
Towards Empirically Assessing Behavior Stimulation Approaches for Android Malware

Aleieldin Salem, Michael Hesse, Jona Neumeier, and Alexander Pretschner

Technische Universität München
Garching bei München, Germany

Email: {salem, hessem, neumeiej, pretschn}@in.tum.de

Abstract—Android malware authors have increasingly relied on
techniques to hinder dynamic analysis of their apps by hiding
their malicious payloads or by scheduling their execution based
on complex conditions. Consequently, researchers devise different
approaches to bypass such conditions and stimulate the malicious
behaviors embedded within the Android malware. Despite the
availability of different behavior stimulation approaches and
dynamic analysis tools that implement them, they are seldom
empirically evaluated to assess their applicability and effective-
ness. In this paper, we survey the literature to identify different
behavior stimulation approaches and assess the performance of
three tools implementing them against four datasets of synthetic
and real-world malware. Using the obtained results, we highlight
significant limitations of such analysis tools, including their in-
stability and their inability to stimulate scheduled behaviors even
in automatically generated synthetic malware. Those limitations
enable simple approaches based on the random manipulation of
an app’s User Interface (UI) to outperform more sophisticated
behavior stimulation approaches. We aspire that our results
instigate the adoption of more rigorous evaluation methods that
ensure the stability of newly-devised analysis tools across different
platforms and their effectiveness against real-world Android
malware.

Keywords–Android Security; Application Analysis; Malware
Detection.

I. INTRODUCTION

Android malware authors utilize different techniques to
hinder static analysis of their apps, such as anti-debugging
techniques [1], code obfuscation and encryption [2], dynamic
code loading [3], and triggering and scheduling [4] [5]. How-
ever, more recently, malware authors have increasingly relied
on evasion techniques to hinder dynamic analysis as well [1].
For example, Wei et al. found that the majority of malicious
apps they gathered and analyzed utilized schedulers to delay
the execution of their payloads [5]. Consequently, researchers
have devised different approaches to identify suspicious seg-
ments within Android apps and stimulate (i.e., execute) them,
such as in [6]–[10]. We refer to these approaches as behavior
stimulation approaches. Stimulating suspicious behaviors helps
detection methods understand the true intentions of an app, and
classify it correctly as malicious or benign [11].

In describing their stimulation approaches, and the dynamic
analysis tools that implement them, researchers tend to focus
on distancing their work from the previous work by, for exam-
ple, enumerating the new features offered by their tools or the
limitations of prior work their new tools tackle. Furthermore,
approaches are usually evaluated using either a few samples
[7] [9] [10] or mainly using synthetic malware datasets [6],
to allow for a more in-depth description of the concepts upon
which the approaches are built.

Unfortunately, this renders it difficult for other researchers
to assess the applicability and effectiveness of the current be-
havior stimulation approaches against Android malware found
in the wild. In particular, the answers to the following questions
are unknown to researchers: (Q1) How well can the current
behavior stimulation tools stimulate scheduled malicious be-
haviors embedded in (synthetic) Android malware? (Q2) How
difficult is it to trigger malicious behaviors dwelling in Android
malware found in the wild (e.g., app marketplaces)? And (Q3)
What are the limitations that face some of the current analysis
tools and their behavior stimulation approaches?

To answer such questions, we conducted preliminary ex-
periments performed on (1) synthetic malicious apps that im-
plement schedulers, and (2) random samples drawn from real-
world Android malware datasets (i.e., Piggybacking [12] and
AMD [5]). In those experiments, we compared the performance
of three tools that represent different behavior stimulation
approaches according to three criteria, viz. the time taken to
analyze an app, whether a tool undermines the stability of an
app (e.g., causes it to crash), and whether a tool managed to
unveil the malicious code segments embedded within an app.

The results we obtained from our preliminary experiments
suggest the following. Firstly, we found that a noticeable
number of the behavior stimulation tools we surveyed are (a)
poorly documented, which makes it difficult to set them up
and configure them, and (b) did not deliver the functionalities
described in their papers. Secondly, none of the tools we
used during our experiments managed to stimulate malicious
behaviors guarded by primitive schedulers (i.e., time-based
triggers), embedded in synthetic malware generated by the
repackaging tool, Repackman [4]. Thirdly, our results imply
that Android malware authors implement their instances in
a manner that exhibits some of their malicious behaviors
without schedulers, especially malicious apps belonging to the
less subtle types of Adware and Riskware. This enables
primitive tools (e.g., the ones that interact with an app’s UI),
to outperform more sophisticated counterparts in terms of the
aforementioned three criteria.

