
Detection Algorithm for Non-recursive Zip Bombs
1st MaoYang Chen

University of Electronic Science and Technology of China
ChengDu, China

maplejack@qq.com

2nd MingYu Fan
University of Electronic Science and Technology of China

ChengDu, China
ff98@163.com

Abstract—Traditional compression bombs often work by re-
cursive decompression, so the usual defensive way is by single
decompression. However, a new type of compression bombs
has recently appeared, which can take effect with a single
decompression. We show the two structures of this type of
compression bombs and provide the basic idea of detecting such
bombs. At the same time, we point out the details in need of
attention in the detection process as well. Moreover, we propose
a detection algorithm for this type of bombs and we analyze the
accuracy and detection efficiency of this algorithm.

Index Terms—Software safety; File viruses; Compression
bombs.

I. INTRODUCTION

Compression bombs are the compressed files that have a
very high compression ratio and can generate a huge amount
of invalid data after decompression. They can be used to cause
many serious problems, such as buffer overflows, memory
leaks. Some bombs even come with Trojan horse programs
[4]. Sometimes, compression bombs are also used as email
bombs which will lead to denial of service [3].

The zip bomb is a typical type of compression bombs. Zip
bombs can be divided into two types: recursive zip bombs and
non-recursive zip bombs [1].

The recursive zip bombs also fall into two types. The
first type is the compression bombs, represented by the most
famous zip bomb, 42.zip [7]. The original size of 42.zip is
0.6MB before decompression, but after six layers of recursive
decompression, it will expand to 4.5PB. The second type is
zip quines, whose feature is that once they are decompressed
recursively, they will copy themselves infinitely. A typical
example of zip quines is the bomb mentioned in Zip Files
All The Way Down [2]. These two types of zip bombs have
an obvious disadvantage: as long as they are not recursively
decompressed, they will not take effect.

To overcome the obvious disadvantage, David Fifield pro-
poses the non-recursive zip bomb [1]. This type of zip bombs
uses a special structure “overlap” so that they can still work
when being single decompressed. However, there is only a
little decompression software currently providing detection
services for non-recursive zip bombs. To the best of our knowl-
edge, only Mark Adler has written a patch for unzip [9]. In
Table 1, we test whether mainstream compression software can
prevent the non-recursive zip bombs. For anti-virus software,
when Kaspersky, 360 total security and Windows Defender
scan these bombs, they all decompress the bombs. However,
only Kaspersky can detect and defuse the bomb. Meanwhile,

TABLE I
SOFTWARE DETECTION RESULT

Software bandizip unzip(unpatched) 360zip tar winrar 7-zip
bomb status work work work work work work

these software cannot prevent such bombs from taking effect
when the existing non-recursive bombs are decompressed. So,
lots of work should been done to defend against non-recursive
zip bombs and it makes sense to detect this type of bombs
before decompression.

This paper introduces the working principle of the non-
recursive zip bombs and the detection of this type of bombs
without any decompression software’s help. Unlike the anti-
virus programs mentioned, our detection method does not need
to decompress the zip bomb.

The rest of this paper is organized as follows. The features
of such bombs are outlined in Section 2. Section 3 introduces
how to detect these bombs. Section 4 presents the details of
the detection algorithm. Finally, we summarize our work in
Section 5.

II. NON-RECURSIVE ZIP BOMB

Before detecting zip bombs, we need to know the structures
of info-zip (standard zip file) and non-recursive zip bombs.

A. The structure of info-zip

As in Figure 1, an info-zip is composed of several local
file entries, a central directory and an end of central directory
record [6]. Each file in an info-zip has one local file entry
and one file header in the central directory. A local file entry
consists of a local file header and the corresponding file data.
The local file header records the metadata of the file and the
file data is actually the compressed data of the origin file.
The central directory is a series of file headers, which records

Fig. 1. The structure of info-zip

29Copyright (c) IARIA, 2020. ISBN: 978-1-61208-821-1

SECURWARE 2020 : The Fourteenth International Conference on Emerging Security Information, Systems and Technologies

not only the metadata of the file but also the position of the
corresponding local file header.

