
Integration of Network Services in
Tactical Coalition SDN Networks

Anders Fongen and Mass Soldal Lund
Norwegian Defence University College, Cyber Defence Academy (FHS/CIS)

Lillehammer, Norway
Email: anders@fongen.no

Abstract—In order for Software Defined Network (SDN)
technology to work in a military network, several identified
problems need to be solved. This paper reports from experimental
efforts to extend the application of SDN to a multi-domain,
coalition, mobile network with wireless links and with end systems
belonging to several Communities Of Interest (COI). The paper
also demonstrates how SDN technology allows different network
services to be integrated with a single class of Network Elements
(NE). Considerations related to authentication, COI separation
and intrusion prevention is given special attention during the
discussions.

Keywords—authentication; intrusion prevention; software de-
fined networks; tactical networks; trust management

I. INTRODUCTION

Software Defined Networking (SDN) [1] offers an unprece-
dented flexibility in network configuration and operation. An
important potential is how a spectrum of specialized Network
Elements (NE), often called middleboxes, may be replaced
with a single class of Network Elements called switches. The
configuration and run-time operation of the NE is controlled
by a single piece of programming logic running in a separate
computer called the SDN controller (SDNC).

The SDN paradigm grew out of data center operations
where links are abundant, have high capacity and low error
rates. In a mobile and temporary military network used for
military operations (named tactical networks), however, the
links are often radio based. Radio links are few, costly, vulner-
able, and with high error and packet loss rates. Consequently,
the use of SDN in a tactical environment must consider the
scarcity, latency and error rates of links in the system design
[2].

SDN reduces the complexity of configuration, improves the
cooperation and integration of network functions, extends the
flexibility and dynamicity of traffic policing, and increases the
link efficiency. The configuration of an SDN network involves
fewer routine operations, but requires more software insight
and programming skills.

The task at hand is to investigate the potential advantages
offered by SDN in a tactical coalition network. The current
problems related to this class of networks are identified as:

• They are based on Internet Protocol (IP) version 4
protocols, adding address planning, subnetting and
frequent configuration changes even in small network
enclaves.

• Virtual Local Area Network (VLAN) configuration in
switches are weakly related to the IP layer, yet must

be coordinated with the subnetting structure.

• Intrusion detection and protection is most often done
in a single point, e.g., in the network backbone con-
nection point. A compromised end system may have
unrestricted access to services and end systems on the
same network.

• Coalition partners wish to keep their traffic separate,
but still need to coordinate their IP address plans, since
separation takes place in link layer (VLAN) while
sharing IP routes.

• Traffic policing becomes complicated since it requires
coordinated use of IP Type Of Service (TOS) field
(DiffServ) values across management domain borders.

• Authentication of end systems is based on MAC
addresses, if used at all. Authentication on user level
is done by application level services, e.g., MS Active
Directory. No credential based scheme for authentica-
tion of end systems is in use.

The efforts presented in this paper address these listed
problems and suggest an SDN-based configuration (based
solely on SDNC software) which is purely a link-layer net-
work. The network layer may be independently organized and
the address plan does not need to be coordinated between
Communities Of Interest (COIs). Any network layer protocol
can be used (most likely to be IPv4 or IPv6).

The design has been prototyped in a virtualized environ-
ment and evaluated for functional correctness, performance
and efficacy. Problems related to scalability are also being
addressed.

The remainder of the paper is organized as follows: In
Section II, a requirement analysis for a tactical SDN network
will be discussed. The technology chosen for the experiment is
presented in Section III and the actual network configuration
is shown in Section IV. The new network functions added
during this part of the study are discussed in Section V. The
evaluation of the network functions is presented in Section VI,
followed by a presentation of related research in Section VII.
The paper concludes with a summary in Section VIII, where
also topics on future research are presented.

II. DESIGN ANALYSIS

Strong coupling between the link layer and the network
layer complicates their configuration. Where MAC-learning
switches are being used, the connection between the two
address structures is solved by the Address Resolution Protocol

22Copyright (c) IARIA, 2020. ISBN: 978-1-61208-821-1

SECURWARE 2020 : The Fourteenth International Conference on Emerging Security Information, Systems and Technologies

(ARP) protocol. Where VLAN separation is used, the sepa-
ration will normally reflect the IP subnet separation. During
splitting or joining of subnets the VLAN configurations must
be configured accordingly.

