
Trust Through Origin and Integrity: Protection of Client Code
for Improved Cloud Security

Anders Fongen, Kirsi Helkala and Mass Soldal Lund
Norwegian Military University College, Cyber Defense Academy

Lillehammer, Norway
Email: anders@fongen.no

Abstract—Military computing is migrating to cloud architec-
ture for several reasons, one of them is the opportunities for
improved security management. One opportunity is to ensure
that cloud clients are running approved and untainted program
code, provided as a proof presented to the cloud service. Such
proofs can extend the trust in the client’s integrity further than
what traditional access control protocols can provide. While
access control protocols can ensure that a computer is operated
by authorized and trained personnel, they cannot ensure that
the client computer is unaffected by malware or poor software
control. Problems related to illegitimate program code cannot,
in general, be solved by traditional security protocols. The
contribution of this paper is an arrangement whereby proof of
software approval and integrity can be established, exchanged
and validated during service invocations. The demonstration
program is a chat forum where the exchanged messages are signed
and validated in the client computers, a typical use case which
may benefit from our contribution. Two different client-server
protocols were tested in order to study the applicability of our
contribution.

Keywords—cloud security; integrity attestation; trusted comput-
ing; Google ChromeOS

I. INTRODUCTION

Military computing applications are being migrated to
cloud architecture due to a number of advantages, including
those related to security management [1] [2].

The integrity of client code is important in most cloud
application, but of particular importance where sensor readings
and cryptographic operations are involved. Cloud computing
relies on mutual trust between client and the service, trust
in that the transactions between them take place in a bona
fide manner. The service offers its interface to a client which
is presumed to operate through it in a responsible manner.
The mutual trust is usually derived from authentication of the
person who is operating the client computer, together with
personnel management procedures that ensure the loyalty and
competence of this person.

Authentication does not extend the trust to the software in
use, however. Malware, version mismatch, unauthorized mod-
ification and updates may cause the interface to be operated
in a harmful manner, causing leaked or falsified information
and loss of trust in the system. What is needed is a proof of
untainted client software which can be verified by the service
during the authentication process. For the remainder of this
paper this proof will be called an integrity attest. Likewise,
the service may attest its software integrity to the client, but
we are less concerned about the software integrity in a tightly
controlled server environment. Military use cases for integrity
attests include sensor readings and cryptographic operations,

where client malware may modify, leak or spoof information
sent to an unsuspicious server.

This paper will discuss and demonstrate schemes for
integrity attestation and how they may be combined with
personal credentials in trust management operations. A demon-
strator application will be briefly presented. The application
will employ the properties of ChromeOS together with the
Cross-origin resource sharing (CORS) protocol and client-
authenticated Transport Layer Security (TLS) connections to
provide the necessary guarantees for browser based client
programs written in Javascript. This demonstrator application
employs the Web Cryptography API (WCA) [3] which also
gives useful insight in the cryptography operation and key
management in this environment. The novelty of the contri-
bution is a new application of existing security protocols in
order to offer protection of client integrity.

A. Desired security properties

The goal for any computer program is that it behaves as
expected and conducts its transactions in a “bona-fide” manner.
Since this property cannot be assessed in general, we choose
to replace it with the following requirement:

“Only approved client code may access a given service”

This requirement entails that software running in the client
has been inspected and approved during development, and
protected from hostile modifications during deployment and
execution. If adequate procedures for development and de-
ployment of client code are in effect, this requirement will be
equivalent to the required “bona-fide” operation of the client.

The technology elements taken into regard in this paper for
establishing the required trust are:

1) Platform integrity protection
2) Hardware bound keys and certificates
3) The Cross Origin Resource Sharing (CORS) protocol
4) Indication of Origin in the HTTP headers
5) Device Security Policy Management
6) Mutually authenticated TLS connections

B. Related work

The protection of software integrity has been a prominent
research field for decades. Oldest is likely to be the process
separation found in any operating system, and the virus detec-
tion programs that aim to recognize binary fingerprints of well
known malware types. Code signing is used to authenticate
the software creator and to detect any changes to the software
since release. The introduction of Application Stores in recent

16Copyright (c) IARIA, 2020. ISBN: 978-1-61208-821-1

SECURWARE 2020 : The Fourteenth International Conference on Emerging Security Information, Systems and Technologies

operating systems offers code signing as well as life-cycle
management of the distribution, deployment, upgrading and
removal of software. These research areas are distantly related
to the presented research efforts, but they all fail if the
protection mechanisms themselves are attacked. Hardware as-
sisted protection mechanisms are needed, as operating systems
designers have known for 50 years.

