
WAF Signature Generation with Real-Time Information on the Web

1st Masahito Kumazaki
Graduate School of Informatics

Nagoya University
Nagoya, Japan

Email: kumazaki@net.itc.
nagoya-u.ac.jp

2nd Yukiko Yamaguchi
Information Technology Center

Nagoya University
Nagoya, Japan

Email: yamaguchi@itc.
nagoya-u.ac.jp

3rd Hajime Shimada
Information Technology Center

Nagoya University
Nagoya, Japan

Email: shimada@itc.
nagoya-u.ac.jp

4th Hirokazu Hasegawa
Information Security Office

Nagoya University
Nagoya, Japan

Email: hasegawa@icts.
nagoya-u.ac.jp

Abstract—Zero-day attacks and attacks based on publicly dis-
closed vulnerability information are one of the major threats
in network security. To cope with such attacks, it is important
to collect related information and deal with vulnerabilities as
soon as possible. Therefore, we propose a system that collects
vulnerability information related to Web applications from real-
time information on the Web and generates Web Application
Firewall (WAF) signatures. In this paper, at first, we collected
vulnerability information containing the specified keyword from
the National Vulnerability Database (NVD) data feed and gen-
erated WAF signatures automatically. Then, we confirmed the
possibility of WAF signature generation from one tweet. Finally,
we extracted tweets that may contain vulnerability information
and labeled them according to the filtering algorithm. From these
results, we could prove the efficiency of the proposed system.

Keywords–Web Application Firewall(WAF); Zero-day Attack;
Vulnerability Information; Real-time Information.

I. INTRODUCTION

Web applications are recognized as an important part of
the social infrastructure and we use various Web applications
every day. On the other hand, cyberattacks are increasing year
by year and are widely recognized as an obstacle to social
infrastructure. There are many cases of serious damage such as
classified information leak by unauthorized access and attacks
using vulnerabilities [1] [2].

Among cyberattacks, attacks that used published vulnera-
bilities are especially increasing [3] [4]. As an actual case, the
number of detected attacks for Apache Struts 2 has increased
immediately after the announcement of its vulnerability [5],
and some of them resulted in personal information leakage due
to lack of necessary countermeasures such as timely system
update [6] [7]. Another major information security issue, zero-
day attacks that occur before both a release of vulnerability
information and a provision of patches [18]. For example,
Google Chrome suffered such a zero-day attack in 2019 [9].

Generally recommended countermeasure against such cy-
berattacks is to apply fixed patches distributed by the vendor
on time. However, there is an unprotected period against
cyberattacks until the patch has released if the attack is a zero-
day attack.

In this paper, we propose a Web Application Firewall
(WAF) signature generation system using real-time informa-
tion on the Internet to mitigate zero-day attack problems. Real-
time information sources like twitter are used for a variety of
purposes [10] [11]. They may contain the latest vulnerabilities
and emergency plans, which are useful to mitigate the prob-
lem before formal vulnerability information and patches are
released. Therefore, in this study, we propose a system that

automatically collects vulnerability information to construct
new WAF signatures to mitigate the problems until the re-
lease of formal countermeasures. Although there are previous
studies on the automatic generation of signatures for Intrusion
Detection System (IDS) [12] [13] [14], we use WAF in this
study because it targets web applications. To acquire the latest
vulnerability information from the Web, the system collects
vulnerability information from real-time data feeds such as a
Social Networking Service and websites for discussions on
security technologies. After performing data cleansing on the
collected data, the system checks for associated vulnerable
Web applications and generates WAF signatures for them as a
virtual patch.

In this paper, we extracted the vulnerability information in-
cluding the specified keyword from the vulnerability informa-
tion provided by the National Vulnerability Database (NVD)
[15], and automatically generated the signature of WAF, as a
proof of the concept. Then, we collected vulnerability infor-
mation from Twitter, which is one of the well-known real-time
information sources, and attempted to generate WAF signatures
from tweets. Finally, we extracted and filtered tweets using
a manual approach. From the results, we could prove the
efficiency of the proposed system.