B. The structure of non-recursive zip bomb

The non-recursive zip bombs use a special structure to make
the files overlap. Such a bomb consists of many local file
headers, one file data, a central directory and an end of central
directory record, as in Figure 2 [1]. The bomb resets the length

Fig. 2. The structure 1 of the non-recursive zip bombs

of each local file entry so that all local file entries overlap.
Supposing there is a bomb containing n files, its i-th local file
entry will consist of the i-th local file header, the i+1-th file
header, ..., the n-th file header and file data n. In other words,
the i+1-th local file header, ..., the n-th local file header and
file data n constitute the file data of the i-th local file entry, as
in Figure 2. Due to the special structure of overlapping files,
the type of bombs has the characteristics of high compression
ratio and it works directly after a single decompression. After

Fig. 3. The structure 2 of the non-recursive zip bombs

analyzing about 1000 non-recursive zip bombs, we find that
there are some non-recursive zip bombs which have a different
structure. As in Figure 3, the bombs have only one local file
header and all the file headers point to this local file header. Of
course, such bombs with this structure also have overlap. For
example, the first local file entry consists of local file header
1 and file data 1. The second consists of local file header 1,
file data 1 and file header 1. In other words, the 2nd local file
entry’s file data is file data 1 plus file header 1. The overlap
is the whole local file entry 1. Such a type of bombs have a
higher compression ratio.

III. HOW TO DETECT THE NON-RECURSIVE BOMB

This section introduces the basic idea of the detection and
some questions that need attention.

A. The basic idea

According to the previous description, overlap is the most
important sign of the non-recursive zip bombs. Therefore, we

TABLE II
FILE HEADER STRUCTURE

Offset Bytes Description
0 4 Signature(0x02014b50)
...
42 4 The position of the local file header
46 m File name

46+m n Extra Field

TABLE III
LOCAL FILE HEADER STRUCTURE

Offset Bytes Description
0 4 Signature(0x04034b50)
...
18 4 File data size
...
26 2 File name length
28 2 Extra field length
30 n File name

30+n m Extra Field

need to check whether the detected zip bomb is a non-recursive
zip bomb by detecting the overlap among the local file entries.

The first thing to do is to get the position of each local file
entries. The file header can help us. In Table 2, the offset 42 in
the file header records “The position of the local file header”.
This is the position we need.

Second, the length of each local file entry should be known.
We cannot directly get this value. For the local file entry
consists of the local file header and the file data, we just need
to find out the length of the two parts. The length of the local
file header is 30 bytes’ fixed length plus the file name length
and extra field length. In Table 3, the two lengths are both
recorded in the local file header. The file data size is also
recorded in the local file header (in some documents, the file
data length is called compressed size). Then we can calculate
the length of a local file entry.

Now, since we get the position of the local file header and
the length of the local file entry, the last thing to do is to
determine whether the overlap exists. For a pair of adjacent
local file entries, if the end of the previous local file entry
covers the start of the next one, then there is an overlap and
the start position of a local file entry is just the position of its
local file header. We can easily calculate the position of the
end of the previous local file entry and compare it with the
start of next one.

B. Some questions that need attention

First of all, we should open the zip file in hex because
our idea requires the usage of the zip file structure in hex.
Referring to Table 2, we can find out these file headers
by their signature (0x02014b50). Here, we need to consider
the problem of small-endian and big-endian. For the small-
endian, the signature used to search the file headers is actually
“0x504b0102” instead of “0x02014b50”.

There is an important question: what should we do if some
data segments have values exactly equal to 0x504b0102 but

30Copyright (c) IARIA, 2020. ISBN: 978-1-61208-821-1

SECURWARE 2020 : The Fourteenth International Conference on Emerging Security Information, Systems and Technologies

are not a real file header signature. Although the probability of
this situation is very small, it should not be ignored. Referring
to Figure 4, we happen to encounter such a situation. The data
segment from 0x14ac to 0x14f5 is two local file headers in a
non-recursive bomb and “file header signature” exists in the
segment: the first is from 0x14c3 to 0x14c6 and the second is
from 0x14e8 to 0x14eb. So to solve the above problem, we do
such a thing: after finding out a file header by “0x02014b50”,
according to the file header’s offset 42, we get and check the
position of the local file header(refer to Table 2). If the first
four bytes of the position are not “0x04034b50” or the position
exceeds the size of the entire zip file, this file header must be
fake and can be ignored. Another question to note is the search