In summary, our contributions are:

• We survey the literature to identify the existing and
available Android malware dynamic analysis tools
that implement behavior stimulation approaches and
categorize them according to such approaches (Section
II).

• The conducted experiments revealed that the tools
used during evaluation–including those mainly de-
signed to bypass schedulers–were unable to stimulate
malicious behaviors protected by simple time-based

47Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

triggers. We found that maintaining the stability of
test apps is more important than the complexity of a
tool’s stimulation approach as it increases its chances
to stimulate malicious behaviors in malware (Sections
III and IV).

• We share with the research community the results
of our experiments to verify, reproduce, and improve
upon our findings.

II. STIMULATION APPROACHES

We surveyed the literature in pursuit of dynamic anal-
ysis tools that (a) implement any behavior stimulation ap-
proach, and (b) are designed to analyze Android malware
or, at least, accommodate for malicious apps. Tools such as
TriggerScope [13], for instance, which identifies logic-
based triggers embedded within an Android app, but does not
include modules to stimulate behaviors within the app were
ruled out. Using such criteria, we so far managed to identify
11 dynamic analysis tools with behavior stimulation modules,
as seen in Table I. Those tools implemented three approaches
to behavior stimulation that we refer to as random UI manip-
ulation, forcing execution, and environment adaptation.

In addition to investigating the stimulation approach
adopted by different analysis tools, we studied the techniques
they use to target suspicious code segments within an app
(Code Targeting), the mechanisms they utilize to execute the
identified targets (Code Triggering), whether they require any
modifications to the apps under test or the systems on which
they are analyzed (Invasiveness), the programming language
level they operate on (Operation Level), and whether they
provide any documentation or source code to the research
community (Availability+Maintainability). In the following
sections, we briefly explain those strategies and techniques and
how different tools utilize them.

A. Random UI Manipulation

The random manipulation of an app’s user interface is the
most primitive of stimulation approaches. Tools adopting this
approach usually do not implement any strategies to target
code segments within apps. Instead, the majority of such tools
randomly interact with the graphical user interface elements of
apps (e.g., Button or TextField), and their background
components (e.g., Service or BroadcastReceiver), to
instigate (suspicious) runtime behaviors. Consequently, ran-
dom UI manipulation tools usually do not implement any
automatic strategies to trigger specific segments of code. Such
responsibility is delegated to the user in the form of scripts
that define sequences of interactions with app components
(e.g., start Activity A, then tap Button B, then broadcast
Intent I) [16] [17].

The lack of code targeting and triggering strategies implies
that random UI manipulation tools are, by and large, non-
invasive. That is, apart from injecting logging statements into
an app, such tools do not require any modifications to the app
under test or the test environment to function. Furthermore,
random UI manipulation tools tend to solely operate on apps’
(graphical) components, without the need to explore or analyze
the apps’ codebases.

B. Forcing Execution

In Android apps, some code segments are implemented to
execute only if some conditions are satisfied. For example,
updates usually require devices to be connected to the internet
via WiFi and the devices to be plugged in for charging.
Forcing execution tools are designed to bypass any conditions
that prevent the code of interest from executing, effectively
forcing it to execute. We identified two main methods to
force the execution of code segments. The tools GroddDroid
[10] and Harvester [18] replace any conditional statements
leading to the target code with unconditional ones, whereas
Droid-AntiRM [19] and ARES [6] alter the boolean ex-
pressions of such conditional statements to values that lead
to the execution of the target code. The majority of forcing
execution tools maintain lists that define the Android Appli-
cation Programming Interface (API) calls they should pursue
in an app’s code and attempt to execute. The API methods in
those lists are known to be often utilized by malware (e.g.,
sentTextMessage) [7] [10].