In the following, in section II, we describe the background
of this study, such as exisiting countermeasures. In section
III, we describe our proposed system and architectures which
implement this system. In section IV, we describe the ex-
periments using the inplemented system. In section VI, we
discuss additional real-time information sources. Finally, we
summarize this paper in section VI.

II. BACKGROUND

Existing countermeasures against zero-day attacks include
defense-in-depth solutions that combine multiple security ap-
pliances such as firewalls, IDS/Intrusion Prevention System
(IPS) based allow/deny list, and so on. However, these coun-
termeasures may result in an unprotected period against attacks
if the countermeasure is based on static rules. To mitigate the
damage caused by the zero-day attacks, we propose a WAF
signature generation system using real-time information on
the Web. The proposed system generates a WAF signature for
blocking access to the vulnerable Web application when the
system finds vulnerability information of the Web application
from real-time information on the Internet. As a result, the
unprotected time against attacks is shortened and the damage
may be mitigated.

40Copyright (c) IARIA, 2020. ISBN: 978-1-61208-821-1

SECURWARE 2020 : The Fourteenth International Conference on Emerging Security Information, Systems and Technologies

A. Web Application Firewall (WAF)
Web applications are becoming more complicated year by

year so that it is getting harder to detect vulnerabilities from
Web application implementations. Therefore, WAF is used as
a security measure to protect Web applications from ingress
traffic and mitigate attacks that exploit vulnerabilities [16]. The
WAF could be installed at multiple locations, such as a host
type installed on a Web server, a network type installed on
a communication path to the Web server, and a cloud type
using WAF services on a cloud provided by the cloud service
provider. By setting rules to prevent attacks aiming at typical
Web application vulnerabilities, we can protect the Web server
from attacks that used the typical vulnerability. Some WAFs
allow you to set your own rules for specific attacks so that it
is possible to prevent the zero-day attacks by applying custom
signatures. The WAF uses the following basic functions to
prevent external attacks and notify the administrator.

Analyzing
Analyze Hypertext Transfer Protocol (HTTP)
communication based on the detection pattern
defined as to allow/deny list.

Processing
Performs pass-through processing, error process-
ing, replacement processing, blocking processing,
and so on. Judgement is based on the result of the
analysis function.

Logging
Record WAF activity. An audit log records the
unauthorized HTTP communication detected and
its processing method. An operation log records
WAF operation information and error information.

B. ModSecurity
ModSecurity is an open-source host type WAF software

provided by Trustwave. ModSecurity has the following func-
tions.

• Recording and auditing whole HTTP traffic
• Real-time monitoring of HTTP traffic
• Flexible enough rule engine to act as an external patch

for Web applications
• Can be embedded as a module of Web server software

Apache, IIS, and Nginx

Also, the Open Web Application Security Project (OWASP)
[17] provides the Core Rule Set (CRS) that includes signatures
for typical cyberattacks for ModSecurity. In this study, we
use ModSecurity as WAF for our proposed system in later
experiments, considering the flexibility of the rule engine and
the versatility of the module.

III. PROPOSED SYSTEM

We assume that The organization utilizing proposed system
is running WAF and the administrator can customize the rule
of this WAF.

The proposed system consists of four modules:

(1) Collection module
(2) Cleansing module
(3) Signature generation module
(4) Notification generation module.

TABLE I. REAL-TIME INFORMATION SOURCES

API Identification Timestamp
Twitter [18] ✓ ✓ ✓

Stack Overflow [19] ✓ ✓ ✓
Reddit [20] ✓ ✓ ✓
teratail [21] × ✓ ✓

Security StackExchange [22] ✓ ✓ ✓

Figure 1 shows the architecture of the proposed system and its
data flow.

First, the collection module collects vulnerability infor-
mation from real-time information sources such as social
networks (Fig. 1 (1)). After that, the proposed system performs
data cleansing on the collected data (Fig. 1 (2)). Finally, the
proposed system generates WAF signatures and set them (Fig.
1 (3)). At the same time, the proposed system generates a
notification file for the administrator (Fig. 1 (4)).

