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Abstract—This paper briefly summarizes the Coppersmith

method, its extension strategy and lattice construction techniques.

Then we describe several attacks on Rivest-Shamir-Adleman

cryptosystem with moduli N = prq based on Coppersmith

method, including small exponent attacks, partial key exposure

attacks, and factoring RSA moduli with partial known. A survey

of recent progress for these three kinds of attacks, and general

methods on how these attacks work are given.

Keywords—Coppersmith method; Takagi RSA; prime power
RSA.

I. INTRODUCTION

RSA is one of the most widely used public key cryptosys-
tems today. In the environment with limited resources, it may
be slow for encryption and decryption, due to the modular
operation of large integers. In order to speed up the operation,
many RSA fast variants have been produced. One of the most
important variants is the scheme proposed by Takagi [30] with
moduli N = p

r
q. Compared with the standard RSA scheme,

Takagi RSA is more efficient in key generation and decryption.
Another fast variant with moduli N = p

r
q is the prime power

RSA. For Takagi RSA, the public exponent e and the secret
exponent d satisfy

ed ⌘ 1 mod (p� 1)(q � 1),

and for the prime power RSA, e and d satisfy

ed ⌘ 1 mod p
r�1(p� 1)(q � 1).

These fast variants are usually used in smart cards and
programs with higher speed.

With the development of lattice theory, the famous algo-
rithm proposed by Lenstra, Lenstra and Lovász (LLL algo-
rithm), and lattice basis reduction technique has become an
important tool for cryptanalysis of RSA and its variants. In
1996, Coppersmith proposed so called Coppersmith algorithm
to find small roots of single variable modular equation [7]
or the double variable integer equation [6]. The core idea
of this algorithm is to convert the modular equation or in-
teger equation with large norm into integer equations with
small norm by lattice basis reduction algorithm such as LLL
algorithm, and the roots of the original equation can be
found over integers. In the above process, the construction of
the lattice basis is the most critical part. Howgrave-Graham
[16] simplified the work of [7], and put forward a more

straightforward lattice basis construction method, which can
be generalized to the case of multivariable modular equation.
Since then, a large number of scholars have used this lattice
analysis method to analyze the security of RSA. The method
has also continued to be extended, and gradually form the
current Coppersmith method. In 2006, Jochemsz and May
[19] proposed a general strategy for multivariate modular
equations and integer equations. They gave a method to obtain
a triangular matrix when one constructs lattice basis. In the
case of multivariable equations, the methods mentioned above
are based on a heuristic assumption that the reduced basis
output by LLL algorithm is algebraically independent.

In order to get a better lattice, there are many lattice basis
construction techniques, of which the two most widely used
techniques are substitution technique and unraveled lineariza-
tion technique. Substitution technique was first used by Durfee
and Nguyen [10]. According to the RSA equation ed =
1+k(p�1)(q�1), they constructed a three variable modular
equation f (x, y, z) = x (N + 1 + y + z) + 2 (mod e) with
roots (x0, y0, z0) = (k,�p,�q). Knowing N = pq, they
replaced all occurrences of the monomial yz with N , when
constructing the lattice. By this substitution technique, they
reduced the number of variables and optimized the result of
lattice analysis. Unraveled linearization technique was first
proposed by Herrmann and May [14]. By exploiting the
implicit algebraic relationships in equations, the construction
of lattice can be simplified and the result of lattice analysis
can be improved.

In this paper, we focus on RSA with moduli N = p
r
q,

and survey the applications of Coppersmith method in the
cryptanalysis of it.

The remainder of this paper is organized as follows. In
Section II, we describe the theory and steps of Coppersmith
method, and summarize Jochemsz-May strategy and unraveled
linearization. The general methods of small exponent attacks
on RSA with moduli N = p

r
q are given in Section III. We

conclude the partial key exposure attacks in Section IV, and
the methods of factoring RSA moduli with partial known in
Section V. Section VI gives the development suggestions.

II. COPPERSMITH METHOD

Before describing the Coppersmith method, we first revise
the concept of lattices and LLL algorithm. Let b1, . . . , bn 2
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Z! be linearly independent row vectors. The set of all integer
linear combinations of b1, . . . , bn compose lattice, which is
written as

L (b1, . . . , bn) =

8
<

:

nX

j=1

xjbj : xj 2 Z

9
=

; .

