
Policy-Aware Provisioning Plan Generation for TOSCA-based Applications

Kálmán Képes, Uwe Breitenbücher, Markus Philipp Fischer,
Frank Leymann, and Michael Zimmermann

Institute of Architecture of Application Systems, University of Stuttgart,
70569 Stuttgart, Germany

Email: {kepes, breitenbuecher, fischer, leymann, zimmermann}@iaas.uni-stuttgart.de

Abstract—A major challenge in enterprises today is the steadily
increasing use of information technology and the required higher
effort in terms of development, deployment, and operation of
applications. Especially when different application deployment
technologies are used, it becomes difficult to comply to non-
functional security requirements. Business applications often
have to fulfill a number of non-functional security requirements
resulting in a complex issue if the technical expertise is insuf-
ficient. Therefore, the initial provisioning of applications can
become challenging when non-functional requirements have to be
fulfilled that arise from different domains and a heterogeneous IT
landscape. In this paper, we present an approach and extend an
existing deployment technology to consider the issue of security
requirements during the provisioning of applications. The ap-
proach enables the specification of non-functional requirements
for the automated deployment of applications in the cloud without
the need for specific technical insight. We introduce a Policy-
Aware Plan Generator for Policy-Aware Provisioning Plans that
enables the implementation of reusable policy-aware deployment
logic within a plug-in system that is not specific to a single appli-
cation. The approach is based on the Topology and Orchestration
Specification for Cloud Applications (TOSCA), a standard that
allows the description of composite Cloud applications and their
deployment. We prove the technical feasibility of our approach
by extending our prototype of our previous work.

Keywords–Cloud Computing; Application Provisioning; Secu-
rity; Policies; Automation.

I. INTRODUCTION

A major challenge in enterprises today is the steadily in-
creasing use of information technology (IT) due to the required
higher effort in terms of development, deployment, and oper-
ation. Each new technology introduced to an enterprise’s IT
landscape also increases the complexity while the largest frac-
tion of failures is beeing caused by manual operator errors [1].
These concerns have been addressed through outsourcing of
IT to external providers, as well as through management
automation of IT. Both of these aspects are enabled by Cloud
Computing [2]. Due to a significant reduction of required
technical knowledge, cloud services provide easy access to
properties, such as elasticity and scalability [3].

Each IT solution has its functional and non-functional
requirements that need to be addressed when using cloud
services. Unfortunately, functional possibilities often outweigh
the non-functional security issues that also have a need to be
dealt with. Most cloud services are easy to use, but it is often
difficult for users to extend and configure the cloud services to
their particular needs, especially when non-functional aspects,

such as security, have to be considered. Moreover, modern
applications are often made up of complex and heterogeneous
components that are hosted on cloud services or interact
with them. Especially when different deployment technologies
are used, it becomes difficult to comply to security require-
ments [4][5]. Such applications often have to fulfill a number
of non-functional security requirements [6][7], which results
in a complex provisioning challenge if the technical expertise
is insufficient. Therefore, the initial automated provisioning
of applications can become challenging when non-functional
requirements have to be fulfilled that arise from many different
domains and a heterogeneous IT landscape [8].

In this paper, we present a concept and extend an exist-
ing deployment technology to consider the issue of security
requirements during the automated provisioning of applica-
tions. We present a Policy-Aware Plan Generator that enables
generating executable Policy-Aware Provisioning Plans that
respect policies that have to be fulfilled during the provisioning
of an application. Our approach enables the implementation
of reusable policy-aware deployment logic based on a plug-
in system that is not specific to a single application. The
approach is based on the Topology and Orchestration Spec-
ification for Cloud Applications (TOSCA), a standard allowing
the description of composite Cloud applications and their
orchestration [9]. The extension to the existing technology [10]
enables the fully automated deployment of Cloud applications
while complying with security requirements defined as Pro-
visioning Policies. Our approach enables the specification of
non-functional requirements for the deployment of applications
in the cloud without the need for specific technical insight other
approaches require. Additionally, security experts of different
domains are enabled to work collaboratively on a single model
for applications. We validate our approach by a prototypical
implementation based on the OpenTOSCA Ecosystem [11][12].