In this system, it is assumed that the administrator registers
the names of the Web applications and its version information
into the system beforehand. Based on the registered informa-
tion, the system extracts vulnerability information from the
Internet.

A. Collection module
The proposed system generates WAF signatures from real-

time information shown in Table I. Subsequent processes will
need IDs and timestamps to identify the articles and the
date of publication. As shown in Table 1, these sources are
equipped with IDs and timestamps. The collection module
collects vulnerability information from these sources and saves
their ID, timestamp, and body.

B. Cleansing module
The proposed system performs data cleansing on collected

data to remove duplicate information and get the necessary
information. The cleansing module extracts the following at-
tributes from text and Web page. The system uses the following
attributes for generating WAF signatures.

• Application name
• Vulnerability type
• Version information
• Vulnerability identification information such as a

Common Vulnerabilities and Exposures (CVE)-ID

C. Signature generation module
If the Web application name which is used in operating

Web application system is included in attributes from the
cleansing module, the system generates a WAF signature to
block HTTP requests to that Web application and apply it into
the WAF. In addition, the signature generation module notifies
the notification generation module regarding the signature
generated.

D. Notification generation module
The proposed system generates a notification to the ad-

ministrator. This notification includes information such as the
name of the vulnerable web application and its version. We
expect that when the vulnerability is resolved, for example by
applying a patch, the administrator will use this notification to
remove the signature.

41Copyright (c) IARIA, 2020. ISBN: 978-1-61208-821-1

SECURWARE 2020 : The Fourteenth International Conference on Emerging Security Information, Systems and Technologies

1

WAF

Internet

System of opaeration

Web
server

Admin

Proposed system

Real-time
information

NotificationCollection
module

Cleansing
module

Notification
generation

module

Signature
generation

module

HTTP requests

Collected
data

WAF signature

WAF signature

Attributes

(4)
(1)

(3)(2)

Figure 1. System architecture and data flow.

IV. EXPERIMENTS

In this study, we conducted the following evaluation ex-
periments. As a Web application to collect vulnerability in-
formation, we used WordPress as a keyword for extracting
vulnerability information due to its known history of many
vulnerabilities.

A. Experiment 1: WAF signature generation using CVE infor-
mation

As a proof of concept, we implemented the proposed
system shown in Figure 1 with Python 3.6.8 and AWK scripts
and examined the automatic generation of WAF signatures
using NVD data feeds instead of real-time information.

1) Processing Method: In the collection module (Fig.1(1)),
we obtained NVD data feed on a daily basis. This data
feed contains CVEs. In the cleansing module (Fig.1 (2)), we
checked whether the keyword was included in the Common
Platform Enimeration (CPE) name for each vulnerability in-
formation of the data feed. After that, following data has been
extracted.

1) CVE-ID
2) CPE name

CPE name is a name that identifies the platforms [23].
cpe:2.3:[Part]:[Vendor]:[Product]:[Version]
:[Update]:[Edition]:[SW Edition]:[Target SW]
:[Target HW]:[Language]:[Other]

In this experiment, we used [Part] and [Product]
from the CPE name. [Part] represents a product type
with one character, where ’a’ is an application, ’o’ is
an operating system, and ’h’ is hardware. [Product]
is the product name.

3) Version information

We extracted these data and stored them into JavaScript
Object Notation (JSON) format.

In signature generation module (Fig.1 (3)), we generated
a signature for ModSecurity from extracted information to
prevent access to the Web application. With reference
to ModSecurity_41_xss_attacks.conf and

WordPress:17

Other application: 3
• Import export

WordPress users
• WordPress download

manager
• WordPress ultra Simple

shopping cart

Figure 2. Extracted information in Experiment 1

ModSecurity_41_sqlinjection_attacks.conf
from ModSecurity’s CRS, we added following signatures to
ModSecurity.