Many of these problems may be solved by configuring
the network purely based on link layer mechanisms, over
which any network layer structure can be built. Scalability
problems related to multicast distribution can be alleviated
through COI separation, besides that a tactical network enclave
is not expected to grow to a large scale. Functions related to
load balancing and traffic policing are not easily offered in
link layer network, but may be provided through SDN flow
mechanisms.

A. Broadcast free operation

A link layer structure may not contain cycles, since the
forwarding of broadcast frames will cause endless loops. The
spanning tree protocol (STP) may prune a cyclic structure into
a spanning tree, leaving the redundant links available only for
fail-over purposes, not for load balancing. The scarcity and
capacity of radio based links in a tactical network renders this
limitation to be unacceptable.

It is possible, however, to command SDN switches to
forward multicast frames along the links of a spanning tree
with root in the originating switch, rather than to every output
port in the switch. For this to be possible the SDNC need a
topology map of the link structure in the network, something
that has been accomplished with a link discovery protocol.

Also, the broadcast operation during the MAC-learning
process of a link layer switch can be avoided through the same
topology map, through which the next hop in the path towards
any other switch is known. The association between the MAC
address of an end system and its connected switch port is
known by the SDNC from the first frame transmitted by the
end system.

Frames need an extra header to convey information about
the originating switch (in multicast frames) or the destination
switch (in unicast frames), in addition to COI membership
information. Header extensions like MPLS and 802.1Q are
both candidates, possibly a combination of both. The choice
will be made based on the ability of OpenFlow to set, mask
and test these data elements.

B. Whitelisted flows

An obvious application of SDN flow processing is to
protect end systems. Switches can block or allow traffic based
on a blacklist or a whitelist made of flow rules. A whitelist is
the more aggressive protection, where an end system (client or
server) is allowed to transmit/receive frames only if they are
related to known protocols, identified by transport level port
numbers. Restrictions on IP addresses may also be applied,
e.g., to specific subnets. Every end system can have different
whitelists since they match individual ports or MAC addresses.
Flows rejected by the whitelist may be discarded, passed on
to an Intrusion Detection System (IDS) or a Honeypot system.
The efficacy of this mechanism has been investigated and will
be reported later in the paper.

C. Authentication of end systems

End systems should be authenticated, in particular end sys-
tems which are temporarily connected through public access
networks. This mechanism must provide a link layer tunnel
over a network layer connection, and bind the authenticated
connection to the link layer tunnel. The authenticated identity
of the end system should be communicated to the SDNC which
will install flows enforcing the permissions granted to this end
system, e.g., in the form of a flow whitelist.

On end system platforms with sufficient separation of user
spaces and storage areas, user credentials can be applied to the
authentication process, so that the trust relation shifts from the
end system to one end user.

III. TECHNOLOGY PLATFORM

In this section, the choice of technology components will
be described. The components are all software, including
operating system, hypervisor and system-level components.

The study of a medium sized networks with more than
10 nodes is best conducted in a virtualized environment. The
hypervisor of choice is Oracle’s VirtualBox, which is free,
easily configured, and offers the right degree of scalability.
The limit of four ports per VM was the most limiting factor
during the experiments.

For the Network Elements, complete instances of Linux
were chosen. The reason for this choice is that the experimental
network is used for testing several services and protocols
auxiliary to the OpenFlow protocol, and a general computing
platform offers the necessary flexibility and software availabil-
ity, contrary to Mininet [3]. The Linux instances do not need a
GUI and were installed with a text-only console interface for
the sake of saving memory.

The chosen OpenFlow switch (the NE) implementation
is OpenVswitch [4], which is easily installed, relatively easy
to configure, and offers the necessary inspection and logging
mechanisms for testing and debugging purposes.

As the network controller (SDNC), the Ryu framework was
used [5]. Ryu is very popular as an experimental platform
with a relatively low abstraction level: OpenFlow statements
are generally not automatically generated, but individually
constructed through Python programming code. For the exper-
imentation at hand, Ryu performs well and with good stability,
although the API and the required design patterns takes some
time to learn.

For all the chosen technology components, an important
convenience point is the community support offered. Most
problems are easily solved through these support resources.