Forcing execution tools usually operate on a low-level
representation of an app’s code (e.g., DEX bytecode), and
utilize different techniques including slicing [18] and control-
/data-flow analysis [10] [19], to find paths between entry points
in the code (e.g., the app’s main activity), and the target API
calls. Modifying the apps’ code implies app-level invasiveness.
Moreover, some tools, such as ARES, require the modification
of the test environment as well to generate trace logs that might
reveal previously unforeseen execution paths.

After modification, the paths to target code should be
unobstructed with any (boolean) conditions, and the target code
should execute after simple, random interaction of the apps UI
(e.g., using tools like Monkey). Some forcing execution tools
embed a controller activity into the modified app, which calls
the functions along the path leading to the target code [18].

C. Environment Adaptation

Environment adaptation attempts to trigger the target code
without modifying an app’s control flow or structure. To
do that, tools adopting this approach alter the environment
surrounding the app to steer its execution towards the targeted
code. For example, if the target code needs access to the
device’s Global Positioning System (GPS) module to execute,
the analysis tool would switch on the location services and
grant the app any necessary permissions.

Environment adaption analysis tools rely on user-defined
target code usually in the format of API calls to identify target
code. Once identified, a path from an app’s entry point to the
target code is calculated, and variables along this path are
included in constraints generated using symbolic execution
[7]–[9]. The symbolic variables in such constraints depict
values read from files, statuses returned after querying system
modules, or variables inside the app’s code.

During runtime, environment adaptation tools make sure
that the symbolic variables in those constraints have values
that steer an app towards the target code. Instead of altering the
environment itself to influence the symbolic variables, current
environment adaptation tools intercept the values returned from
the system or queried resource, and replace them with the
values required to execute the target code.

48Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

http://goo.gl/az8CHn

TABLE I. A SUMMARY OF THE IDENTIFIED ANDROID MALWARE DYNAMIC ANALYSIS TOOLS THAT IMPLEMENT A BEHAVIOR
STIMULATION APPROACH. THE TOOLS WE UTILIZED DURING OUR EXPERIMENTS ARE HIGHLIGHTED IN RED.

Tool
Stimluation
Approach

Code
Targeting

Code
Triggering

Invasiveness
Operation

Level
Availability+

Maintainability

R
andom

U
I

Force
E

xecn

E
nv

A
daptn

N
one

A
uto

M
anual

R
andom

U
I

G
uided

N
o

A
pp

System

U
ser

Interface

N
ative

C
ode

D
E
X

B
ytecode

U
ser

M
anual

Source
C

ode

E
xecutable(s)

L
ast

C
om

m
it

SmartDroid [14]
CopperDroid [15]
Droidbot [16] Apr’19

Droidmate-2 [17] Jun’19
GroddDroid [10]
Harvester [18]

Droid-AntiRM [19]
ARES [6] Apr’18

IntelliDroid [9] Dec’16
FuzzDroid [7] Feb’17
Malton [8]

To calculate the aforementioned constraints, the analysis
tools usually operate on a low-level representation of the
apps’ code, such as DEX bytecode [7] [9] or on native code
executed on Android Runtime (ART) layer [8]. In terms of
invasiveness, Malton does not modify the apps or their testing
environments, IntelliDroid needs a modified version of
the Android operating system to include a service that feeds
the app during execution with the values required to satisfy
the constraints, and FuzzDroid injects logging statements
into the apps for a similar purpose along with tracking the
execution paths.

III. EXPERIMENTS

a) Tools: Out of the 11 tools we identified so far, only
six offered their source code or executables to the research
community, which we attempted to install, configure, and test.
Unfortunately, half of the remaining tools (i.e., three tools),
either (a) were incomplete and needed a further extension
before being used, or (b) did not deliver the functionality
described in their respective papers. For example, the tool
FuzzDroid needed to be extended to accommodate for
different types of sensitive API calls apart from Short Message
Service (SMS)-related ones. Furthermore, after obtaining the
source code of the tool ARES, following the instructions
available on its website to compile a customized version of the
Android kernel, setting up and running it against the EvaDroid
dataset, we could not reproduce the results reported in its
paper [6], primarily because the tool did not manage to trigger
the payloads in such apps. Consequently, we ran our experi-
ments using the three remaining tools, namely Droidbot,
GroddDroid, and IntelliDroid, which fortunately re-
spectively represent the stimulation approaches of random UI
manipulation, forcing execution, and environment adaptation.

