objects after all critical objects have been
repaired is also needed. Finally, a performance analysis of
this model is required to be carried out to evaluate the model
under various conditions.

ACKNOWLEDGEMENT
This work has been supported in part by grant H98230-

20-1-0419 issued by the National Security Agency as part of
the National Centers of Academic Excellence in
Cybersecurity's mission to expand cybersecurity research and
education for the Nation.

REFERENCES
[1] E. Viganò, M. Loi. and E. Yaghmaei, “Cybersecurity of

Critical Infrastructure”, In Christen M., Gordijn B., Loi M.

(eds), The Ethics of Cybersecurity, The International Library
of Ethics, Law and Technology, vol 21, Springer

[2] Critical Infrastructure Security:
https://www.dhs.gov/topic/critical-infrastructure-security.
[retrieved: October 2021]

[3] D. E. Sanger and N. Perlroth, (2021, May 14). “Pipeline Attack
Yields Urgent Lessons About U.S. Cybersecurity”,
https://www.nytimes.com/2021/05/14/us/politics/pipeline-
hack.html. [retrieved: October 2021]

[4] A. Anastasios, “Is the Electric Grid Ready to Respond to
Increased Cyber Threats?”, https://www.tripwire.com/state-of-
security/ics-security/electric-grid-ready-increased-cyber-
threats/. [retrieved: October 2021]

[5] B. Barrett, “An Unprecedented Cyberattack Hit US Power
Utilities”, https://www.wired.com/story/power-grid-
cyberattack-facebook-phone-numbers-security-news/.
[retrieved: October 2021]

[6] K. O’Flaherty, “U.S. Government Issues Powerful Cyberattack
Warning As Gas Pipeline Forced Into Two Day Shut Down
https://www.forbes.com/sites/kateoflahertyuk/2020/02/19/us-
government-issues-powerful-cyberattack-warning-as-gas-
pipeline-forced-into-two-day-shut-down/#5f3061645a95.
[retrieved: October 2021]

[7] M. Lewis, “Cyberattack Forces Gas Pipeline Shutdown”,
https://www.jdsupra.com/legalnews/cyberattack-forces-gas-
pipeline-shutdown-76217/ [retrieved: October 2021]

[8] B. Panda and J. Giordano, (1999) Reconstructing the
Database After Electronic Attacks. In: Jajodia S. (eds)
Database Security XII. IFIP — The International Federation
for Information Processing, vol 14. Springer, Boston, MA.

[9] S. Patnaik and B. Panda, (2003). Transaction-Relationship
Oriented Log Division for Data Recovery from Information
Attacks. Journal of Database Management, 14(2), pp. 27-41.

[10] P. Kotzanikolaou, M. Theoharidou, and D. Gritzalis, (2013)
Cascading Effects of Common-Cause Failures in Critical
Infrastructures. In: J. Butts and S. Shenoi (eds) Critical
Infrastructure Protection VII. ICCIP 2013. IFIP Advances in
Information and Communication Technology, vol 417.
Springer, Berlin, Heidelberg.

[11] J. Ding, Y. Atif, S. Andler, B. Lindström, and M. Jeusfeld,
(2017). CPS-based Threat Modeling for Critical
Infrastructure Protection. ACM SIGMETRICS Performance
Evaluation Review. 45. pp. 129-132.
10.1145/3152042.3152080.

[12] E. Canzani, H. Kaufmann, and U. Lechner, (2016).
Characterising Disruptive Events to Model Cascade Failures
in Critical Infrastructures. 10.14236/ewic/ICS2016.11.

[13] D. Rehak, J. Markuci, M. Hromada, and K. Barcova,
“Quantitative evaluation of the synergistic effects of failures
in a critical infrastructure system”, International Journal of
Critical Infrastructure Protection, Volume 14, 2016, pp. 3-17,
ISSN 1874-5482

[14] N. Bartolini, S. Ciavarella, T. F. La Porta, and S. Silvestri,
"Network Recovery After Massive Failures," 2016 46th
Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2016, pp. 97-108

[15] S. Ciavarella, N. Bartolini, H. Khamfroush, and T. Porta,
(2017). “Progressive damage assessment and network
recovery after massive failures,” IEEE INFOCOM 2017 –
IEEE Conference on Computer Communications, 2017, pp.
1-9.

93Copyright (c) IARIA, 2021. ISBN: 978-1-61208-919-5

SECURWARE 2021 : The Fifteenth International Conference on Emerging Security Information, Systems and Technologies

https://www.dhs.gov/topic/critical-infrastructure-security
https://www.jdsupra.com/legalnews/cyberattack-forces-gas-pipeline-shutdown-76217/
https://www.jdsupra.com/legalnews/cyberattack-forces-gas-pipeline-shutdown-76217/