A combination of hardware assisted integrity protection
and identity management is shown in [4], but the solution
presented there does not protect software above the platform
level. To the authors’ best knowledge, no other platform
than ChromeOS offer hardware-assisted integrity protection
of the entire software stack, and the protection arrangements
presented in this paper is believed to be novel.

The remainder of the paper is organized as follows: In
Section II a discussion on the technology elements used in the
presented protection scheme will be presented, followed by a
model for the client code protection in Section III. A proof-
of-concept prototype for evaluation of the protection model is
presented in Section IV, follows by a conclusion in Section V.

II. TECHNOLOGY DISCUSSION

This section provides a more detailed discussion of the
technology elements involved in the aforementioned protection
scheme.

A. Platform integrity protection

The integrity of the software stack can be protected through
inspection techniques, where either (1) patterns of known
malware is detected or (2) through detection of any modifi-
cations from an approved/correct state through the verification
of hash values. For the latter approach, the Trusted Platform
Module (TPM) [5] offers a range of services for boot-time
software inspection, which also aids the protection of non-
volatile storage in case the platform has been compromised.

Other techniques include the verification of a digital signa-
ture created over the software image, to verify the integrity of
the software as well as its source. This approach is taken by
Google ChromeOS [6], where Google’s public key and signa-
ture verification code is located in ROM and executed during
bootstrap. ChromeOS will not operate unless the verification
stage has completed successfully, and it cannot be booted from
USB memory. Likewise, the ARM processor architecture may
use its TrustZone mode to establish a verified boot in a step-
wise process similar to the TPM [7].

Two limitations are apparent in this arrangement: (1) The
platform code is inspected only during bootstrap, and (2) the
application programs are not inspected. Limitation no. 1 is
due to feasibility reasons. Software inspection must be an
atomic operation so task switching and interrupt handling must
be disabled for the duration of the operation. It is therefore
executed during bootstrap in order not to disturb other activities
in the computer. Limitation no. 2 is probably due to the dy-
namicity and multi-vendor nature of the application programs
in use. However, limitation no.2 is also the reason for concern
over how malware can enter into the application software and
challenge the integrity of the entire platform through exploits
of vulnerabilities in its process separation and access control.

Among the well known and current platforms, only
ChromeOS verifies the entire software stack, including the
applications (which are limited to the Chrome browser, a file
manager and a media player). Application code running as
Javascript in the web browser is not integrity checked since
it is loaded after boot-time, but Section II-C will show how
loaded Javascript can be trusted both by its integrity and its
origin. For other platforms, device security policy management
may offer some protection from malware inside application
code (cf. Sect II-E).

B. Hardware bound keys and certificates

Private keys are used to authenticate users or devices. In
the former case, the private key should be accessible from all
devices operating on behalf of this user. Such private keys can
successfully be stored in USB dongles, smart cards, etc. In
the latter case, the private key should be bound to the device
hardware in a manner where it cannot be exported elsewhere.
The typical hardware solution for private key storage is the
TPM. For the protection arrangement presented in this paper,
the binding of a key (and its certificate) to a device is crucial in
order to establish the identity of the device and its associated
properties.

Several platforms allow certificates and keys to be installed
and bound to the hardware device, e.g., Windows 10, Android
and ChromeOS. Certificates can be designed to authenticate
both the user and the device, and allow the other party to
make assumptions about the identity of the user as well as
the properties of the software platform of the device. The
presentation of a device-bound certificate during a transaction
may (depending on platform) indicate a successful bootstrap
integrity control. Within the limitations identified in Section
II-A, the combination of integrity control and device bound
keys provides integrity attestation.