b) Datasets: We ran the aforementioned three tools
against four datasets of synthetic and real Android mali-
cious apps. The first dataset we considered is EvaDroid [6],
which comprises 24 manually-developed, synthetic malicious
apps that implement different types of schedulers (e.g., time-
based, virtualization fingerprinters, battery status checkers,
etc.). The second dataset, referred to as Repackman, comprises
30 synthetic malicious apps automatically generated using the

Repackman tool [4] by grafting trigger-protected malicious
payloads into benign apps from the Google Play store. The
third dataset is a random sample of 30 malicious apps drawn
from the Piggybacking dataset, which includes real-world
Android repackaged malware [12]. The distribution of malware
types in this dataset is Adware (63%), Riskware (17%),
Trojan (16.1%), and Spyware (3%). Lastly, we drew a
random sample of 130 malicious apps out of 24,553 from
the AMD dataset including different families and types of
Android malware (e.g., Adware (57.7%), Trojan (27.78%),
and Ransomware (8.74%)) [5].

A. Results
Table II summarizes the results obtained from our ex-

periments. For each dataset, we calculated the average time
taken (in seconds) by each tool to analyze an app (AT), the
percentage of apps that were successfully analyzed (AA), and
whether the malicious payloads embedded within the apps
were triggered (PT) and found in the logs of the successfully
analyzed apps. The time taken by Droidbot to analyze apps
seems constant across different datasets because we allowed
the tool to run for five minutes per app.

We defined an analysis to be successful if a tool that
monitors the API calls issued by an app during runtime,
Droidmon [20], managed to generate a log for an app.
Droidmon monitors a defined list of API calls that (a)
interact with sensitive system resources (e.g., user contacts),
or (b) are known to be widely-adopted by malicious apps
(e.g., sending and receiving SMS messages). We made sure to
synchronize the lists of API calls targeted by GroddDroid
and IntelliDroid and monitored by Droidmon itself.
This means that stimulation tools, for example, GroddDroid,
would attempt to target and execute the same API calls that are
monitored and logged by Droidmon. Such synchronization
is the only modification we made to the analysis tools. To
automate the process of analysis, we wrote scripts that iterate
over the apps in a dataset, launches the analysis tool, and
downloads any logs generated by Droidmon from the virtual
device on which the analysis was performed. We manually
examined the generated Droidmon logs of each analyzed app
to inspect whether any of its malicious payload(s) have exhib-

49Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

TABLE II. A SUMMARY OF THE RESULTS OBTAINED FROM OUR EXPERIMENTS.

Dataset EvaDroid Repackman Piggybacking AMD
AT AA PT AT AA PT AT AA PT AT AA PT

Droidbot 305.6 100% 17% 304.45 100% 0% 305.89 96.67% 86.20% 306.34 76.15% 54.54%
GroddDroid 104.45 100% 37% 1434.2 40% 0% 2629.22 66.33% 68.42% 209.26 57.69% 46.67%

IntelliDroid N/A 100% 33% N/A 43% 0% N/A 46.67% 71.42% N/A 79.23% 42.67%

ited. For the synthetic malware datasets, the inspection was
straightforward, especially since the malicious payloads were
merely logging messages or Toast messages that indicate the
execution of the targeted code (e.g., Evil Payload Triggered!!).
We made sure that the analysis tools and Droidmon do indeed
target and monitor such logging statements, respectively. As
for apps in the Piggybacking and AMD datasets, we relied on
the information available on VirusTotal [21] or provided
by the dataset authors about the apps’ behaviors.

IV. DISCUSSION

In this section, we attempt to answer the research questions
(Q1), (Q2), and (Q3) that we postulated in Section I.

Q1

How well can the current behavior stimulation tools stimu-
late scheduled malicious behaviors embedded in (synthetic)
Android malware?

On the EvaDroid dataset, despite managing to outperform
their simpler counterpart, Droidbot, the more sophisticated
analysis tools GroddDroid and IntelliDroid performed
mediocrely on such dataset, given the simplicity of its apps and
the schedulers they utilize. Moreover, we noticed that some of
the tools managed to analyze and trigger the payloads in apps
that other tools did not manage to either successfully analyze or
to reveal their payloads. For example, GroddDroid managed
to uniquely trigger the payloads in the apps accelH and
network1, whereas IntelliDroid triggered the payloads
in adbPortDetector, installedApps, qemuFingerprinting, and
uptime. Collectively, the three tools successfully analyzed and
triggered the payloads in 13 (54%) out of 24 apps in the
EvaDroid dataset, which continues to be a less than expected
percentage.