We write n the rank of the lattice and ! the dimension of
the lattice. The matrix B 2 Zn⇥! consisting of b1, . . . , bn
is a basis matrix of lattice L. We call these lattices full-
rank when n = !. The determinant of L is denoted as
det(L) =

p
det(BBT ). In order to find short vectors on lat-

tices, Lenstra, Lenstra and Lovász proposed the LLL algorithm
[20].

Lemma 1 (LLL). L is a !-dimensional lattice, and the
LLL algorithm can output a reduced basis vectors v1, . . . ,v!

satisfying

kvik  2
!(!�1)

4(!�i+1) det(L)
1

!�i+1 , for 1  i  !.

The time complexity of LLL algorithm is polynomial in ! and
the bitsize of input.

A. Coppersmith Method

Coppersmith [7] described the method to get small root
of modular equations based on LLL algorithm. Then, the
sufficient condition for Coppersmith method was given by
Howgrave-Graham [16].

Lemma 2 (Howgrave-Graham). Let g(x1, . . . , xn) 2
Z[x1, . . . , xn] be a polynomial, which has at most � mono-
mials. Let p, m be positive integers. Suppose that

1.g (ex1, . . . , exn) ⌘ 0 (mod p
m), where |ex1| <

X1, . . . , |exn| < Xn,
2.kg(x1X1, . . . , xnXn)k <

pm
p
�

.
Then, g (ex1, . . . , exn) = 0 holds over integers.

Therefore, the modular equation can be converted into n

integer equations, if these n short vectors output by LLL
algorithm satisfy Lemma 2, that is

kvik  2
!(!�1)

4(!�i+1) det(L)
1

!�i+1 <
p
m

p
�
, for 1  i  !.

Ignoring the small items, the condition becomes det(L) <
p
m! . One can use Gröbner base or a resultant of these n

integer equations to find all roots.
Next, we will illustrate the general steps of Coppersmith

method. Take the solution of univariate modular equation for
example. Let f(x) be a univariate modular polynomial of
degree �

f(x) = x
� + a��1x

��1 + . . .+ a1x+ a0 (mod p).

The root of f(x0) ⌘ 0 (mod p), is bound by X . And the
steps of Coppersmith method are as follows.

• Construct ! shift polynomials g1(x), . . . , g!(x), which
have the same small roots x0 modulo p

m, and m, t is
positive integers (which can be optimized). Shift polyno-
mials can be constructed in the following way

gi(x) = x
i
p
m�j

f
j(x) for i = 0, . . . , � � 1, j =

0, . . . ,m� 1,
g�+i(x) = x

i
f
m(x) for i = 0, . . . , t� 1.

• Use the coefficient vectors of gi(xX) and g�+i(xX) to
construct a lattice basis.

• Apply LLL algorithm to the lattice basis, and we get a
short vector v, corresponding a polynomial v(x). Since
the vectors on the lattice are integer linear combination of
the lattice basis vectors, the polynomials v(x) is integer
linear combination of gi(x) and g�+i(x), with the same
small roots x0 modulo p

m.
• If v is short enough to satisfy Lemma 2, the modular

equation can be converted to an integer equation. And
we can solve it over integers

For the case of multivariate modular equation
f(x1, . . . , xn) ⌘ 0 mod p, the steps are similar. Notice
that the dimension of the lattice should be larger than the
number of variables, which means ! > n. And the shift
polynomials can be defined as

gi1,...,in(x1, . . . , xn) := x
i1
1 , . . . , x

in
n p

m�j
f
j

The parameters i1, . . . , in and j are selected based on different
cases.

The most time-consuming part of Coppersmith method is
LLL algorithm, and it works in polynomial time. Therefore,
Coppersmith method also works in polynomial time.

B. Jochemsz-May Strategy

In order to optimize the bound of desired roots, Jochemsz
and May [19] proposed a general strategy for constructing full
rank lattices and gave the methods to solve modular equations
and integer equations with arbitrary variables. Jochemsz-May
strategy is the best method for finding small roots of integer
equations at present. Next, we will describe Jochemsz-May
strategy to solve small roots of multivariate integer equations.