Among the well known platforms, ChromeOS has the
most complete assurances, since its bootstrap integrity control
also includes the application software: When a client proves
the ownership of a user certificate known to be bound to
a ChromeOS device, e.g., during establishment of a client-
authenticated TLS connection, the service can safely assume
that the client device is free of malware and operates as ex-
pected (disregarding potential software bugs for the moment).
The assumption relies on key management procedures where
trusted personnel install the correct keys and certificates in
the device during the device deployment phase, and later as
certificates expire.

C. The CORS protocol

Inside a browser there are restrictions on where the
Javascript code can set up network connections. Originally,
there was a same origin policy in effect, i.e., connections
could only be made using the same scheme, IP address
and port as was used to load the web page [8]. Although
originally designed to inhibit rogue Javascript programs from
leaking information to arbitrary receivers, the restriction also
protects the service from access from unauthorized clients;
only Javascript loaded from the same server could access the
service, which allowed the content of the client code to be

17Copyright (c) IARIA, 2020. ISBN: 978-1-61208-821-1

SECURWARE 2020 : The Fourteenth International Conference on Emerging Security Information, Systems and Technologies

CS SF ES

GET members and messages

ACAO headers + response

OPTIONS Preflight check

Client

(1)

(2)

(3)
POST message

ACAO headers

GET

POST

Client−authenticated
TLS connections

Load client code

Load trust anchor

Load private key and certificate
GET

Fig. 1. The protocol elements of the Forum application, CS is the Code
Service, ES the Execution Service and SF the Servlet Filter. Details are
explained in Section IV.

closely inspected and protected. The use of Content-Security-
Policy (CSP) directives in the code adds to the robustness of
this arrangement [9].

The same origin policy has since been relaxed to allow
Javascript access to services which explicitly permit connec-
tions from designated origins. Termed Cross Origin Resource
Sharing (CORS), this protocol adds new HTTP headers for
the client to request a list of allowed origins from the service
[10]. These headers are termed Access-Control-Allow-Origin
(ACAO), as shown in Figure 1. A POST method requires a
“preflight-check” in the form of an OPTION method to obtain
the ACAO headers prior to the actual POST method, which is
not necessary for a GET method. In both cases, the operation
is aborted if the ACAO headers do not contain the necessary
values.

It is the responsibility of the web browser to enforce these
rules, and in order to use the CORS protocol to protect the
service from rogue client code, it must be evident that the
browser is in fact obeying the CORS rules. Integrity attestation
may provide such evidence if the mechanism also verifies this
particular property of the browser in use. Only ChromeOS
verifies the integrity of the Chrome browser (which is the only
browser allowed), while other platforms will need additional
measures to obtain the necessary proofs.

D. Indication of Origin HTTP header

As an alternative to the CORS protocol mechanisms, the
browser may include a HTTP header to indicate the origin
(the URL of the requesting web page, not the IP address of
the client computer) of the HTTP request. The service may use
this information to complete or abort the operation. The access
approval decision takes place in the service, which would
need to return an HTTP status code 403 Forbidden if the
origin value indicates an unauthorized source. Error handling
in the client is therefore different from CORS use, where the
error would be handled in a catch block. The use of the
Origin header is a fall-back strategy when the client-server
communication uses the WebSocket protocol, which does not
obey the CORS protocol.

E. Device Security Policy Management

Devices can be subject to mandatory security policy man-
agement through installation of software for Mobile Device
Management (MDM). Allowing only “whitelisted” applica-
tions to be installed ensures that only approved web browsers
can be used. MDMs are comprehensive frameworks and have
not been investigated for the purpose of this paper, but it is pos-
sible that MDMs can compensate for the lack of application-
level integrity inspection in, e.g., Android.

MDMs can also be used to further reduce the risk coming
from disloyal, untrained or careless users, who may change
the network configuration to use a different DNS service,
install new trusted root certificates, bypass the certification
validation during TLS connections, etc. An MDM may enforce
a policy that such actions require elevated user privileges. In
particular, ChromeOS devices can be subject to Chrome Device
Management to reduce the risk from these actions [11].

III. SUGGESTED MODEL FOR PROTECTION
OF CLIENT CODE

The desired property for a client is that it only runs
code approved for the given service. This property should be
validated by the service itself, which will deny any access from
unauthorized code. The presented protection model is targeting
browser based client code written in Javascript. The validation
relies on a chain of trust elements:

1) During the establishment of a client-authenticated
TLS connection to the service, the client presents a
certificate that is known to belong to a computer with
integrity protection of both platform and browser. In
the presented implementation, specific values in the
Distinguished Name OU element are used to indicate
this property.