The performance of all tools worsened on the Repackman
dataset. While this can be expected from simple approaches
as Droidbot’s, this result is indeed not expected from
GroddDroid and IntelliDroid. One possible reason
of failing to trigger such payloads is the inability of the
GroddDroid and IntelliDroid to successfully analyze
around 60% of the apps in the dataset, which might be
a result of runtime errors rather than technical shortcom-
ings. Upon futher investigation, we found that apps tested
using GroddDroid did not generate any Droidmon logs
as they encountered various types of runtime exceptions,
mostly related to calling methods in classes that are yet to be
loaded (e.g., java.lang.NullPointerException and
android.os.DeadObjectException). A possible rea-
son behind this behavior could be GroddDroid’s technique
of skipping over specific code segments and conditions in order
to execute the targeted code. As for IntelliDroid, unlike

GroddDroid, we did not find any evidence of crashes in the
system logs we downloaded from the virtual devices. In other
words, failure to target and/or trigger any payloads in the apps
might be due to some deficiencies in the tool’s approach. We
consider the failure of both tools to trigger such payloads as
a significant source of concern, given the ability to generate
hundreds of malicious apps using such automated method and
the simplicity of the triggers injected into those apps.

The tools’ performances on the AMD dataset are indeed
more balanced, yet raise other concerns. The majority of mali-
cious apps in this dataset makes use of schedulers that delay the
execution of the apps’ malicious payloads [5]. So, we expected
Droidbot to be outperformed by the other tools in terms of
triggering scheduled malicious payloads. However, as implied
by the (PT), Droidbot slightly outperformed GroddDroid and
IntelliDroid. Similar to the EvaDroid dataset, we found
that the three tools complemented one another in terms of apps
they uniquely managed to trigger their payloads. Between the
three tools, the payloads of 122 (93.84%) out of 130 apps
were successfully triggered. We investigated the apps that tools
uniquely analyzed and triggered in pursuit of patterns that
might indicate the strengths of some of the tools.

On the one hand, Droidbot managed to uniquely trigger
the payloads in three apps that belong to different malware
types (i.e., Ransomware, Trojan, and Adware). The other
tools could not identify any code to target within such apps. On
the other hand, GroddDroid and IntelliDroid managed
to trigger malicious payloads in 19 apps that Droidbot did
not manage to trigger. We found the payloads in ten of those
apps were uniquely triggered by IntelliDroid, whereas
six were uniquely triggered by GroddDroid.

In pursuit of any differences between the apps success-
fully analyzed by each tool, we consulted VirusTotal
and retrieved the labels given by different scanners to
each app, the last time an app was modified (i.e., roughly
its development date), and the Android Software Develop-
ment Kit (SDK) versions an app supports according to its
AndroidManifest.xml file. Firstly, the VirusTotal labels
did not reveal any patterns vis-à-vis the malware families or
types that each tool excels at analyzing. In other words, we
could not find any evidence that suggests, for example, that
GroddDroid can uniquely trigger payloads embedded in
Trojans or the DroidKungFu malware family. The tools
also shared the average year in which a malicious app was
last modified and presumably developed viz., 2013, and the
average minimum SDK supported by the apps they uniquely
triggered their payloads (i.e., API level 6).

The results we observed imply, we argue, that the suc-
cess of a tool to trigger the payloads in any given mali-
cious app hinges on the app itself (e.g., its functionalities,
utilized permissions, used libraries, etc.). Furthermore, the

50Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

poor performance of older tools such as GroddDroid and
IntelliDroid on apps in the Repackman dataset, which
are newer than those in other datasets, implies that such tools
do not generalize to newer apps with newer technologies (e.g.,
runtime permissions), or are meant to run on newer versions
of Android. Consequently, as discussed earlier, the analysis of
any given app should be carried out collectively using different
analysis tools to increase the likelihood of successful analysis
and payload triggering.