Let f(x1, . . . , xn) =
P

fi1,...,inx
i1
1 · · ·xin

n be a monic
polynomial with roots (ex1, . . . , exn) which are bound by
(X1, . . . Xn). First, we give some notations. Denote lj as the
maximum exponent of xj in f(x1, . . . , xn). Take an integer W
as large as possible satisfying that W  kf(x1, . . . , xn)k1.
Define an integer R := WX

l1(m�1)+t
1

Qk
j=2 X

lj(m�1)
j (m and

t = O(m) are positive integers, which will be optimized later).
Then, we define two sets

S :=
[

0jt

{xi1+j
1 x

i2
2 · · ·xik

k |xi1
1 x

i2
2 · · ·xik

k

is a monomial of fm�1}

M := {monomial of xi1
1 · · ·xik

k · f | xi1
1 · · ·xik

k 2 S}

The next steps are similar to the original Coppersmith
method. 1) Construct a set of shift polynomials with the
same roots (ex1, . . . , exn) modulo R. 2) Construct lattice by
the coefficient vectors of the shift polynomials. 3) Apply LLL
algorithm to get n short vectors. 4) Obtain n integer equations
corresponding these n short vectors, and solve these integer
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equations. The selection of shift polynomials is different from
the original Coppersmith method.

g : xi1
1 · · ·xik

k · f ·X l1(m�1)+t�i1
1

kY

j=2

X
lj(m�1)�ij
j ,

for xi1
1 · · ·xik

k 2 S

g
0 : xi1

1 · · ·xik
k ·R, for xi1

1 · · ·xik
k 2 M\S

And the condition to get all small roots becomes
kY

j=1

X
sj
j < W

|S| for sj =
X

x
i1
1 ...x

ik
k 2M\S

ij

C. Unraveled linearization
Herrmann and May [14], combining the method of lineariza-

tion and Coppersmith method, introduced a new technique
called unraveled linearization.

Recall the work of Boneh and Durfee [3]. They trans-
formed the RSA moduli factorization problem into solving
the small inverse problem. Specifically, they obtained an
equation ed + k (N + 1� p� q) = 1 from RSA equation
ed ⌘ 1 mod '(N). Let A = (N + 1) and s = (�p� q).
Then, they got k (A+ s) = 1 mod e, where k, s are unknown.
The RSA system can be completely broken by solving small
roots of the modular equation

f (x, y) = 1 + x(A+ y) = 0 mod e.

Let e = N
↵
, d = N

� . The small roots (x0, y0) = (�k, s)
satisfy

|x0| = |k| = ed� 1

' (N)
<

ed

1
2N

= 2N↵+��1 = X,

|y0| = |�s| = p+ q < 2N
1
2 = Y.

For a fixed integer m, Boneh and Durfee constructed two
sets of shift polynomials, such that the roots are the same as
(x0, y0) modulo e

m.

gi,j (x, y) = x
i
e
m�j

f
j for i = 0, . . . ,m� j, j = 0, . . . ,m

hi,j (x, y) = y
i
e
m�j

f
j for i = 1, . . . , t, j = 0, . . . ,m

Next, we use a example to illustrate the construction of
lattice basis in [3]. Let m = 2, t = 1, and the lattice basis
matrix consisting of the coefficient vectors of gi,j (xX, yY )
and hi,j (xX, yY ) is as Figure 1.

According to Coppersmith method, the equation can be
solved under the condition det(L) < e

m! (! is dimension
of the lattice). The elements on the diagonal should be as
small as possible to make this condition easier to meet. On
average, the diagonal elements less than e

m are helpful. We
call the shift polynomials helpful if the diagonal elements
introduced by them are less than e

m. For the sake of better
lattice and superior result, Boneh and Durfee [3] excluded the
unhelpful polynomials ye

2 and yef . Consequently, the lattice
basis matrix was no longer triangular, and it is difficult to
derive the determinant formula for general m and t. They

1 " "! "# "!# "!#! # "#! "!#"

$#,# = &! &!

$%,# = "&! &!'
$!,# = "!&! &!'!

$#,% = &( & &)' &'*
$%,% = "&( &' &)'! &'!*
$#,! = (! 1 2)' )!'! 2'* 2)'!* '!*!

,&,' = -.( &!*
,&,& = -./ &)'* &* &'*!