2) A carefully implemented device administration proce-
dure is in effect to ensure that correct certificates are
bound to the respective hardware devices, cf. Section
II-B.

3) An uncompromised operating system and web
browser will obey the CORS protocol rules, and the
service will know that Javascript calls only come
from approved software. Alternatively, the Origin:
HTTP header value may be trusted to determine the
source of the client code. By system management
procedures, the approved software source will be
trusted to contain only well inspected and verified
code.

4) Javascript program code is always loaded through
TLS (HTTPS) connections, which protect the in-
tegrity of the code during transport.

This chain of trust does not become stronger than its
weakest link, so a number of reservations apply:

1) The CORS protocol/Indication of Origin relies on
correct IP address values from the DNS service.
The DNS service never authenticates itself to its
clients, and the IP address of the DNS service can
be forged, e.g., through manipulation of the DHCP
(Dynamic Host Configuration Protocol) service, or
by overriding the network configuration on the client

18Copyright (c) IARIA, 2020. ISBN: 978-1-61208-821-1

SECURWARE 2020 : The Fourteenth International Conference on Emerging Security Information, Systems and Technologies

computer. If the connection is TLS protected, a falsi-
fied certificate would also be needed for a successful
CORS attack, see no.3 below.

2) There are several known attacks on the TLS protocol,
as summarized in RFC7457 [12] as well as the more
recent Heartbleed and Robot attacks.

3) There is an excessive number of trusted root certifi-
cates in the default configuration of the main web
browsers. If any of these roots are compromised, they
may sign fake certificates that will be validated by the
browser and jeopardize the authentication operation
in either direction.

4) The standard configuration of a browser allows the
user to override an unsuccessful certificate validation
during a TLS connection establishment (although
trusted not to), so the connection may be completed
despite the invalid certificate.

IV. EXPERIMENTAL EVALUATION OF THE MODEL

For demonstration purposes, and for a detailed investigation
on the feasibility of the presented model, a message chat forum
application was programmed. Figure 2 contains a screen shot
from the Forum application. The application requirements were
as follows:

• All clients fetch their client code from the Code
Service (abbreviated CS).

• All clients connect to the Execution Service (ES) for
services using client-authenticated TLS.

• The browsers need to install keys and certificates
issued by one specific Certificate Authority.

• A client posts messages with a digital signature. They
will be received by all other connected clients.

• Received messages will be validated for correct sig-
nature and a valid certificate, and given a trust rating.

• Received messages will be listed on the user interface.

• A list of the names of connected clients will be shown
on the user interface.

Digital signatures on messages were created and validated
for the reason to explore end-to-end security mechanisms in
Javascript. The Web Cryptography API [3] was used and pro-
vided the authors with useful experience with WCA and related
libraries for key management and cryptographic operations.

Figure 1 shows the protocol elements of the Forum appli-
cation in three blocks: (1) is executed as the client program
starts, (2) is executed at regular intervals as a polling operation,
(3) is executed each time the user sends a message to the
forum. Since the client code is not loaded from ES (Execution
Service), all accesses to ES must obey the CORS rules. During
a GET operation, the ACAO headers are returned with the
returned value (block 2), whereas a POST operation requires a
preflight check as shown in block 3. Note how the Servlet Filter
(SF) handles the ACAO headers isolated from the application
code in ES.

Two alternative implementations of the applications were
programmed, based on HTTP and WebSocket protocols, re-

Fig. 2. A screen shot from the chat forum application. Messages from
“Victoria” are sent from a ChromeOS device and are marked trust=high.
Messages from “Edward” are sent from a MacBook.

spectively. (1) The use of HTTP protocol allows for a straight-
forward Servlet implementation on the service side and in-
voking the XMLHttpRequest object on the client side. The
CORS protocol will be used together with the inspection of the
TLS client certificate to enforce the desired access policy. (2)
The WebSocket protocol does not employ the CORS protocol,
so inspection of the Origin: HTTP header value will serve
as a replacement. The TLS client side certificate will still
need to be inspected by the service. Details related to the
two implementations are described in Sections IV-B and IV-C,
respectively.