IV. EXPERIMENTAL NETWORK

The network used in the experiment is shown in Figure
1. The network consists of a number of green switching
nodes (NEs), a number of yellow and brown end systems
and a number of server nodes for serving OpenVPN, Dy-
namic Host Configuration Protocol (DHCP), Domain Name
Services (DNS), Hypertext Transfer Protocol (HTTP), Server
Message Block (SMB), Network Address Translation (NAT),
etc. End systems are separated in two COIs indicated by their

23Copyright (c) IARIA, 2020. ISBN: 978-1-61208-821-1

SECURWARE 2020 : The Fourteenth International Conference on Emerging Security Information, Systems and Technologies

Grey

Red Blue

White Green Violet

Orange

Black

Yellow

Internet
O

penV
P

N

DNS, DHCP, HTTP, SMBRYU

OpenVswitch

N
AT

L2 tunnel

MacSec

OpenVPN

TLS

Data plane connections
Control plane connections
"Tunneled" control plane

Pink

Lime

Lilac Internet

N
AT

Purple

Brown
CN=orangeit, O=Defence, C=IT

CN=violet, O=Forsvaret, C=NO

DNS, DHCP, HTTP, SMB

COI 1

COI 2

(Linux)

(Win10)

(Win10)

Figure 1: Current SDN laboratory configuration

brown/yellow color. The nodes are arbitrarily given names after
colors, which should not be confused with the coloring codes
of the diagram.

The links between the NEs Lime/Pink/Red are redundant
and consequently form a loop. The redundant links are essen-
tial for the study of fail-over mechanisms and load balancing
services [6]. The experimental network was used for inves-
tigating security mechanisms in an SDN based environment
[7], for which reason the presence of OpenVPN, MACsec and
Transport Layer Security (TLS) is indicated in the figure.

A. Existing network functions

From previous iterations of the SDN laboratory experiment,
security functions and control plane redundancy has been
investigated [6] [7]. These earlier efforts have shown:

• The links between NEs can be protected from a range
of attacks using MACsec encryption. OpenFlow does
not easily assist in the key management though, so
static keys were installed during the NE configuration.

• NEs connect to the SDNC using TLS authentication
and protection, using public key certificates and pri-
vate keys for bidirectional authentication. Since the
network uses in-band control plane a robust cryp-
tographic separation between control plane and data
plane was found to be mandatory. Certificate infor-
mation is not made available to the Ryu application

(nor the OpenVswitch code, for that matter) so the
authentication control is restricted to the checking for
certificate validity without revocation control.

• End systems connecting temporarily through an access
network are authenticated by a Virtual Private Net-
work (VPN) service before allowed access to the data
plane. A Virtual Extensible LAN (VXLAN) tunnel
through an IP Security (IPSec) connection was used
in [7], but later replaced with a better solution based
on OpenVPN.

• The control plane is constructed as an overlay network
on top of the data plane, for more efficient use of the
links available. The control plane was also constructed
to automatically find alternative paths through the data
plane if links were broken and NEs were isolated from
the SDNC [6].

V. NEW NETWORK FUNCTIONS

Two new network functions have since been introduced and
are subject to presentation in this paper: COI separation and
traffic whitelisting.

A. COI separation

Coalition members do not trust each other completely, so
their network traffic need to be robustly separated. Similar to
VLAN functionality, both unicast and multicast frames should

24Copyright (c) IARIA, 2020. ISBN: 978-1-61208-821-1

SECURWARE 2020 : The Fourteenth International Conference on Emerging Security Information, Systems and Technologies

802.1Q label (12 bit)

COI valueIngress/egress NE id

unicast/
multicast

Figure 2: Encoding of NE id and COI value in 802.1Q label

only reach destinations which belong to the same Community
Of Interest (COI) as the sender. Contrary to the well-known
Ethernet switch, the presented solution does not need any direct
configuration of NEs, the configuration is controlled by the
SDNC software. The COI value of a frame is contained in the
frame header, as described in Section V-B.

The assignment of a COI value to an end system can be
based on its MAC address or its VPN authentication certificate.
The latter alternative requires that the end system connects
through a VPN server in a public access point and provides
credentials in the form of a public key certificate. The VPN
server will pass the certificate identifier to the SDNC which
will decide the COI value accordingly. In both cases, the COI
value of an end system is represented as a flow rule in the
connected NE, the end system has no information about this
value and is not able to modify it.