Fig. 4. Fake file header

method. The most important information is the positions of
each file header because according to them, we can find the
information we need. Since the file headers are concentrated
at the end of the zip file, we choose to search the zip file from
its end to its beginning for file headers. Obviously, we only
need to search from the end of the file till we find the first
file header, instead of searching the whole zip file. Thus, the
key point is to know how to confirm whether a file header is
the first one. We can use a trick: the position of the first local
file header is always at the beginning of the zip file. In other
words, if the file header is the first one, its offset 42 which
records the position of the corresponding local file header is
0. So, when the offset 42 of a file header is 0, we just stop
the search. But this trick does not work on the non-recursive
zip bombs with the second structure because the offset 42 of
each file header is always 0, as in Figure 3. Therefore, when
finding out a file header whose offset 42 is 0, we should check
whether there is another real file header before it. If such a file
header appears, there must be overlapping files in the detected
zip file.

The last question is whether it is necessary to detect all
adjacent file headers in the zip file. For the non-recursive zip
bombs that currently have two structures, it seems that we only
need to check the last two files headers to identify whether
they are non-recursive zip bombs. But we consider that it is
necessary to check all the adjacent files headers, because if
only the last two files headers are detected, the bomb maker
can easily bypass our detection by a certain amount of forgery.

IV. ALGORITHM

This section describes the details of the algorithm, show the
accuracy and the efficiency of the algorithm.

A. Algorithm Description

Previously, we explain the basic idea of detection and some
questions that need attention and then let’s organize the idea.
First, we need to search reversely to get the first pair of
adjacent file headers. We define this process as a function
named “GetAdjacentFileHeader” which requires a position
pointer and returns a list. This list contains the positions of the
first pair of adjacent file headers which are reversely searched
from this position pointer. At the same time, the function
will change the position pointer’s value: if such a pair of file
headers can be found, supposing the file header at the front is
called FH1 and the file header at the back is called FH2, at
the end of the function, this pointer is set to point to the end
of FH1. If not, the value is set to -1 as the sign of the search’s
end and the list returned is empty.

Fig. 5. The detection algorithm

Secondly, after we get a pair of adjacent file headers, we
should check if their corresponding local file entries overlap.
We define this process as a function called “CheckOverlap”.
This function needs a list which consists of the positions of two
file headers and returns a Boolean value indicating whether
there is overlap. Specifically, for the two file headers included
in the list, we suppose the one at the front is called FH1
and the one at the back is called FH2. This function will
get the start position of their corresponding local file entries
LF1, LF2. Then it will calculate and get the end position of
LF1. If the end position of LF1 exceeds the start position of
LF2, this function will return True because LF1 and LF2 are
overlapping. If not, it will return False.

Finally, for the whole zip file, we should traverse all adjacent
file headers unless file overlaps have already been detected.
To achieve it, we initialize a flag called Flag and a position
pointer CurPos. Flag is set to False initially, which is used
as the output of the entire algorithm to indicate whether the
detected zip file is a non-recursive zip bomb. CurPos is initially

31Copyright (c) IARIA, 2020. ISBN: 978-1-61208-821-1

SECURWARE 2020 : The Fourteenth International Conference on Emerging Security Information, Systems and Technologies

set to the end of the zip file. It is passed to the function
GetAdjacentFileHeader as the starting point for reverse search
and when its value is -1, the search will stop and the algorithm
returns Flag. We summarize the steps in Figure 5.

B. Algorithm Accuracy

To check the accuracy of the algorithm, we prepare two sets
of samples. One is full of info-zip and the other is full of the
non-recursive zip bombs.

TABLE IV
THE DETECTION RESULTS

File Type Yes No Error
Info-zip 0 1424 0

Zip bombs 2000 0 0

For the first set involving info-zip, we prepare 1424 info-
zip containing different files with different sizes. These com-
pressed files include plain text files and the files that have
their own logical structures like .doc. For this second set of
bombs, we use the generation tool which is offered by the
bomb designer [8] to make 2000 different bombs. This set
contains both types of non-recursive zip bombs. The detecting
results are listed in Table 4. This algorithm has extremely high
detection accuracy.