• VARIABLES: REQUEST COOKIES|!REQUEST
COOKIES:/ utm/|REQUEST COOKIES NAMES|
ARGS NAMES|ARGS|XML:/

• OPERATOR: Regular expression using Web applica-
tion names

• ACTIONS: phase:2,block,msg:’application name in-
jection.’,severity:’2’,id:’15000+line number’

In addition, we generated text files to notify the signature
generation in notification generation module (Fig.1 (4)).

2) Result: We performed this daily process for 10 days
from 21st December, 2019 to 30th December, 2019.

Since the results for all days during the collection period
was same, a single day result is depicted as a sample in Figure
2.

The result of automatically generated WAF signatures is
shown in Figure 3. The signature for WordPress was generated
from 17 cases of WordPress vulnerability information and
other signatures were generated from 1 case corresponding to
each application.

42Copyright (c) IARIA, 2020. ISBN: 978-1-61208-821-1

SECURWARE 2020 : The Fourteenth International Conference on Emerging Security Information, Systems and Technologies

1 SecRule REQUEST_COOKIES|!REQUEST:/__utm/|
REQUEST_COOKIES_NAMES|ARGS_NAMES|ARGS|XML:/* "
import_export_wordpress_users" "phase:2,block,msg:’
WordPress injection.’severity:’2’,id:’15001’"

2 SecRule REQUEST_COOKIES|!REQUEST:/__utm/|
REQUEST_COOKIES_NAMES|ARGS_NAMES|ARGS|XML:/* "
wordpress" "phase:2,block,msg:’WordPress injection.’
severity:’2’,id:’15002’"

3 SecRule REQUEST_COOKIES|!REQUEST:/__utm/|
REQUEST_COOKIES_NAMES|ARGS_NAMES|ARGS|XML:/* "
wordpress_download_manager" "phase:2,block,msg:’
WordPress injection.’severity:’2’,id:’15003’"

4 SecRule REQUEST_COOKIES|!REQUEST:/__utm/|
REQUEST_COOKIES_NAMES|ARGS_NAMES|ARGS|XML:/* "
wordpress_ultra_simple_paypal_shopping_cart" "phase:2,
block,msg:’WordPress injection.’severity:’2’,id
:’15004’"

Figure 3. Generated WAF signature in Experiment 1

Figure 4. The tweet used in Experiment 2

TABLE II. EXTRACTED ATTRIBUTES OF THE TWEETS

key Type Description
id Int64 tweet id as an integer.

created at String The time when the tweet was created.
username String User name who posted the tweet.

text String The tweet contents in UTF-8 format.
urls List Uniform Resource Locators (URLs) in the tweet1.

3) Consideration: From the generated signatures it could
be seen that in addition to the signature for actual WordPress
application, other applications that include“ wordpress” in
their name have been blocked. These redundant rules give an
additional burden to the WAF. To overcome this limitation, we
need to improve the signature generation rule and tune it.

B. Experiment 2: Generation of WAF signatures using twitter
feed

To confirm the possibility of WAF signature generation
from real-time vulnerability information, we collected tweets
from twitter feeds, chose one tweet, and generated a WAF
signature from it. We collected tweets using the search Appli-
cation Programming Interface (API) by setting query param-
eters to “wordpress” and chose the tweet shown in Figure 4.
The proposed system uses information listed in Table II from
tweets, so we extracted the following information.

• id: 1200259525707796482
• created at: 2019-11-29 03:45:45
• username: Vulmon Vulnerability Feed
• text: CVE-2017-9061\n\nIn WordPress before 4.7.5,

a cross-site scripting (XSS) vulnerability exists when

1 SecRule REQUEST_COOKIES|!REQUEST:/__utm/|
REQUEST_COOKIES_NAMES|ARGS_NAMES|ARGS|XML:/* "
wordpress" "phase:2,brock,msg:’WordPress XSS.’severity
:’2’,id:’15001’"

Figure 5. Generated WAF signature in Experiment 2

attempting to upload very large files, because the error
message does not properly restrict presentation of the
filena...\n\nhttps://t.co/anaw5-QSAoa”

• urls: [http://vulmon.com/vulnerabilitydetails?qid=
CVE-2017-9061]

1) Method and Result: As a result of a visual check of the
Web application and vulnerability information contained in the
tweet, we got the following attributes from the text.