OpenVPN was chosen for the VPN service. OpenVPN
offers a link layer tunnel as a core service, which also binds the
MAC address of the tunnel adapter on the end system to the
authenticated network layer connection. The end system will
not be able to modify the MAC address in order to circumvent
the access control. An IPSec connection can also contain a link
layer tunnel (using, e.g., VXLAN), but no method to bind this
tunnel to the authenticated IPSec connection was found.

For scalability reasons, multicast distribution may affect
only the subset of NEs necessary to reach all end systems with
the same COI value as the sender. The present implementation
has a simpler implementation and distributes multicast frames
to every NE.

B. Choice of link header extension

The link layer frame needs extra header information car-
rying its COI affiliation and the identifier of the egress (for
unicast frames) or ingress (for multicast frames) NE. Since
these information elements are independently processed, they
need to be stored in one maskable element or two separate
elements. MPLS, 802.1Q, MPLS-over-802.1Q or Q-in-Q are
candidate structures for this purpose.

The chosen structure was to use one 802.1Q header for both
elements. The 802.1Q label has 12 bits, which are divided into
7 bits NE designation, 1 bit for multi/unicast distinction, and
4 bits for COI value, as shown in Figure 2. The low number
of bits limits the scale of the SDN network, but is sufficient
for the experiment at hand.

Other type of candidate link headers were considered: The
MPLS header contains more bits and could accommodate more
COIs, but the MPLS header is not maskable in OpenFlow and

therefore not useful for use with forwarding information (Cf.
Section II-A). A combination of an outer MPLS header for
forwarding information and and inner 802.1Q header for COI
separation is not supported by OpenFlow. Two 802.1Q headers
(called Q-in-Q or 802.1ad) is now supported by OpenVswitch,
and may be considered for use in the future.

The COI relation of an end system is expressed as a
numeric value 0-15 as 4 bits in the 802.1Q VLAN label of
the Ethernet frame. The VLAN label value is added to the
frame in the ingress NE after the whitelist control has been
passed. In the egress NE, the COI value is again checked with
the COI value of the MAC address associated with each port
before passing the frame to the receiving end systems.

C. Traffic whitelisting

An SDN NE lends itself well to simple filtering of traffic
based on flow matching, for reasons of end system protection.
A client system need to connect to a set of server ports,
possibly a small set of known IP addresses, in addition to
services like DNS, DHCP and ARP. It should never receive
a TCP segment with the flag ACK=0, since that indicates an
inbound connection attempt. For a service provider end system,
the opposite is the case, one would not see an outbound TCP
segment with ACK=0, except to a small number of subordinate
services. Through the chosen table structure (described in
Section V-D) it is possible to pass both outbound and inbound
frames through a set of flow rules which will submit the
approved frames to the next flow table or output port, otherwise
pass the frames on to an intrusion detection system (IDS)
or to a Honeypot system, or to discard the frame. For the
experimental evaluation, a realistic set of whitelist entries
were made: ARP, DHCP (UDP/67,UDP/68), DNS (UDP/53,
TCP/53), HTTP (TCP/80, TCP/443), SMB2 (TCP/445) and
LLMNR (UDP/5355), which allows the client end-system to
operate on the majority of web and file sharing services.

This simple arrangement does not inspect the application
layer payload, and it does not aspire to replace an Intrusion
Detection System (IDS). The main advantage is that the
whitelist control takes place in every port connected to an end
system, so it will also contribute to the internal protection in
the LAN, whereas an IDS is usually seen as a single instance
inspecting the traffic across a WAN connection point. Besides,
an IDS do not protect systems, it only detects attacks.

The whitelist does not replace a firewall. A firewall will
effectively protect an inside network (LAN) from attacks com-
ing from outside (WAN), and stop any connection attempts to
computers on the LAN, while allowing any outbound activity
from end systems on the LAN. This is not the purpose of the
whitelist, which will also block connection attempts to/from
non-approved ports or to non-approved IP addresses.

Since a whitelist also blocks outgoing traffic and connec-
tions from server end systems, it also stops malware payloads
(resulting from the exploitation of a vulnerability) from con-
necting back to an attacker, thus allowing for a security-in-
depth arrangement.

The efficacy of the whitelist has been evaluated and will
be reported in Section VI-B.