A. Loading of keys and certificates

The Javascript environment does not have access to the
browser’s keystore, so the necessary public and private keys
will need to be loaded from elsewhere. The chosen solution
was to load the private key and certificate from the Execution
Service (ES) over a client-authenticated TLS connection. ES
returns the private key corresponding to the certificate used
for TLS authentication, effectively copying the keys from
the browser’s keystore to the Javascript environment, where
they are imported into the WCA for subsequent signature and
validation operation. This solution appeared to be the best of
only poor options, but a private key needs better protection
than this. The trust anchor is loaded from the Code Service
(CS) and also imported into WCA.

The service (ES) does not validate any signatures on the
message traffic, and does not need any other keys than what
is necessary for the TLS protocol. Signatures are validated by
the clients, while ES is merely relaying messages.

B. Managing CORS protocol and client certificate

The service program was implemented as a Java Servlet,
and during a client-authenticated TLS connection the client
certificate is made available to the invoked servlet through
the HttpServletRequest object. This certificate may be
inspected for any access control purposes, i.e., to allow only
clients with attested integrity to invoke services. Although the
Java Servlet interface does handle HTTP OPTION methods,
the processing of the CORS “preflight checks” is done by a
Servlet Filter for reasons of loose coupling between protocol
handling and application logic. The Servlet Filter manages
both the certificate inspection as well as the CORS protocol,
decoupled from the Servlet application logic. The certificate

19Copyright (c) IARIA, 2020. ISBN: 978-1-61208-821-1

SECURWARE 2020 : The Fourteenth International Conference on Emerging Security Information, Systems and Technologies

inspection only accepts one specific issuing CA. Parts of the
code in the Servlet Filter is shown in Figure 3.

Being able to inspect the client TLS certificate is essential
for the protection arrangement based on attested integrity. Java
Servlets (and PHP to some extent) appears to be the only
widespread server technologies to offer this opportunity.

C. Inspection of the Origin header in WebSocket communica-
tion

The WebSocket protocol is an asynchronous communica-
tion protocol, which allows for push-based information ex-
change. Push-based dissemination offers lower latency and
better scalability than polling operation through HTTP. A
WebSocket service is easily implemented in Java through
annotations described in JSR356 - “Java API for WebSockets”
[13]. The server class does not inherit from HttpServlet
and the client certificate is therefore not readily accessible
since the HttpServletRequest object is not within scope.

The WebSocket service is (possibly through annotation
processing) still running as a Servlet and some servlet
containers (i.e., Tomcat and Glassfish) will allow Servlet
Filters to be inserted in front of it, giving access to the
HttpServletRequest object from there. Furthermore,
the HttpSession object can be used to convey information
into a ServerEndpointConfig.Configurator
object, which can move the desired information into
the UserProperties object (found through the
ServerEndpointConfig object). The WebSocket
server class can pick up this information in the @OnOpen
method through the EndpointConfig object.

Quite a few problems arose during the WebSocket based
experiment. Setting up the TLS configuration on Glassfish
revealed that the configuration console is not working properly,
and manual editing of configuration files (a poorly documented
process) was necessary. The Glassfish server has a large
installation footprint but worked otherwise as expected with
regards to the arrangement presented in the previous paragraph.

The Jetty server (version 9.3.8) supports WebSocket
through the JSR356 API and is easily configured for client au-
thenticated TLS. It is, however, not possible to insert a Servlet
Filter in front of the WebSocket server object, and no other
way to access the client certificate was found. Additionally,
Jetty refuses to set up TLS protected WebSocket connections
(through the wss:// protocol prefix) from a Javascript client
running in Chrome (contrary to Firefox). Jetty was therefore
deemed unsuited for our demonstrator application.

The Tomcat server (version 8) also implements WebSocket
JSR356 API, and supported the presented arrangement for
retrieval of the client certificate. The installation footprint is
smaller than Glassfish (since this is not a full J2EE server) and
a standalone configuration with automatic WAR-file deploy-
ment was quite easy to set up. Tomcat is therefore regarded
as the best alternative for applications that seek to employ the
presented security arrangement for WebSocket communication.