Q2

How difficult is it to trigger malicious behaviors dwelling in
Android malware found in the wild (e.g., app marketplaces)?

To answer (Q2), we use the performance of Droidbot
on the Piggybacking and AMD datasets as an indication of
the difficulty to trigger the malicious payloads in an app.
If Droidbot’s simple random UI manipulation stimulation
approach stimulates any malicious behaviors in an app, we
infer that complex schedulers did not protect such malicious
behaviors and, hence, were easy to stimulate. The decent
performance of Droidbot’s simple random UI manipulation
implies that authors of Android malware in the Piggybacking
dataset did not graft the legitimate apps they repackaged
with sophisticated schedulers. We found that the majority
of the malicious apps in the Piggybacking dataset comprise
Adware, which usually focuses on the monetary gain rather
than stealth and sophistication [12]. That is to say, the authors
of Adware would rather trigger their malicious or potentially
unwanted payloads as soon as possible to maximize their
profit than hide the true intentions of their apps, especially
since displaying more advertisements or implicitly rerouting
their revenues does not bother device users or interrupt their
usage as much as other more notorious breeds of malware
(e.g., Ransomware). In this context, albeit unexpected, the
performance of Droidbot is not necessarily surprising.
Droidbot’s performance is not replicated in case of the AMD
dataset, which implies the use of more sophisticated schedulers
and triggers. Nevertheless, given the simplicity of its approach,
the tool managed to trigger the malicious payloads embedded
within more than 50% of the dataset’s apps. Similar to the
Piggybacking dataset, the majority of malware types in AMD
is Adware, which may have facilitated the tool’s task.

So, we argue that using stimulation approaches as simple
as random UI manipulation, a subset of the malicious behav-
iors found in some real-world Android malware types (e.g.,
Adware) or indications of their presence (e.g., fingerprinting
the device), might be revealed. Otherwise, the existence of
(complex) schedulers in apps noticeably hinders the perfor-
mance of all tools.

Q3

What are the limitations that face some of the current analysis
tools and their behavior stimulation approaches?

In addressing (Q3), we identified the following limitations
facing the analysis tools we examined so far. Firstly, apart from
Droidbot, the utilized tools were either too slow in targeting
code and devising strategies to trigger it or required manual
operation, such as IntelliDroid (hence the N/A in Table

II). Secondly, the approaches adopted by GroddDroid and
IntelliDroid, seemed to have undermined the stability
of the apps, which hindered their successful analysis. Being
a pre-requisite for payload triggering, we believe that this
has negatively affected the ability of such tools to trigger
payloads. Lastly, we noticed that all tools could only analyze
apps compatible with the Android versions that the tools target.
That is to say, the tools seem to be limited to the environments
within which they were implemented and evaluated. With the
lack of maintainability, the analysis tools we examined cease
to cope with the frequently changing structures and behaviors
of Android (malicious) apps, rendering them obsolete within
a few years.

V. LIMITATIONS AND FUTURE WORK

a) Dataset Size: As discussed in Section III, one of the
main criteria in evaluating the performance of a behavior stim-
ulation approach is its ability to trigger malicious behaviors
embedded within the apps. To make sure that payloads have
indeed triggered, especially in real-world malware, we manu-
ally inspected the Droidmon logs generated by the dynamic
analysis tool. Using the entire corpus of the Piggybacking
and AMD datasets and the logs generated from their apps by
each of the three analysis tools means manually analyzing
around 77,859 logs. So, we randomly selected apps from those
datasets for our experiments, in order to have a sample that,
we argue, represents the entire population of apps, their trends,
triggers, and payloads.

b) Subset of Tools: The second limitation is the uti-
lization of a subset of dynamic analysis tools we identified in
Section II: out of 11 analysis tools, we ran our experiments
using three tools. In order not to mistakenly claim that a
particular tool is incapable of stimulating malicious behaviors
during our preliminary experiments, we only considered tools
that we could set up correctly, and that exhibit the behaviors
described in their corresponding papers.

c) Future Work: Our future work is planned to address
the aforementioned two limitations. Firstly, we wish to increase
the sizes of the datasets we use during our experiments.
The challenge, however, is to devise a method to semi-
automatically investigate the logs generated for different apps,
and decide upon whether the payloads residing in the apps have
triggered. Secondly, we wish to continue surveying the liter-
ature for more dynamic analysis tools in pursuit of different
approaches to behavior stimulation. Along with the tools we
already identified, we wish to re-run our experiments on larger
datasets of Android malware. As for tools we did not manage
to set up or execute, we wish to investigate the reasons behind
their unexpected behaviors after consulting their developers.