25Copyright (c) IARIA, 2020. ISBN: 978-1-61208-821-1

SECURWARE 2020 : The Fourteenth International Conference on Emerging Security Information, Systems and Technologies

Output
whitelist

Input whitelist
Strip 802.1Q label

Add 802.1Q
label

Decide port
for next hop

End system
(sender)

End system
(receiver)

Previous NE Next NE

Table 0 Table 2Table 1 Table 3

Figure 3: SDN flow table table structure in the NEs

D. Flow table structure

The flow arrangement in the NEs has been divided into
several tables as shown on Figure 3, and will be presented in
this section. Flows related to link and topology discovery, and
path discovery in in-band control plane has been left out for
reasons of clarity.

Table 0 Contains outgoing whitelist which will inspect
frames from end systems connected to this NE.
Frames with an 802.1Q label (added by a previous
NE in the path) will be submitted directly to Table
2.

Table 1 Will assign an 802.1Q label with ID of the egress
switch (ID of ingress switch in case of multicast
frame) and COI value. Will then submit the frame
to Table 2.

Table 2 Will determine next hop for the frames based on
the 802.1Q label value, and forward accordingly.
If the frame should be distributed locally, then the
frame wil be submitted to Table 3.

Table 3 Strip off the 802.1Q label and apply the COI
control and incoming whitelist control. If the
frame passes both controls it is forwarded to the
port connected to the receiving end system.

It should be pointed out that the whitelist arrangement
breaks the desired isolation of the link layer since it introduces
flows specific to network and transport protocols. On the other
hand, the whitelist is structurally independent from the rest
of the control program, and can be removed or modified
at will without affecting other functionality. For the present
experimentation only IPv4 packets will pass, but additional
rules for IPv6 can be added with little efforts.

VI. LABORATORY EVALUATION

Besides the testing for functional correctness two series
of experiments were conducted to evaluate the presented
arrangements:

• The cost of the extensive set of flow rules which has
to be evaluated for every forwarded frame, in terms
of NE throughput.

• The efficacy of the traffic whitelist protection.

A. Cost of flow processing

The OpenFlow protocol is designed with execution by
specialized hardware in mind. Ternary Content Addressable
Memory (TCAM) is a memory structure which is able to

match byte strings in parallel in one clock cycle and therefore
will not be penalized by complicated matching criteria. When
OpenVswitch runs in normal computing hardware, the opposite
is expected to be true. This section will report on simple
throughput measurements on traffic passing 1, 2 or 3 NEs
between the communicating end systems. Throughput between
end systems separated by a VPN tunnel was also measured.
The MACsec protection of the Blue-Red link was disabled on
one run to measure its cost. References to nodes with color
names are according to the colors used in Figure 1.

In order to establish a baseline for performance, throughput
through the localhost adapter (row 1 in Table I) was measured
as well as through the VirtualBox internal network (row 2).
The OpenVswitch was tested in standalone fail-mode (row 3)
where it behaves like a MAC-learning switch as well with a
single flow rule to make it behave like a MAC-learning switch
(action:NORMAL, row 4) or an Ethernet hub (action:FLOOD,
row 5).

The iperf program was used to measure TCP throughput
between the nodes Black (running iperf in server mode and
a TCP receive window of 85.3 kBytes) and Green, White and
Violet respectively. The node Green was temporarily connected
to Blue in order to measure a connection passing only one NE
(rows 3-6). The measurement involving Violet determines the
performance of the VPN tunnel.

TABLE I: THROUGHPUT EVALUATION OF OPENVSWITCH

Client end system NEs Throughput
1 Black (localhost comm) 0 23 Gbps
2 Green (directly connected) 0 1116 Mbps
3 Green (connected to Blue in standalone mode) 1 853 Mbps
4 Green (connected to Blue with action:NORMAL) 1 811 Mbps
5 Green (connected to Blue with action:FLOOD) 1 250 Mbps
6 Green (connected to Blue, WL in effect) 1 835 Mbps
7 Green (connected to Red, WL with MACsec) 2 250 Mbps
8 Green (connected to Red, WL w/o MACsec) 2 561 Mbps
9 White (connected to Pink, WL with MACsec) 3 260 Mbps

10 Violet (though VPN) 1 42 Mbps

Using the VirtualBox hypervisor, the upper limit of the
network throughput was estimated in row 2 (1116 Mbps).
Furthermore, the simplest configuration of OpenVswitch, op-
erating it as a MAC-learning switch yielded a throughput of
853 and 811 Mbps, respectively (rows 3 and 4). Operating
it as an Ethernet hub gave a significantly lower performance
(row 5), unsurprisingly since this mode involves a larger traffic
volume to be processed. Row 6 reports the performance when
Blue was operating with whitelist in effect (WL), which is
only marginally lower than in standalone mode.