• Application name: WordPress

• Vulnerability type: XSS

• Version information: 4.7.5 and earlier

• CVE-ID: CVE-2017-9061

We also checked the Web page indicated by the URL, but
we couldn’t get any more attributes. Similar to experiment 1,
we generated the ModSecurity signature from these attributes.
The generated signature is shown in Figure 5.

2) Consideration: From the experiment, it was confirmed
that WAF signatures could be generated from collected tweets.
However, a method to select a relevant tweet is needed.
We expect to be able to extract information such as Web
application name, its version, and type of vulnerability through
the pattern matching approach.

C. Experiment 3: Filtering and extracting tweets through
pattern matching approach

Based on the results of Experiment 2, we extracted and
filtered vulnerability information from the tweets. Through
twitter API We collected tweets every day for the following
period. After eliminating the duplicates of the collected tweets,
we further processed 1,116 tweets.

• Collection period: From 4th December, 2019 to 8th
January, 2020

• Search query: “WordPress AND Vulnerability”,
“WordPress AND XSS”, and “WordPress AND injec-
tion”

To check the results of the filter, we manually assigned the
following labels to the tweets based on the relevance to the
WordPress vulnerability.

0: WordPress vulnerability information
1: Other information

As a result of the manual labeling, 76 tweets regarding
WordPress vulnerabilities have been identified. The remaining
1,040 tweets were mistakenly extracted since its URL referred
to the Webpage created using WordPress, for example.

43Copyright (c) IARIA, 2020. ISBN: 978-1-61208-821-1

SECURWARE 2020 : The Fourteenth International Conference on Emerging Security Information, Systems and Technologies

Classification elements

0

Yes

App_name

CVE list
1

0

1
plugin

/theme

No

Otherwise

0Null

include WordPress
vulnerability

1

1-b 1-c

1-a

2

Figure 6. Flowchart of estimated label setting

1) Method: At first, we collected the attributes shown in
Table II, from the tweet and then filtered them on its text
context by pattern matching using regular expressions to the
tweet’s text and web page body which is indicated by URL.
The following attributes are extracted from the tweet and stored
in JSON format.

• ID: tweet-id
• App name: If the string includes “wordpress” this

element is 1, otherwise 0.
• CVE: Extract the string “CVE-\d{4}-\d+” and store

it as a list.
• plugin / theme: If the string includes “plugin” or

“theme” this parameter is 1, otherwise 0.
From these attributes and a list of CVEs corresponding to

the target application, we automatically assigned an estimated
label to tweets according to the flowchart shown in Figure 6.
Each label indicates the following categorization result.

0: WordPress vulnerability information
1: Other information

1-a: Not included the string “wordpress”
1-b: Expected as a WordPress plugin or theme
1-c: No WordPress vulnerability in CVE list

2: Unfiltered by this method
2) Result: We implemented the filter in Python as per the

flowchart shown in Figure 6 and ran it on the collected 1,116
tweets. The result is shown in Table III. This method filtered
597 tweets and 98.5% of them were filtered correctly. On the
other hand, 519 were unfiltered. By using the pattern matching
approach, the number of objects of analysis could be reduced
by half.

Out of 7 tweets that have been failed to be correctly filtered,
6 tweets were supposed to be labeled as 0 whereas it was
mistakenly labeled as 1-b. they were weekly summaries of
vulnerability information for WordPress and related modules.
They contained information about WordPress and its plugins
at the same time. Therefore, the filter misjudged them as
information about WordPress plugins.

3) Consideration: The information required for the pro-
posed system is vulnerability information that is up-to-date or
has not been officially announced, which is included in the
tweets labeled as 2 in this experiment. Therefore, there needs
to be a way to extract the required information from these
tweets.