The remainder of this paper is structured as follows.
In Section II, we explain the fundamental concepts of the
TOSCA standard, which is used within our approach as a cloud
application modeling language. Afterwards, we motivate our
approach with a motivating scenario and introduce several ex-
emplary Provisioning Policies in Section III. In Section IV, we
describe our approach for generating executable Policy-Aware
Provisioning Plans based on TOSCA. Section V presents a
validation of the approach in the form of a prototypical imple-
mentation based on the OpenTOSCA Ecosystem. Section VI
gives an overview of related work. Finally, we conclude this
paper and give an outlook on future work in Section VII.

142Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

II. TOPOLOGY AND ORCHESTRATION SPECIFICATION
FOR CLOUD APPLICATIONS (TOSCA)

In this section, we introduce the TOSCA standard on
which our approach and prototype are based. TOSCA enables
to describe the automated deployment and management of
applications in an interoperable and portable manner. In order
to give a compact introduction to the OASIS standard, we
only describe the fundamental concepts of TOSCA required to
understand our presented approach. More details can be found
in the TOSCA Specifications [9][13], the TOSCA Primer [14]
and a more detailed overview is given by Binz et al. [15].

The structure of a TOSCA-modeled application is defined
by a Topology Template, which is a multi-graph consisting
of nodes and directed edges. The nodes within the Topology
Template represent so called Node Templates. A Node Tem-
plate represents software or infrastructure components of the
modeled application, such as a hypervisor, a virtual machine,
or an Apache HTTP Server. The edges connecting the nodes
represent so called Relationship Templates, which specify the
relations between Node Templates. Thus, the Relationship
Templates are specifying the structure of a Topology Template.
Examples for such relations are “hostedOn”, “dependsOn”,
or “connectsTo”. The semantics of the Node Templates and
Relationship Templates are specified by Node Types and Rela-
tionship Types. These types are reusable classes that allow to
define Properties, as well as Management Operations of a type
of component or relationship. An “Apache HTTP Server” Node
Type, for example, may specify Properties for the port number
to be accessible and additionally define required credentials,
such as username and password. The defined Management
Operations of a Node Type are bundled in interfaces and enable
the management of the component. For example, the “Apache
HTTP Server” Node Type may define an operation “install”
for installing the component itself and a “deployApplication”
operation to deploy an application on the web server. A cloud
provider or hypervisor Node Type typically defines Manage-
ment Operations, such as “createVM” and “terminateVM” for
creating and terminating virtual machines.

These Management Operations are implemented by so
called Implementation Artifacts (IAs). An Implementation Ar-
tifact itself can be implemented using various technologies.
For instance, an Implementation Artifact can be a WAR-file
providing a WSDL-based SOAP Web Service, a configuration
management artifact executed by a tool, such as Ansible [16]
or Chef [17], or just a simple shell script. Depending on
the Implementation Artifact, they are processed in different
ways: (i) IAs, such as shell scripts, are transfered to the
application’s target environment and executed there. (ii) IAs,
such as WAR-files implementing a Web Service, are deployed
and executed in the so called TOSCA Runtime Environment
(See last paragraph). This kind of Implementation Artifact
typically performs operations by using remote access to the
components. (iii) Implementation Artifacts that are already
running are just referred within the model, such as a hypervisor
or cloud provider service and then are called directly with the
help of adapters implemented within.

Besides Implementation Artifacts, TOSCA defines so
called Deployment Artifacts (DAs). Deployment Artifacts im-
plement the business functionality of a Node Template. For
example, a Deployment Artifact can be a WAR-file providing a
Java application. Another example would be a PHP application

where a ZIP file containing all the PHP files, images, and
other required files implementing the application would be
represented by the Deployment Artifact.

The automatic creation and termination of instances of
a modeled Topology Template, as well as the automated
management of the application is enabled by so-called Man-
agement Plans. A Management Plan specifies all tasks and
their order for fulfilling a specific management functionality,
such as provisioning a new instance of the application or to
scale out a component of the application. A Management Plan
that provisions a new instance of the application is called a
Provisioning Plan in this paper. Management Plans invoke
the Management Operations which are specified by the Node
Types and implemented by the corresponding Implementation
Artifacts of the topology. TOSCA does not specify how Man-
agement Plans should be implemented. However, the use of
established workflow languages, such as the Business Process
Execution Language (BPEL) [18] or the Business Process
Model and Notation (BPMN) [19], is encouraged.