The traffic via Red and Blue (both with WL enabled) was
tested both with MACsec protection turned on and off (rows
7 and 8), and the numbers (250 and 561 Mbps) indicate the
high cost of MACsec protection. The traffic over three NEs
(White to Black, row 9) is statistically equal to traffic across
two NEs (row 7) when MACsec is enabled, while rows 6 and
8 indicate a significant drop in performance when extending
the path from one to two NEs.

The lower number for traffic across more NEs may partly
be due to the fact that all activities in the virtual network
compete for the same pool of computing resources, and when
more NEs are in action the each process gets a smaller fraction.

26Copyright (c) IARIA, 2020. ISBN: 978-1-61208-821-1

SECURWARE 2020 : The Fourteenth International Conference on Emerging Security Information, Systems and Technologies

For the purpose of design evaluation these results are
encouraging, since a more comprehensive set of flow rules
does not seem to impose a significant performance penalty, by
comparing rows 3 and 6.

B. Efficacy of whitelist protection

The whitelist is a simple protection mechanism with its
scope limited to the stateless inspection of link-, network- and
transport header elements. The chosen design is to associate
a filter with a MAC address, so that several end systems may
share the same switch port if needed (although the whitelist
protection will not apply to traffic between these end nodes),
and to list the approved UDP and TCP ports for this MAC
address. The flow rules also inspect the ACK-flag in the TCP
header to ensure that TCP connections are opened in the
allowed direction.

By employing whitelist protection, vulnerabilities in end
systems may only be exploited through approved ports, and
payloads deployed through a successful exploit will meet
the same restrictions. The list of approved ports is expected
to reflect the services in actual use, so the ports are likely
to be occupied by running services and not available for
allocation by payload scripts. Delivered payloads which do
not communicate are not restricted by the whitelist protection.

IP addresses may also be subject to restrictions, although
this has not been demonstrated yet. Such restrictions can avoid
fake DNS and DHCP services to be accepted by end systems.

Exploits that exclusively use approved ports are not ex-
pected to be stopped by the whitelist protection. SQL injection
and other attacks on poorly written web service software,
EternalBlue, Heartbleed, etc. are examples of this category.
General cyber hygiene for OS platform and applications should
therefore still be in place in end systems.

C. Evaluation of whitelist protection

A number of known vulnerabilities were examined in the
SDN laboratory which is shown in Figure 1. The Blue NE was
configured as a MAC-learning switch and a full SDN switch
with whitelist protection, respectively, while the same set of
exploits where run. The focus of interest was to find exploits
that could pass through the whitelist protection. Only exploits
successful through the MAC-learning switch were tested on
the whitelist protected NE.

Kali Linux [8] running in a virtual machine was connected
to a port on Blue and given whitelist protection as a client,
i.e., was only allowed to make outbound TCP connections on
the approved ports. Also, virtual machines running Windows7,
WindowsXP and Metasploitable Linux [9] were connected to
other ports on Blue and were given whitelist protection as
servers, where only inbound TCP connections are allowed.

For the evaluation we used Metasploit [9] installed on the
Kali Linux virtual machine. Metasploit is a penetration testing
framework shipped with a database of scripted exploits for
known vulnerabilities, and various payloads to be combined
with the exploits. The Windows7, WindowsXP and Metas-
ploitable virtual machines acted as targets. Metasploitable is a
deliberately vulnerable Linux server, while the Windows7 and
WindowXP virtual machines were unpatched installations with

Windows Firewall disabled. All three targets thus had known
vulnerabilities.

From the design we expect all exploits which use destina-
tion ports other than the allowed ports (53,80,443,445) to be
stopped by the whitelist protection. Exploits that depend on
outbound connections from the attackee are not expected to
succeed either.

These exploits were tested (names refer to their designation
in Metasploit):

Unreal ircd 3281 backdoor utilizes the IRC service port
which is blocked by the whitelist. The attack is therefore not
able to deploy a payload, and the attack is unsuccessful, even
though Metasploitable is vulnerable to this exploit.