TABLE III. FILTERING RESULTS

estimated label
0 1-a 1-b 1-c 2 total

0 13 0 6 0 57 76
correct label 1 1 94 292 191 462 1,040

total 14 94 298 191 519 1,116

TABLE IV. NUMBER OF SEARCH HITS

2018-20148 2019-17669 2019-20041
Stack Overflow 10(-) 6(-) 10(-)

Reddit 2(-) 15(-) 11(-)
teratail 6(-) 6(-) 3(-)

Security StackExchange 2(-) 0(-) 2(-)

(): Number of search hits related CVEs

V. CONSIDERATION OF ADDITIONAL SOURCES

Currently, the real-time information source is only Twitter
and it could be prone to be disinformation. Therefore, we
discussed the possibility of using other information sources
which are shown in Table I.

To analyze whether those information sources are moderate
sources or not, we explored discussions about following three
WordPress vulnerabilities in those communities. These vulner-
abilities are registered in the NVD and have a high Common
Vulnerability Scoring System (CVSS) score.

• CVE-2018-20148 Published: 14th December, 2018
• CVE-2019-17669 Published: 17th October, 2019
• CVE-2019-20041 Published: 27th December, 2019

Since we cannot collect information from teratail via API,
we searched the above vulnerabilities by Google search with
queries “WordPress” and “vulnerability”. The duration of the
search was set to one month before and after the vulnerabil-
ity announcement. The results are shown in Table IV. The
numbers in parentheses are the number of search hits. The
result shows that we could not obtain information about these
vulnerabilities from these communities in a timely manner.

Since the results shown in Table IV are not suitable for a
comparison of each knowledge community, we tried additional
exploration. We compared the number of search hits per site
using the Custom Search API provided by Google to see the
number of discussions about vulnerabilities in each knowledge
community. We set the query ”vulnerability” for all sites, and
the period is from 1st January, 2017 to 31st December, 2019.
Since Reddit has a lot of topics that are not security-related, we
only explored two subreddits, “security” and “cybersecurity”.

The results are shown in Table V. Among the knowledge
communities explored in this study, Stack Overflow and Secu-
rity StackExchange are the most active in discussions about the

TABLE V. NUMBER OF SEARCH HITS IN
EACH KNOWLEDGE COMMUNITY

knowledge community\Year 2017 2018 2019 total
Stack Overflow 2,166 2,072 1,837 6,075

Reddit[cybersecurity] 31 172 266 469
Reddit[security] 16 60 151 227

teratail 241 196 172 609
Security StackExchange 1,166 1,072 768 4,006

44Copyright (c) IARIA, 2020. ISBN: 978-1-61208-821-1

SECURWARE 2020 : The Fourteenth International Conference on Emerging Security Information, Systems and Technologies

vulnerability so that they can be used as a good information
source.

VI. CONCLUSION

In this study, we proposed the WAF signature generation
system using real-time information on the Internet and con-
ducted three types of experiments as initial studies. From a
filtering experiment for 1,116 Tweet data, we were able to
narrow down the required data to half of the total data. We also
discovered the following challenges in those three experiments.

• How to clearly distinguish vulnerability information
of other Web applications which may have a similar
name as Web application name

• How to select the necessary information effectively
from vulnerability information

In addition, the following challenges may occur when
implementing the whole proposed system.

• How to determine the disinformation
• What to do with vulnerability information for which

version information could not be extracted
• Block legitimate Web applications which include the

name of the target application in their names
• React other than blocking based on the type of vul-

nerability
• Generalize of the system to other than WordPress

In order to solve these problems, we will consider and
verify the following approaches.