TOSCA also allows the specification of policies for ex-
pressing non-functional requirements. For example, a policy
can define the security requirements of an application, e.g., that
a component of the application must be protected from public
access. Again, for reusability purposes, TOSCA allows the
definition of Policy Types. A Policy Type, for example, defines
the properties that have to be specified for a policy. However,
the actual values of these properties are specified within Policy
Templates attached to Node Templates for which the policy has
to be fulfilled. A Policy Type can be also associated with a
Node Type in order to describe the policies this component
provides. Since TOSCA does not make any statement about
policy languages, any language can be used to define them. We
call policies that have to be fulfilled during the provisioning
of the application Provisioning Policies.

In order to package Topology Templates, type definitions,
Management Plans, Implementation Artifacts and Deployment
Artifacts, as well as all required files for automating the
provisioning and management of applications, the TOSCA
Specification defines the so called Cloud Service Archive
(CSAR). A CSAR is a self-contained and portable packaging
format for exchanging TOSCA-based applications.

Through the standardized meta-model and packaging for-
mat, CSARs can be processed and executed by any standard-
compliant TOSCA Runtime Environment, thus, ensuring porta-
bility, as well as interoperability. However, since there are two
approaches for provisioning an instance of a TOSCA-modeled
application, there a two kinds of TOSCA Runtime Environ-
ments: (i) TOSCA Runtime Environments that support declar-
ative provisioning and (ii) TOSCA Runtime Environments that
allow imperative provisioning [10]. In declarative processing,
the TOSCA Runtime Environment interprets the Topology
Template to infer which Management Operations need to be
executed in which order to provision the application, without
the need for a Provisioning Plan. In imperative provisioning
on the other side, the TOSCA Runtime Environment requires
a Provisioning Plan provided by the CSAR to instantiate the
application by invoking this plan. In this paper, we present a
hybrid policy-aware deployment approach that interprets the
declarative Topology Template and generates an imperative
executable Policy-Aware Provisioning Plan.

143Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

DBUser:@Input
DBPassword:@Input

RootPassword:@InputPort:80

(hostedOn)

(PHPApplication)

(ApachePHPServer)

(Ubuntu14.04)

(OpenStack)

(hostedOn)

(hostedOn)

(MySQLDB)

(MySQLDBMS)

(Ubuntu14.04)

(connectsTo)

(hostedOn) (hostedOn)

Public	Access	Policy

Secure	Password	PolicyNo Public	Access	Policy

Only Modeled Ports	Policy

(hostedOn)

Figure 1. Our Motivating Scenario, where the backend needs to high
security (right side), whereas the frontend needs to be publicly accessible.

III. MOTIVATING SCENARIO

In this section, we describe a TOSCA-based motivating
scenario that we will use throughout the paper to describe
our approach. Our scenario is depicted in Figure 1 as a
TOSCA Topology Template specifying a typical application
to serve a website that is connected to a database system.
The shown topology consists of a PHP web application with
a MySQL database, additionally a set of Provisioning Policies
are specified in the form of Policy Templates that must be en-
forced during provisioning. Components within the Topology
Template are defined as TOSCA Node Templates (e.g., Open-
Stack, Ubuntu, Apache Web Server, PHP application, MySQL
DBMS, and MySQL Database). These are connected through
TOSCA Relationship Templates of the types “hostedOn” and
“connectsTo” to either define that a component will be hosted
on another component (e.g., MySQLDBMS is hosted on an
Ubuntu 14.04 virtual machine) or to specify that a component
is connected to another component (e.g., PHP application
connects to its MySQL database by using the given password
from the input of the DBPassword property). To instantiate an
Ubuntu 14.04 virtual machine, the OpenStack Node Template
exposes Management Operations, such as createVM which
takes as parameters the specification of the virtual machine,
e.g., RAM, CPUs, etc. Customizing the modeled application
is restricted to setting credentials for the MySQL Database
and its MySQL Database Management System at provisioning
time. This is achieved by setting the value of the MySQL DB
and MySQL DBMS Node Templates’ Properties “DBUser”,
“DBPassword” and “RootPassword” to “@input”. To model
the desired non-functional security requirements, Provisioning
Policies are attached to Node Templates of the Topology
Template. In the following subsections, we describe the Pro-
visioning Policies of our scenario in detail.

A. Public Access Policy
With the Public Access Policy a modeler specifies that the

deployment system must ensure that the associated component
is available and accessible from outside the cloud environment,
hence open for the public internet. In our scenario, the website
owner wants to make sure that the Ubuntu 14.04 virtual
machine on the OpenStack cloud is accessible by the public.
Therefore, the Public Access Policy is attached to the Ubuntu
14.04 virtual machine Node Template of the front-end Ubuntu
virtual machine (Left side in Figure 1).