Ms08 067 netapi utilizes the SMB service port which is
not blocked by the whitelist. A payload may be deployed
to WindowsXP, but the shell reverse tcp is not allowed to
make outbound TCP connections since this virtual machine
is protected by a server-side whitelist. On the other hand, the
shell bind tcp payload communicates over an incoming TCP
connections which was bound to port 443, which is open in
the whitelist. The attack was therefore successful.

Samba symlink traversal utilizes the SMB service port
on a Linux computer and a poorly configured Samba service.
The attack creates a symbolic link from a writeable share and
opens every world-readable file for read access to an SMB
client. Since the SMB service port is open in the whitelist,
this exploit is successful.

Ms17 010 eternalblue utilizes the SMB port and exploits
a bug in the server code in Windows7. It successfully deploys a
payload. The chosen payload was meterpreter bind tcp which
was instructed to bind to port 443 and wait for incoming
connections. The exploit was successful.

Beside the Metasploit scripts, SQL injection and command
injection were demonstrated on a web application on Metas-
ploitable Linux (Mutillidae) deliberately coded for demonstra-
tion of the OWASP top ten web application vulnerabilities
[10]. As long as these vulnerabilities are exploited through the
normal service port, protection based on whitelists will have
little effect.

The exploits shown above were carefully chosen for the
demonstration of the limitation of whitelist protection mech-
anisms. Many possible exploits were not tested since they
would obviously not succeed. It should also be noted that
unpatched WindowsXP, Windows7 and Metasploitable Linux
have obvious security flaws and would never be put in service
in real life. And even a well maintained OS platform cannot
protect a poorly programmed application service.

Some of the exploits succeeded only because there were
whitelisted ports unoccupied by running services, in these
cases TCP port 443. The whitelist should closely reflect the
running services on the individual end system.

VII. RELATED RESEARCH

The SDN architecture lends itself well to a range of
techniques for intrusion detection and -prevention (IDS/IPS).
The techniques differs on matters like:

27Copyright (c) IARIA, 2020. ISBN: 978-1-61208-821-1

SECURWARE 2020 : The Fourteenth International Conference on Emerging Security Information, Systems and Technologies

• Does it offer prevention in addition to detection?

• Is the detection signature based or anomaly based?

• How much traffic does it create in the control plane?

• To what extent does it involve centralized computa-
tional resources?

In [11], Jankowski and Amanowicz demonstrate a IDS
mostly targeted on attacks on the SDN controller and NEs, and
are employing a range of machine learning techniques to detect
anomalies. They base their evaluation on the KDD99Cup
reference dataset for intrusions, which is commonly regarded
to be obsolete [12]. Machine learning does not take place in
NEs, so the design involves the SDNC to a large extent in the
communication with centralized computational resources.

Intrusion prevention using SDN would involve dynamic
updates of flow statements as a result of a positive intrusion
detection. False positives (something anomaly based IDS is
known for) will unnecessarily block suspected flows of traffic
and obstruct legitimate use of the network. There are no known
examples of such arrangement in the academic litterature, only
a GitHub project which demonstrates this design [13].

The OpenFlow matching function is limited to the in-
spection of link- network- and transport headers, although an
OpenFlow switch can also report traffic volumes associated
with match statements as well as volumes across ports. In-
trusion detection can base its decisions on matching function
alone, in combination with traffic volume counters, or through
inspection by the SDNC of the entire network frame. These
approaches represent different observation horizons and differ-
ent traffic load on the control plane links.

Several studies on anomaly based detection are known,
they often limit their sensing to the reading of traffic volume
counters and some even apply machine-learning algorithms for
this purpose. For a survey of these reports, see [14].

Other approaches have been to raise suspicion on the basis
of traffic counter values or the matching function, and to take
in suspected flows in its entirety to the SDNC for deeper and
stateful inspection of the payloads [11] [15] [16].

Signature based IDS is not seen as an SDN application,
probably because the detection rules are way too complicated
for the SDN matching functions, and bringing all network
frames to the SDNC for stateful inspection would create a
performance bottleneck in the control plane links.