ℎ%,! = #(! 2)'* )!'!* 2)'!*! * 2'*! '!*"

Figure 1. Lattice basis for m = 2, t = 1.

introduced a technique called geometric progressive matrix to
solve this problem.Their result shows that one can factor the
modulus N in polynomial time, when d < N

0.292. So far, no
other attack improve this bound.

Herrmann and May applied the unraveled linearization
technique [15], and got the same result as [3]. They re-
placed xy + 1 by u, and changed the original polynomial
f (x, y) = 1+x(A+y) = 0 (mod e) into a linear polynomial
f̂ (x, u) = u + Ax = 0 (mod e). They used the new poly-
nomial f̂ (x, u) to construct shift polynomials in the similar
way. They replaced xy by u� 1, x2

y by ux� x, and uxy by
u
2 � u. Then, for m = 2, t = 1, the lattice basis matrix is as

Figure 2.

1 " "! # #" #! $ #$ #!$
%"," = '! '!

%$," = "'! '!(
%!," = "!'! '!(!

%",$ = ') '*( '+
%$,$ = "') '*(! '+(
%",! = )! *!(! 2*+( +!

-%,& = ./' '!0
-%,% = ./1 −'* '*+ '+0
ℎ$,! = $)! −*!( −2*+ *!+( 2*+! +!0

Figure 2. Lattice basis for m = 2, t = 1.

It is also a triangular matrix after removing the unhelpful
polynomials ye

2 and yef̂ , because yf̂
2 only introduces one

monomial u2
y.

Although Herrmann and May [15] did not improve the
bound d < N

0.292, they simplified the calculation of deter-
minant by unraveled linearization technique.

D. Factor RSA Moduli by Coppersmith Method
Coppersmith method is a kind of method to solve the small

roots of modular equations or integer equations, which can
be construted from RSA equations. Due to special parameter
selection (small private key exponent d) or partial information
(partial private key d or partial p) exposured, the roots have
upper bound and we just need to find all the roots in a rela-
tively small range. Therefore, RSA is broken by Coppersmith
method.

Next, we will discuss how to construct the equations and
use Coppersmith method to solve them in three specific cases
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including private key exponent d small, partial private key d

known and partial information of p known. Suppose that the
size of p and q are the same. Let e = N

↵
, d = N

� . For partial
key exposure attacks, we write known partial of d as ed. When
most significant bits (MSBs) are known, write unknown bits as
d0 = d � ed such that |d0| < N

� . For known least significant
bits (LSBs) of the private exponent, denote d1 as unknown
bits, and d = d1M + ed, where M = 2b(���) logNc.

III. SMALL EXPONENT ATTACKS

Wiener [33] proposed an attack on RSA with small de-
cryption exponent. Their algorithm was based on continued
fraction, and they proved that d can be recovered in polynomial
time under the condition d < N

0.25. Boneh and Durfee [3]
improved Wiener’s bound to d < N

0.292 based on Copper-
smith method. Next, we mainly discuss the small decryption
exponent attack on RSA with moduli N = p

r
q.

A. Attack on Takagi RSA

Recall the equation of Takagi RSA

ed ⌘ 1 mod (p� 1)(q � 1).

There is an integer k satisfying

ed� k (p� 1) (q � 1) = 1

where k, p, q and d are unknown. Then, we construct a three-
variable modular polynomial

f (x, y, z) = x (y � 1) (z � 1) + 1 = 0 (mod e).

The roots (x0, y0, z0) = (k, p, q) of the equation have upper
bounds

|x0| = |k| = ed� 1

(p� 1)(q � 1)
<

2ed

pq
< N

↵+�� 2
(r+1) = X,

|y0| = |p| < 2N1/(r+1) = Y,

|z0| = |q| < 2N1/(r+1) = Z.

Then, we use the Coppersmith method to find the small
roots. Due to the additional algebraic relations N = p

r
q, we

use substitution technique (replace each occurrence of y
r
z

by N to construct the lattice) to optimize the lattice basis.
Unraveled linearization technique can also be used to remove
unhelpful polynomials and construct triangular matrices which
are easier to analyze.

Itoh et al. [18] proved that d can be recovered in polynomial
time when d  N

2�
p

2
r+1 . Their result is based on geometric

progressive matrix. The attack on standard RSA described by
Boneh and Durfee [3] is a special case of r = 1. Takayasu and
Kunihiro [32] obtained the same results based on unraveled
linearization technique. They use linearization u1 = 1 + xy

and u2 = 1 + xz to remove the unhelpful polynomials and
construct a triangular matrix which simplify the calculation.