For the selection of a client certificate during the establish-
ment of a TLS connection initiated by the XmlHttpRequest
object or an ordinary page loading operation, all the browsers
used in this experiment have prompted the user with a list of

available certificates to choose from. For subsequent connec-
tions, this certificate will be used for the same server, also for
connection made through the WebSocket object (using the
wss:// protocol prefix). On the other hand, the WebSocket
object does not itself prompt the certificate selection dialogue,
and the connection will fail if there is no existing association
between certificate and server in the client browser (created
by a page load or the XmlHttpRequest object). During the
application design, one must assure that a client authenticated
TLS connection is established (by the XmlHttpRequest
object or an ordinary page loading operation) before the first
WebSocket TLS connection so that the necessary association
is created.

D. Interoperability and performance observations

The presented client code was tested on several platforms
and on several browsers and their interoperability properties
were observed. The client candidates were:

• Google Chrome on ChromeOS, Linux, Android and
MacOS

• Mozilla Firefox on MacOS and Linux

• Apple Safari on MacOS

The results were encouraging: Firefox required an extra CORS
header (Access-Control-Allow-Credentials) in
the HTTP response to allow client-authenticated TLS con-
nections. Otherwise, Chrome and Firefox both executed the
application without differences. Safari was not able to run
the application for several reasons, the main one being an
immature implementation of WCA lacking support for the
chosen cryptographic algorithms.

V. CONCLUSION AND REMAINING RESEARCH

This paper has investigated the necessary mechanisms for
the provision of attested integrity for cloud security. The attests
provide trust in the correctness of the client platform and client
application code. It has been shown that remote attestation
and device-bound private keys are necessary elements, and
that Google’s ChromeOS provides the most complete solution
for platform trust. Together with the CORS protocol and TLS
communication protection, it is feasible (with a few identi-
fied reservations) to obtain trust in the client-side application
software as well.

The demonstration application offers a chat forum of
signed messages based on these mechanisms. The exchanged
messages use the JSON syntax with digital signatures as
defined by RFC 7515 [14]. The demonstrator has identified
two major shortcomings in the WCA definition and library
availability:

1) There is no way to import keys from the browser’s
key store into WCA, and the application had to
import keys from less protected channels (HTTPS
connections or the local file system)

2) There is no support for SOAP-based security objects,
like XML-DSIG or XML-ENC, and derived objects
like WSS, SAML, etc. on the client side.

Finally, the ability to trust the application code for correct-
ness alleviates the well known what you see is what you sign

20Copyright (c) IARIA, 2020. ISBN: 978-1-61208-821-1

SECURWARE 2020 : The Fourteenth International Conference on Emerging Security Information, Systems and Technologies

public class CrossSiteGuard implements Filter {
PublicKey caPubKey = ... // loaded from internal resource
final static String csName = "https://cs.ffi.no:8443";
final static String chromeOSindicator = "OU=ChromeOS";
public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain)

throws IOException, ServletException {
if (request instanceof HttpServletRequest) {

HttpServletRequest req = (HttpServletRequest)request;
HttpServletResponse resp = (HttpServletResponse)response;
String method = req.getMethod();
X509Certificate[] clientCert =
(X509Certificate[])req.getAttribute("javax.servlet.request.X509Certificate");
if (clientCert == null) resp.sendError(401,"Client authentication is required");
String clientDN = clientCert[0].getSubjectX500Principal().getName();
try { clientCert[0].verify(caPubKey); // Throws exception if not ok
} catch (Exception ce) { throw new ServletException("Illegal certificate issuer"); }
if (clientDN.contains(chromeOSindicator)) request.setAttribute("no.ffi.anf.trust", "high");
else request.setAttribute("no.ffi.anf.trust", "low");
if (method.equals("OPTIONS")) {

resp.addHeader("Access-Control-Allow-Headers", "Content-type");
resp.addHeader("Access-Control-Allow-Origin", csName);
resp.addHeader("Access-Control-Allow-Credentials", "true"); // For Firefox

} else if (method.equals("POST")) {
resp.addHeader("Access-Control-Allow-Origin", csName);
resp.addHeader("Access-Control-Allow-Credentials", "true");

} else if (method.equals("GET")) {
resp.addHeader("Access-Control-Allow-Origin", csName);
resp.addHeader("Access-Control-Allow-Credentials", "true");

}
}
chain.doFilter(request, response);

}
...