Blocking of traffic flows as the result from anomaly de-
tection always runs the risk of blocking legitimate traffic. A
whitelisting approach, on the other hand, becomes a part of a
service contract, where the end system and the network service
supplier agrees on which services are available. E.g., in the
particular configuration, e-mail has to be delivered through
a web interface, not through IMAP or POP protocols. The
whitelist serves as a predictable part of the application service
and security planning, and has been shown to thwart a wide
range of cyber attacks.

VIII. CONCLUSION

The presented paper has addressed new network functions
in a tactical coalition network and demonstrated how new

functions may be integrated into existing Network Elements
without requiring new hardware components. The two new net-
work functions, COI separation and whitelist protection, were
demonstrated and evaluated for computational requirements
and protection efficacy. The protection based on whitelists
applies to every end systems in each connection point and be-
comes a valuable supplement to centralized security functions
like intrusion detection and firewalls.

Remaining research topics on tactical SDN include the
design and study of distributed SDN controllers. Wireless
links are less reliable than wired links, and an in-band control
plane arrangement will need to accommodate the event of lost
connection between NEs and the SDNC. For this reason, a
distributed SDNC design for tactical coalition SDN will be a
subject for future research.

REFERENCES

[1] E. Haleplidis et al., “Software-Defined Networking (SDN): Layers and
Architecture Terminology,” RFC 7426, Jan. 2015, last accessed Oct
2020. [Online]. Available: https://rfc-editor.org/rfc/rfc7426.txt

[2] J. Spencer and T. J. Willink, “SDN in coalition tactical networks,”
in 2016 IEEE Military Communications Conference, MILCOM 2016,
Baltimore, MD, USA, November 1-3, 2016, 2016, pp. 1053–1058.

[3] “Mininet,” http://mininet.org, Online, Accessed Oct 2020.
[4] “Open vSwitch,” http://openvswitch.org, Online, Accessed Oct 2020.
[5] “Ryu SDN Framework,” https://ryu-sdn.org/, Online, Accessed Oct

2020.
[6] A. Fongen, “Dynamic path discovery for in-band control plane com-

munication in a tactical sdn network,” in EMERGING 2019, The
Eleventh International Conference on Emerging Networks and Systems
Intelligence, Porto, Portugal, 2019, pp. 9–15.

[7] A. Fongen and G. Køien, “Trust management in tactical coalition soft-
ware defined networks,” in 2018 International Conference on Military
Communications and Information Systems, ICMCIS 2018. Institute of
Electrical and Electronics Engineers Inc., 5 2018, pp. 1–8.

[8] “Kali Linux,” http://kali.org, Online, Accessed Oct 2020.
[9] “Metasploit,” http://metasploit.help.rapid7.com/docs/metasploitable-2,

Online, Accessed Oct 2020.
[10] “Open Web Application Security Project,” http://owasp.org/

www-project-top-ten, Online, Accessed Oct 2020.
[11] D. Jankowski and M. Amanowicz, “Intrusion detection in software

defined networks with self-organized maps,” Journal of Telecommu-
nications and Information Technology, vol. nr 4, pp. 3–9, 2015.

[12] A. Özgür and H. Erdem, “A review of kdd99 dataset usage in
intrusion detection and machine learning between 2010 and 2015,”
https://peerj.com/preprints/1954v1/, 01 2016, Not Peer Reviewed. On-
line, Accessed Oct 2020.

[13] “SDN-Intrusion-Prevention-System-Honeypot,” https://github.com/
pratiklotia/SDN-Intrusion-Prevention-System-Honeypot, Online,
Accessed Oct 2020.

[14] N. Sultana, N. Chilamkurti, W. Peng, and R. Alhadad, “Survey on
SDN based network intrusion detection system using machine learning
approaches,” Peer-to-Peer Networking and Applications, pp. 1–9, 01
2018.

[15] Y. Hande, A. Muddana, and S. Darade, “Software-defined network-
based intrusion detection system,” in Innovations in Electronics and
Communication Engineering, H. S. Saini, R. K. Singh, and K. S. Reddy,
Eds. Singapore: Springer Singapore, 2018, pp. 535–543.

[16] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho,
“Deep learning approach for network intrusion detection in software
defined networking,” in 2016 International Conference on Wireless
Networks and Mobile Communications (WINCOM), Oct 2016, pp. 258–
263.

28Copyright (c) IARIA, 2020. ISBN: 978-1-61208-821-1

SECURWARE 2020 : The Fourteenth International Conference on Emerging Security Information, Systems and Technologies