B. Attack on Prime Power RSA

Recall the equation of prime power RSA

ed ⌘ 1 mod p
r�1(p� 1)(q � 1).

There is an integer k satisfying

ed� kp
r�1 (p� 1) (q � 1) = 1

where k, p, q and d are unknown. A three-variable modular
polynomial is obtained

f (x, y, z) = 1 + xy
r�1(y � 1)(z � 1) = 0 (mod e).

The roots (x0, y0, z0) = (k, p, q) are bound by X =
N

↵+��1
, Y = Z = 2N1/(r+1).

In the similar way, we use Coppersmith method to find the
roots of the modular equation and factor N .

Takagi [30] applied Wiener’s attack on prime power RSA
and proved that one can recover d in polynomial time under
the condition d  N

1
2(r+1) . Later, May [25] gave two small

exponent attacks using Coppersmith method. The first attack
works when d  N

r
(r+1)2 for r � 2, based on the result

of [5]. The second attack works when d  N
1� 4r

(r+1)2 for
r � 2, based on solving univariate modular equation. Sarkar
[27] studied the case of r = 2, and showed that N can be
factored in polynomial time when d < N

0.395. It improves
the bound d < N

0.22 in [25]. Lu et al. [24] put forward three
algorithms for solving three types of linear equations. The first
one is multivariate linear equation modulo an unknown divisor
p
v for a known composite integer N (N ⌘ 0 mod p

u
, u � 1).

As an application of the algorithm, they proved that one can
factor N when d < N

r(r�1)

(r+1)2 , which improves the work of [25].
Sarkar [28] further extended the result of [27]. They studied
the case of 2 < r < 8, and improved previous works when
r = 3, 4.

Similar to modular equation, one can obtain integer equa-
tions

f (x1, x2, x3, x4) = 1� ex1 + x2(x3 � 1)(x4 � 1).

from Takagi RSA, and

f (x1, x2, x3, x4) = 1� ex1 + x2x
r�1
3 (x3 � 1)(x4 � 1).

from prime power RSA.
Then, we can follow the steps of Jochemsz-May strategy

to solve small roots of the integer equations. Takayasu and
Kunihiro analyzed the case of solving integer equation base
on Jochemsz-May strategy. Their results [32] show that us-
ing modular equation and unraveled linearization technique
can analyze a wider range than using integer equation and
Jochemsz-May strategy. Therefore, the modular equation com-
bined with unraveled linearization can usually obtain better
results.
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C. Attack on RSA with Modulus N = p
r
q
s

Lim et al. [21] proposed a RSA scheme with modulus
N = p

r
q
s. They showed that the scheme is even more

efficient. Lu et al. [22] extended small exponent attack to
RSA with moduli N = p

r
q
s. They analyzed both variants

satisfying ed ⌘ 1 mod (p� 1) (q � 1) and ed ⌘ 1 mod
p
r�1(p � 1)(q � 1). For the first variant, they used the same

modular equation as the attack on Takagi RSA. Note that they
replaced y

r
z
s with N instead of yrz. Finally, they proved that

N can be factored in polynomial time when d  N
7�2

p
7

3(r+s) . For
the second variant, they used an univariable modulus equation.
They took d as the variable and obtained a modular equation

f(x) = (E � x) mod p
r�1

q
s�1

where E is the inverse of e modulo N . Finally, they proved
that N can be factored in polynomial time when d <

N
1�(3r+s)(r+s)�2

.

IV. PARTIAL KEY EXPOSURE ATTACKS

In 1998, Boneh, Durfee and Frankel [4] studied partial
private key exposure attack on RSA with moduli N = pq.
They pointed out that if one knows a quarter bit of the
private, it is enough to recover the whole private key, when
the encryption exponent is small. More private key bits are
required for recovering private key with a larger encryption
exponent. However, their attacks only work when e < N

0.5.
Subsequently, Blömer and May [2] improved the result of [4],
expanding the range of e from N

0.5 to N
0.725. When the

LSBs are known, they proposed an algorithm with better result
e < N

0.875. Soon afterwards, Ernst et al. [11] proposed some
attacks for known MSBs or LSBs of the private exponent.
Their work first considers the case of full size e. Aono [1]
proposed an optimized method for lattice construction, and
use it to attack RSA with small d and known LSBs of d. The
method is theoretically more effective than the previous partial
private key exposure attack. Later, Takayasu and Kunihiro
[31] combined unraveled linearization technique and improved
previous works. They gave the attacks with known MSBs
of d < N

0.5625 or LSBs of d < N
0.368. Recently, Suzuki,

Takayasu and Kunihiro [29] extended the work of [31] and
proposed an attack when both MSBs and LSBs of d are known.
At the same time, some scholars have also studied private
key exposure attacks of other RSA variants. Next, we mainly
discuss private key exposure attacks on RSA with modulus
N = p

r
q.