B. No Public Access Policy
While the Public Access Policy enforces accessibility from

outside the cloud environment, the No Public Access Policy
has the opposite goal. Its main purpose is to restrict access to
the associated component by allowing to serve requests solely
from within the cloud. For our scenario, the owner wants to
be sure that his virtual machine that hosts sensitive data within
the database is not directly accessible from the internet. Thus,
he attaches the No Public Access Policy to the Ubuntu 14.04
virtual machine of the MySQL database management system
to enforce restricted access (Right side in Figure 1).

C. Only Modeled Ports Policy
The intent of the Only Modeled Ports Policy is to restrict

access to the associated component to the modeled ports.
This allows the application owner to further secure his front-
end, e.g., the Ubuntu 14.04 virtual machine hosting the PHP
Application shall allow access to only explicitly modeled ports.
To do so, the Only Modeled Ports Policy is attached on the
Ubuntu 14.04 Node Template restricting access only to port
80, as the only installed component specifying a port within
the topology is the Apache Server (Left side in Figure 1) that
hosts the front-end PHP application.

D. Secure Password Policy
As the final policy within our scenario, the owner uses

the Secure Password Policy that enforces the use of strong
passwords for components. This increases the barrier for
attackers of the application by preventing the usage of weak
passwords at provisioning and runtime, e.g., when the PHP
application component is connected to MySQL database. Thus,
the application owner attaches Secure Password Policies on
both, the MySQLDB and MySQLDBMS Node Templates
(See right side at the top in Figure 1) running on the back-
end Ubuntu virtual machine of the OpenStack cloud. As the
passwords in the scenario are set at runtime (indicated by the
Property value “@input”) the system must ensure at runtime
that the given data is compliant with the set policy.

With the attached Provisioning Policies Public Access and
Only Modeled Ports the owner of our scenario is able to
ensure that the front-end is available to the public and restricts
access to only intended ports of the application running on
the modeled Ubuntu virtual machine. To secure his backend,
he is able to use the No Public Access and Secure Password
Policy to restrict access from outside and to enforce the usage
of strong passwords for the database running on the back-end
Ubuntu virtual machine. In the following section, we will show
how our deployment approach provisions this application while
strictly enforcing the specified Provisioning Policies.

144Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

DBUser:@Input
DBPassword:@Input

RootPassword:@Input Port:80

(hostedOn)

(PHPApplication)

(ApachePHPServer)

(Ubuntu14.04)

(OpenStack)

(hostedOn)

(hostedOn)

(MySQLDB)

(MySQLDBMS)

(Ubuntu14.04)

(connectsTo)

(hostedOn) (hostedOn)

(hostedOn)

Start
Ubuntu

Start
Ubuntu

Install
DBMS

Install
Apache

Install
PHPApp

Install
DB

Connect
App &

DB

Initialize
Host

Initialize
Host

Initialize
Host

Initialize
Host

Start Ubuntu Start Ubuntu

Install DBMS Install Apache

Install
PHPApp

Install DB

Connect
App & DB

Initialize Host Initialize Host

Initialize Host Initialize Host

PAPLPs PLPs PLPs PLPs PAPLPs PAPLPs

TOSCA Topology Template Provisioning Order Graph Provisioning Plan Skeleton

Start Ubuntu Start Ubuntu

Install DBMS Install Apache

Install PHPApp Install DB

Connect App & DB

Initialize Host Initialize Host

Initialize Host Initialize Host

Policy-Aware
Provisioning Plan

Policy-Aware Provisioning
Plan Generator

+ +

+ +

+ +

+ +

+ +

+

Plugins

Figure 2. Overview of our approach for transforming a TOSCA Topology Template into a Policy-Aware Provisioning Plan.

IV. POLICY-AWARE PROVISIONING PLAN GENERATION

In this section, we present our approach of provisioning
applications while enforcing specified non-functional security
requirements that are specified as policies attached to the
deployment model. This section is structured as follows: In the
first subsection, we detail out a Role Model for our approach.
In the second subsection, we give an overview of our approach
that entails transforming a TOSCA Topology Template into
an executable Provisioning Plan that is able to provision the
application while enforcing all specified Provisioning Policies.
Afterwards, we describe all transformation phases in detail.