Fig. 6. The relationship between the detection time and the size of info-zip

Fig. 7. The relationship between the detection time and the size of the non-
recursive zip bombs

C. Algorithm Efficiency

For info-zip, this algorithm will inevitably search the entire
file to confirm that all local file entries do not overlap and for
non-recursive zip bombs, no matter which of the two structures
the bomb has, this algorithm can determine that this is a
bomb immediately after detecting the last two file headers.
Therefore, for info-zip, the detection time grows linearly as
the zip file size increases, as in Figure 6. For non-recursive
zip bombs, the figure appears as a horizontal line which
demonstrates that there is almost no connection between the
detection time and the size of the zip file, as in Figure 7.

V. CONCLUSION

In this paper, we introduce the structures of the non-
recursive zip bomb and design an algorithm for detecting such
a zip bomb. At the same time, we list some details that should
be noticed in the detection and the algorithm efficiency about
non-recursive zip bombs and info-zip is given.

Most decompression software can use this algorithm as a
reference to make corresponding patches. Since this algorithm
does not rely on decompression software, for security soft-
ware, it can be used to quickly detect whether a zip file in the
emails or removable media storage devices, such as USB or
disks is a non-recursive zip bomb.

In today’s world of big data, more and more compressed
files are transmitted on the Internet or uploaded to cloud
servers. Because of the lack of detection methods for non-
recursive zip bombs, it is likely that bombs will be uploaded to
cloud servers or downloaded to personal computers. Once such
bombs are decompressed, there will be serious consequences.
Therefore, this bomb detection algorithm we propose is very
useful.

In real life situations, an attacker may not use a standard
structure bomb. The attacker can make a non-recursive bomb
whose structure is different from the previously mentioned
structures. However, as long as the bombs use overlapping
structures, they will be detected by our algorithm.

We do not take zip64 and encrypted zip files into consider-
ation, so this algorithm may not have such good compatibility
with these zip files. There are some structural differences
between these two types of zip files and info-zip. For example,
Zip64 has some extra unique structures (such as Zip64 end
of central directory locator); encrypted zip files have some
additional structures to store encrypted information. These are
two directions worth analyzing in the algorithm improvement
in the future.

ACKNOWLEDGMENTS

We thank Yang Xiong, JiPeng Wang, DeGang Chen, WenQi
Liu, JiaYu Liu, XingYu Liao for their assistance and David
Fifield for his guidance on the use of non-recursive zip bomb
generating tool.

32Copyright (c) IARIA, 2020. ISBN: 978-1-61208-821-1

SECURWARE 2020 : The Fourteenth International Conference on Emerging Security Information, Systems and Technologies

REFERENCES

[1] D. Fifield, “A Better Zip Bomb,” WOOT @ USENIX Security Sympo-
sium, August 2019.

[2] R. Cox, “Zip Files All the Way Down,” unpublished.
[3] W. T. Mambodza, R. T. Shoniwa, V. Shenbagaraman , “Cybercrime in

Credit Card Systems,”, International Journal of Science and Research
(IJSR), 2014.

[4] H. Sowmya, “A Study on Zip Bomb.” unpublished.
[5] “Python3.7,” https://docs.python.org/3.7/, May 2020.
[6] P. Inc, “Appnote.txt - .Zip File Format Specification,”

https://pkware.cachefly.net/webdocs/APPNOTE/APPNOTE-6.2.0.txt,
May 2020.

[7] “42.zip,” https://www.unforgettable.dk/, March 2020.
[8] D. Fifield, “Zipbomb-20190822.zip,”

https://www.bamsoftware.com/hacks/zipbomb/zipbomb-20190822.zip,
March 2020.

[9] M. Adle, “Fork of Infozip Unzip 6.0 For New Zip Bomb Detection
Patch,”
https://github.com/madler/unzip/commit/47b3ceae397d21bf822bc2a
c73052a4b1daf8e1c, March 2020.

33Copyright (c) IARIA, 2020. ISBN: 978-1-61208-821-1

SECURWARE 2020 : The Fourteenth International Conference on Emerging Security Information, Systems and Technologies