VI. RELATED WORK

In [22], Sadeghi et al. perform a large scale study on the
approaches and techniques used to assess the security of An-
droid apps in general. Among the plethora of tools discussed
in this study, dynamic analysis tools that implement behavior
stimulation approaches (e.g., GroddDroid), are discussed.
However, the study does not consider behavior stimulation as
a technique to distinguish between tools and, hence, does not
discuss it. Tam et al., in [1], do consider behavior stimulation
approaches in surveying the literature for static and dynamic
tools and discuss those specifically built to analyze Android

51Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

malware (e.g., CopperDroid). Richter [23] surveys different
Android malware analysis tools and attempts to compare
them concerning their weaknesses and limitations. In other
words, without conducting any experiments, Richter studies
the features and approaches offered and adopted by different
tools (e.g., Harvester), and speculates the challenges that
might face them. Lastly, Hoffmann et al. survey the literature
for different analysis tools used to analyze Android (malicious)
apps [2]. They focus, however, on the resilience of such
analysis tools against obfuscation.

There are two main differences between our work and
the aforementioned related work. Firstly, we focus on the
approaches adopted by some dynamic analysis tools to increase
the chance of stimulating malicious behaviors in Android apps.
The majority of research efforts that survey dynamic analysis
tools tend to ignore such approaches. Those that do consider
it, such as [1], do not delve into comparing them. Secondly,
to the best of our knowledge, there are no approaches that
attempt to empirically compare the performance of different
analysis tools against Android malware, even using small or
sample datasets, which we do in this paper.

VII. CONCLUSION

Despite the existence of different behavior stimulation
approaches, the research community does not possess any
empirical studies on any scale that assess their applicability or
effectiveness against (synthetic) Android malware. To address
this gap, we surveyed the literature, identified three behavior
stimulation approaches adopted by dynamic analysis tools,
and assessed the performance of three tools representing them
against four datasets of synthetic and real-world Android
malware.

The results of our preliminary experiments suggest that,
despite competing with more sophisticated behavior stimu-
lation approaches, a simple approach based on the random
manipulation of an app’s UI can help reveal (subsets of)
the malicious behaviors it contains. This proved to be the
case with certain families of malware (e.g., Adware and
Ransomware), whose authors usually do not implement
complex schedulers to protect their malicious payloads. More
importantly, our experiments revealed that all the utilized tools
did not manage to trigger any time-scheduled payloads in
synthetic malware generated by the automatic repackaging tool
Repackman. Lastly, without maintaining a tool’s code and
adapting it to newer versions of Android, dynamic analysis
tools seem to be suited to analyze a particular set of malicious
apps viz., ones that were implemented for the same Android
API version.

REFERENCES
[1] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, “The

evolution of android malware and android analysis techniques,” ACM
Computing Surveys (CSUR), vol. 49, no. 4, 2017, p. 76.

[2] J. Hoffmann, T. Rytilahti, D. Maiorca, M. Winandy, G. Giacinto, and
T. Holz, “Evaluating analysis tools for android apps: Status quo and
robustness against obfuscation,” in Proceedings of the Sixth ACM
Conference on Data and Application Security and Privacy. ACM,
2016, pp. 139–141.

[3] Y. Zhauniarovich, M. Ahmad, O. Gadyatskaya, B. Crispo, and F. Mas-
sacci, “StaDynA: Addressing the Problem of Dynamic Code Updates in
the Security Analysis of Android Applications,” in Proceedings of the
5th ACM Conference on Data and Application Security and Privacy,
ser. CODASPY ’15. ACM, 2015, pp. 37–48.

[4] A. Salem, F. F. Paulus, and A. Pretschner, “Repackman: A tool for
automatic repackaging of android apps,” in Proceedings of the 1st
International Workshop on Advances in Mobile App Analysis. ACM,
2018, pp. 25–28.