• Defining reliability based on the account which posted
information to the information sources

• Creating additional signatures to block the target only

REFERENCES

[1] Significant Cyber Incidents — Center for Strategic and International
Studies
https://www.csis.org/programs/technology-policy-program/
significant-cyber-incidents [retrieved: July, 2020]

[2] The 15 biggest data breaches of the 21st century | CSO Online
https://www.csoonline.com/article/2130877/
the-biggest-data-breaches-of-the-21st-century.html [retrieved: August,
2020]

[3] 10 Major Security Threats 2019 — Information-Technology Promo-
tion Agency (IPA), Japan https://www.ipa.go.jp/files/000076989.pdf [re-
trieved: July, 2020]

[4] Think Fast: Time Between Disclosure, Patch Release and Vulnerability
Exploitation ― Intelligence for Vulnerability Management, Part Two |
FireEye Inc
https://www.fireeye.com/blog/threat-research/2020/04/
time-between-disclosure-patch-release-and-vulnerability-exploitation.
html [retrieved: August, 2020]

[5] Attacks Heating Up Against Apache Struts 2 Vulnerability | Threatpost
https://threatpost.com/attacks-heating-up-against-apache-struts-2-vulnerability/
124183/ [retrieved: July, 2020]

[6] US House of Representatives Committee on Oversight and Government
Reform, “The Equifax Data Breach”, Majority Staff Report 115th
Congress, 2018.
https://republicans-oversight.house.gov/wp-content/uploads/2018/12/
Equifax-Report.pdf [retrieved: July, 2020]

[7] GMO Payment Gateway, “Apology and Report for Leak of Personal
InformationDueto Unauthorized Access”, 2017.
https://www.gmo-pg.com/en/corp/newsroom/pdf/170310 gmo pg en.
pdf [retrieved: July, 2020]

[8] Committee on National Security Systems, “Committee on National
Security Systems(CNSS) Glossary”, CNSSI No. 4009, 2015

[9] Chrome Releases: Stable Channel Update for Desktop
https://chromereleases.googleblog.com/2019/03/
stable-channel-update-for-desktop.html [retrieved: July, 2020]

[10] T. Sakaki, O. Makoto, and M. Yutaka, “Earthquake shakes Twitter users:
real-time event detection by social sensors.”, In Proceedings of the 19th
international conference on World wide web, p. 851-860, 2010

[11] O. Oh, M. Agrawal, and H. R. Rao, “Information control and terror-
ism:Tracking the mumbai terrorist attack through twitter.”, Information-
Systems Frontiers, vol. 13, no. 1, pp. 33–43, 2011

[12] S. More, M. Matthews, A. Joshi, and T. Finin, “A Knowledge-Based
Approach To Intrusion Detection Modeling.”, In Proceedings of 2012
IEEE Symposium on Security and Privacy Workshops, pp. 75-81, May
2012.

[13] C. Kreibich and J. Crowcroft, “Honeycomb: Creating Intrusion Detec-
tion Signatures Using Honeypots.”, SIGCOMM Computer Communi-
cation Review., Vol. 34, No. 1, pp. 51-56, January 2004.

[14] S. Singh, C. Estan, G. Varghese, and S. Savage, “Automated Worm
Fingerprinting.”, In Proceedings of the 6th Symposium on Operating
Systems Design and Implementation, pp.4-4, December 2004.

[15] NVD - Home
https://nvd.nist.gov/ [retrived: October, 2020]

[16] K. Lawrence and L. Luo, “Interactive management of web application
firewall rules.”, U.S.Patent, No. 9,473,457, 2016

[17] OWASP Foundation | Open Source Foundation for Application Security
https://owasp.org/ [retrived: October, 2020]

[18] Twitter
https://twitter.com [retrived: October, 2020]

[19] Stack Overflow - Where Developers Learn, Share, & Build Careers
https://stackoverflow.com [retrived: October, 2020]

[20] reddit: the front page of the internet https://www.teratail.com [retrived:
October, 2020]

[21] teratail teratail.com [retrived: October, 2020]
[22] Information Security Stack Exchange https://security.stackexchange.

com/ [retrived: October, 2020]
[23] B. Cheikes, D. Waltermire, and K. Scarfone, “Common platform enu-

meration: naming specification version 2.3”, NIST Interagency Report
7695, pp.11-13, 2011.

45Copyright (c) IARIA, 2020. ISBN: 978-1-61208-821-1

SECURWARE 2020 : The Fourteenth International Conference on Emerging Security Information, Systems and Technologies