A. Attack on Takagi RSA

If we know the MSBs of d, and the equation of Takagi RSA
is

e

⇣
ed+ d0

⌘
= 1 + k(p� 1)(q � 1)

where d0, k, p, q are unknown. A four variable modular poly-
nomial is obtained

f (x1, x2, x3, x4) = ex1 + x2 (x3 � 1) (x4 � 1) + 1

The roots (ex1, ex2, ex3, ex4) = (�d0, k, p, q) of
f (ex1, ex2, ex3, ex4) = 0 (mod eed) are bound by
X1 = N

�
, X2 = 2N↵+��2/(r+1)

, X3 = X4 = 2N1/(r+1).
Suppose the LSBs of d are exposured, and the equation of

Takagi RSA can be rewritten as

e

⇣
d1M + ed

⌘
= 1 + k(p� 1)(q � 1).

We can construct a three variable modular polynomial

f (x, y, z) = x (y � 1) (z � 1) +
⇣
1� eed

⌘
.

The roots (x0, y0, z0) = (k, p, q) of f (x0, y0, z0) = 0
(mod eM) are bound by X = 2N↵+��2/(r+1)

, Y = Z =
2N1/(r+1).

Thus, the problem of recovering d is converted to solving
modular equation.

We can also use the integer equation. Assuming we know
some bits of d regardless of the MSBs or LSBs. Write known
bits as ed , and the equation of Takagi RSA is

e

⇣
ed+

⇣
d� ed

⌘⌘
= 1 + k(p� 1)(q � 1).

Construct a four variable integer equation

f (x1, x2, x3, x4) = 1�eed+eMx1+x2 (x3 � 1) (x4 � 1)+1

where M = 1 for known MSBs, and M = 2b(���) logNc for
known LSBs. And the roots (ex1, ex2, ex3, ex4) = (�d0, k, p, q)
are bound by X1 = N

�
, X2 = 2N↵+��2/(r+1)

, X3 = X4 =
2N1/(r+1). Thus, the problem of recovering d is converted
to solving integer equation. Then, we can use Jochemsz-May
Strategy to find the roots.

In 2014, Huang et al. [17] studied partial key exposure
attacks on Takagi RSA. They used the lattice basis structure
similar to [18] and gave the attacks with known MSBs, known
LSBs and known some bits in the middle of the private
exponent known. Their results show that one can factor N

in polynomial time giving about (1� �
� )-fraction of MSBs or

continuous bits in middle of d when

�  7

4 (r + 1)
� 1

4

s
24 (↵+ �)

r + 1
� 39

(r + 1)2
� ✏.

For known LSBs, they proved that one can factor N in
polynomial time giving about (1 � �

� )-fraction of LSBs of
d when

�  5

3 (r + 1)
� 2

3

s
3 (↵+ �)

r + 1
� 5

(r + 1)2
� ✏.

Later, Takayasu and Kuniriho [32] used integer equation and
modular equation respectively to improve the results in [17]
for known MSBs and LSBs.
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B. Attack on Prime Power RSA

For prime power RSA, the method to recover d is analogous
to Takagi RSA. In addition, because p

r�1 is in prime power
RSA equation, we get a polynomial modulo p

r�1. Suppose we
know some bits of d regardless of the MSBs or LSBs. Write
known bits as ed such that

���d� ed
��� < N

� , and the equation of
prime power RSA can be rewritten as

f (x) = eMx+ eed� 1 (mod p
r�1)

where M = 1 for known MSBs, and M = 2b(���) logNc

for known LSBs. The root x0 is bound by X = N
� . Thus,

the problem of recovering d is converted to solving univariate
modular equation. We use Coppersmith method to find the
root.