Fig. 3. Java source code for integrity attestation control through a Servlet filter

(WYSIWYS) problem, well explained in [15]. The WYSIWYS
problem concerns the user’s ability to ensure that the signed
object really contains the data that the user intends to sign, and
that the private key is not leaked during the process. Although
unintended modification of the object, as well as a leaked key,
can happen due to vulnerabilities in the original software, the
presence of malware that affects the signature operation is a
more plausible cause. It is likely that the WYSIWYS problem
becomes less acute if one can ensure that the client software
(which generates the signature) is integrity protected, inspected
and approved by the owners of the related service. The same
advantage can apply to clients who read sensor data, as long
as the connection between the sensor and the computer is
protected: The sensor readings can be trusted not to have been
modified by malware or rogue client software.

REFERENCES

[1] N. A. Schear et al., “Secure and resilient cloud computing for the
department of defense,” Lincoln Laboratory Journal, vol. 22, no. 1, pp.
123–135, 2016, https://www.ll.mit.edu/publications/journal/pdf/vol22
no1/22 1 10 Schear.pdf [Online: accessed Oct 2020].

[2] U.S. Department of Defense, “DoD Moves Data to the Cloud
to Lower Costs, Improve Security,” https://www.defense.gov/News/
Article/Article/604023, [Online: accessed Oct 2020].

[3] World Wide Web Consortium (W3C), “Web cryptography api,” http:
//www.w3.org/TR/WebCryptoAPI/, [Online: accessed Oct 2020].

[4] A. Fongen and F. Mancini, “The integration of trusted platform modules
into a tactical identity management system,” in IEEE MILCOM, San
Diego, USA, 2013, pp. 1808–1813.

[5] Trusted Computing Group, “TPM Main Specification,” http://www.

trustedcomputinggroup.org/resources/tpm main specification, [Online:
accessed Oct 2020].

[6] Google, “Verified Boot,” http://www.chromium.org/chromium-os/
chromiumos-design-docs/verified-boot, [Online: accessed Oct 2020].

[7] ARM, “ARM Security Technology - Building a Secure System using
TrustZone R© Technology,” 2009, white Paper.

[8] World Wide Web Consortium (W3C), “Same origin policy,” https://
www.w3.org/Security/wiki/Same Origin Policy, [Online: accessed Oct
2020].

[9] I. Yusof and A. S. K. Pathan, “Mitigating cross-site scripting attacks
with a content security policy,” IEEE Computer, vol. 49, pp. 56–63,
2016.

[10] World Wide Web Consortium (W3C), “Cross-Origin Resource Sharing,”
https://www.w3.org/wiki/cors/, [Online; accessed Oct 2020].

[11] A. Cunningham, “Chrome os management con-
sole brings improvements for businesses,” http:
//arstechnica.com/information-technology/2012/06/
chrome-os-management-console-brings-improvements-for-businesses/,
[Online: accessed Oct 2020].

[12] Y. Sheffer, R. Holz, and P. Saint-Andre, “Summarizing Known Attacks
on Transport Layer Security (TLS) and Datagram TLS (DTLS),” IETF
RFC 7457, Oct. 2015.

[13] Oracle corp., “JSR 356, Java API for WebSocket,” http://www.oracle.
com/technetwork/articles/java/jsr356-1937161.html, [Online: accessed
Oct 2020].

[14] N. Sakimura, M. Jones, and J. Bradley, “JSON Web Signature (JWS),”
IETF RFC 7515, Dec. 2015.

[15] P. Landrock and T. P. Pedersen, “Wysiwys? - what you see is what you
sign?” Inf. Sec. Techn. Report, vol. 3, no. 2, pp. 55–61, 1998, http://dx.
doi.org/10.1016/S0167-4048(98)80005-8 [Online: accessed Oct 2020].

21Copyright (c) IARIA, 2020. ISBN: 978-1-61208-821-1

SECURWARE 2020 : The Fourteenth International Conference on Emerging Security Information, Systems and Technologies