[5] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep ground truth analysis
of current android malware,” in International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment. Springer,
2017, pp. 252–276.

[6] L. Bello and M. Pistoia, “Ares: triggering payload of evasive android
malware,” in Proceedings of the 5th International Conference on Mobile
Software Engineering and Systems. ACM, 2018, pp. 2–12.

[7] S. Rasthofer, S. Arzt, S. Triller, and M. Pradel, “Making malory behave
maliciously: Targeted fuzzing of android execution environments,” in
Proceedings of the 39th International Conference on Software Engi-
neering. IEEE Press, 2017, pp. 300–311.

[8] L. Xue, Y. Zhou, T. Chen, X. Luo, and G. Gu, “Malton: Towards on-
device non-invasive mobile malware analysis for art,” 2017, pp. 289–
306.

[9] M. Y. Wong and D. Lie, “Intellidroid: A targeted input generator for
the dynamic analysis of android malware.” in NDSS, vol. 16, 2016, pp.
21–24.

[10] A. Abraham, R. Andriatsimandefitra, A. Brunelat, J.-F. Lalande, and
V. V. T. Tong, “Grodddroid: a gorilla for triggering malicious behav-
iors,” in 2015 10th international conference on malicious and unwanted
software (MALWARE). IEEE, 2015, pp. 119–127.

[11] A. Salem, T. Schmidt, and A. Pretschner, “Idea: Automatic localization
of malicious behaviors in android malware with hidden markov mod-
els,” in International Symposium on Engineering Secure Software and
Systems. Springer, 2018, pp. 108–115.

[12] L. Li, D. Li, T. F. Bissyandé, J. Klein, Y. Le Traon, D. Lo, and
L. Cavallaro, “Understanding android app piggybacking: A systematic
study of malicious code grafting,” IEEE Transactions on Information
Forensics and Security, vol. 12, no. 6, 2017, pp. 1269–1284.

[13] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, and
G. Vigna, “Triggerscope: Towards detecting logic bombs in android
applications,” in Security and Privacy (SP), 2016 IEEE Symposium on.
IEEE, 2016, pp. 377–396.

[14] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou, “Smart-
droid: an automatic system for revealing ui-based trigger conditions in
android applications,” in Proceedings of the second ACM workshop on
Security and privacy in smartphones and mobile devices. ACM, 2012,
pp. 93–104.

[15] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Copperdroid:
Automatic reconstruction of android malware behaviors,” in Proc. of
the Symposium on Network and Distributed System Security (NDSS),
2015.

[16] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Droidbot: a lightweight ui-guided
test input generator for android,” in Software Engineering Companion
(ICSE-C), 2017 IEEE/ACM 39th International Conference on. IEEE,
2017, pp. 23–26.

[17] N. P. Borges Jr, J. Hotzkow, and A. Zeller, “Droidmate-2: a platform
for android test generation,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM,
2018, pp. 916–919.

[18] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden, “Harvesting
runtime values in android applications that feature anti-analysis tech-
niques.” in NDSS, 2016.

[19] X. Wang, S. Zhu, D. Zhou, and Y. Yang, “Droid-antirm: Taming control
flow anti-analysis to support automated dynamic analysis of android
malware,” in Proceedings of the 33rd Annual Computer Security
Applications Conference. ACM, 2017, pp. 350–361.

[20] Droidmon. Droidmon - dalvik monitoring framework for cuckoodroid.
[Online]. Available: https://goo.gl/HPtdtG

[21] VirusTotal. Virustotal. [Online]. Available: https://goo.gl/s7GSrn
[22] A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek, “A taxonomy and

qualitative comparison of program analysis techniques for security
assessment of android software,” IEEE Transactions on Software Engi-
neering, vol. 43, no. 6, 2017, pp. 492–530.

[23] L. Richter, “Common weaknesses of android malware analysis frame-
works,” Ayeks. de, 2015, pp. 1–10.

52Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

https://goo.gl/HPtdtG
https://goo.gl/s7GSrn

	Introduction
	Stimulation Approaches
	Random UI Manipulation
	Forcing Execution
	Environment Adaptation

	Experiments
	Results

	Discussion
	Limitations and Future Work
	Related Work
	Conclusion
	References