May [25] studied partial private key exposure attack on
prime power RSA. They extended two small decryption expo-
nent attacks on prime power RSA to partial private key expo-
sure attack, and proved that one can factor N in polynomial
time giving about min{1� r

(r+1)2
,

4r
(r+1)2

}-fraction of MSBs
or LSBs. Later, Esgin et al. [12] extended the small decryption
exponent attack on prime power RSA in [27] to partial private
key exposure attack. Sarkar [28] gave the partial private key
exposure attack when r < 8 and d < N

1
r+1+

3r�2
p

3r+3+3
3(r+1) .

V. FACTORING RSA MODULI WITH PARTIAL KNOWN

In this section, we will describe attacks on RSA when partial
bits of moduli N are known by side channel analysis or other
ways. As early as 1985, Rivest and Shamir [26] have analyzed
this problem. They used the method of integer programming
to factor N = pq in the case of two thirds of the consecutive
bits of p known. Then, Coppersmith [6] factored N based on
the lattice analysis method when half of the consecutive bits
of p are known. Herrmann and May [13] first considered the
situation that known bits are inconsecutive, and extended the
problem to factor N with n blocks bits known. They proved
that one could factor N when know 70% of random bits of p.

For the RSA scheme with modulus N = p
r
q, Boneh, Durfee

and Howgrave-Graham [5] showed that one can factor N when
know 1

r+1 -fraction of the MSBs bits of p. Their basic idea is
to guess the high bits of p, and calculate the entire p. Let the
high bits of p as known P and the low bits as a variable x.
Then, we get a univariate modular equation

f (x) = (P + x)r mod p
r
.

The small root can be found by Coppersmith method. Lu et al.
[23] extend the problem to the case of n unknown bit blocks
rather than a consecutive block. Their results show that the
modulus N can be factored when ln (r+1)

r -fraction of random
bits of p are known.

Subsequently, Coron et al. [8] extended the attack of [5] to
RSA with modulus N = p

r
q
s. They used

(
r = u · ↵+ a

s = u · � + b

And skillfully converted N = p
r
q
s into N = P

u
Q, where

P := p
↵
q
�
, Q := p

a
q
b. Next, N can be factored based on [5].

Their results show that when r or s is greater than (log p)3,
N can be factored in polynomial time.

Lu et al. [22] also discussed the security of RSA with
modulus N = p

r
q
s. They studied the case of known LSBs

of p, and proposed two attacks, modulo p and modulo pq.
They showed that when know min{ s

r+s ,
2(r�s)
r+s } of the bits

of p, one can factor N in polynomial time. When 2r > 3s,
the attack modulo p is better than modulo pq.

Later, Coron and Zeitoun [9] took advantage of Bézout
identity and got a new relationship

↵ · s� � · r = 1.

They converted N = p
r
q
s to N = P

r
q, where P := p

↵
q
� .

Then, the results of [5] was used to factor N , which improved
the result of [8]. That is, when r � log p, N can be factored
in polynomial time.

VI. CONCLUSION

Coppersmith method is a very important tool in RSA crypt-
analysis. We survey the application of Coppersmith method in
RSA with modulus N = p

r
q from three aspects, including

small exponent attack, partial key exposure attack and fac-
toring RSA moduli with partial known. These three types of
attacks usually rely on special parameter selection. Therefore,
the selection of parameters needs to be more careful to avoid
the above attacks.

For the three attacks discussed in this paper, adding more
helpful polynomials and eliminate unhelpful polynomials to
construct lattice basis are the key to improve the attacks, which
means to factor N with less information known. In addition,
there are other attacks on RSA with moduli N = p

r
q, which

are mentioned in [34] and [35].
The crux of Coppersmith method is how to transform

the problem of solving modular equation or integer equation
into a short vector problem on lattices. In other words, the
construction of the lattice basis is the most critical step. For
now, Jochemsz-May strategy is the best general strategy for
solving multivariate integer equation. A triangular matrix can
be constructed easily by Jochemsz-May strategy. However, for
some special algebraic structures, Jochemsz-May strategy does
not always get the best results. We need to exploit the implicit
algebraic relationships to construct a better lattice basis. The
work of [32] shows that modular equations combined with
unraveled technique usually obtain better results than integer
equation based on Jochemsz-May Strategy. The construction
of a better lattice basis and optimization of the results still
have room for improvement.
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