A. Role Model
Creating a TOSCA CSAR is taken care of by a Cloud

Service Creator [9] by developing the Topology Template,
the associated types, artifacts, and the policies to enforce.
TOSCA enables reusing type definitions, so common Node-
, Relationship- and Artifact Types can be reused without the
need to create them from scratch. The final CSAR contains
only the TOSCA Topology Template without a Provision-
ing Plan. This CSAR is then given to our Policy-Aware
Provisioning Plan Generator that generates a Policy-Aware
Provisioning Plan that also enforces the specified policies of
the Topology Template during provisioning. Afterwards, the
creator can inspect the generated Policy-Aware Provisioning
Plan to customize the provisioning. Please note: the generated
plan correctly enforces the policies, but additional tasks that
cannot be modeled declaratively may be added to customize
the execution if required. For example, a task for sending
an e-Mail to the administrator can be added. However, the
adaptation of the generated plan may also be forbidden in

order to ensure that no policy-related tasks get influenced
negatively. As the final step, the CSAR with the generated plan
is sent to a TOSCA-enabled Cloud Provider hosting a TOSCA
Runtime Environment, which is able to process and execute
the generated Provisioning Plan contained in the CSAR.

B. Overview of the Plan Generation Phases
In this section, we describe an overview of how we generate

a Policy-Aware Provisioning Plan for TOSCA Topology Tem-
plates. In the first phase, (i) a Provisioning Order Graph (POG)
is generated. The POG only specifies the provisioning order of
the Node and Relationship Templates for the given Topology
Template. This graph is then (ii) translated into a Provisioning
Plan Skeleton (PPS) in a particular plan language, for example,
BPEL or BPMN. The PPS contains placeholder activities
for the provisioning of all Node and Relationship Templates.
These placeholder activities contain no provisioning logic and
are following the provisioning order specified by the POG.
Thus, each node and relation in the POG is translated into
such a placeholder activity, the edges of the POG are translated
into control flow constructs of the respective plan language.
These two phases are the same as in our previous work [10],
for which the goal was to generate Provisioning Plans. To
enable policy-aware provisioning, we extend the last phase
of our previous work in this paper as follows: In the last
phase, the PPS is (iii) completed to an executable Policy-
Aware Provisioning Plan where the placeholder activities of
the skeleton are replaced by concrete Management Operation
calls, which provisions the Node- and Relationship Templates
while ensuring that all attached Policy Templates are fulfilled
during execution. Figure 2 depicts this approach and in the
following subsections, we will describe each phase in detail.

145Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

C. Provisioning Order Graph Generation Phase

In the first phase, we generate a Provisioning Order Graph
(POG) that describes only the order in which the Node- and
Relationship Templates have to be provisioned (see second
graph from the left in Figure 2). In our scenario, we need to
generate a POG that represents the deployment order of the
front-end (i.e., Ubuntu 14.04 virtual machine, Apache PHP
Server, PHP Application), the back-end (i.e., another Ubuntu
14.04 virtual machine, MySQL Database Management System,
MySQL Database), and the connection of the two stacks (i.e.,
initializing the “connectsTo” Relationship Template). The POG
consists of nodes for each Node and Relationship Template that
represents the step of provisioning the respective component
or relation. Edges between the nodes of the POG specify the
order of the provisioning steps, i.e., the provisioning order of
the Node Templates and Relationship Templates.

The calculation of the ordering is based on the semantics
of the Relationship Templates’ types: while a “hostedOn”
Relationship Type expects that the target Node Template is
provisioned before the source, the “connectsTo” Relationship
Type forces the order of provisioning that both the source and
target Node Templates must be provisioned before the con-
nection can be initialized. The Relationship Types“hostedOn”
and “connectsTo” are abstract types, i.e., concrete types de-
rived from these abstract types inherit the semantic behavior.
For our scenario, the POG would contain a series of nodes
that represent the provisioning of the front- and back-end
in parallel. For each Node Template that is the source of a
“hostedOn” Relationship Template the abstract POG contains
a node for the Node- and Relationship Template each. For
example, in Figure 2 there is a node in the POG for each Node-
and Relationship Template that must be started (e.g., virtual
machines) or installed (e.g., Apache and MySQL DBSMS).
After the provisioning of the front- and back-end stacks,
the last Relationship Template of the type “connectsTo” is
provisioned: To configure the PHP Application with the needed
credentials for the database stack, an operation “connectTo”
is invoked on PHP Application Node Template with the
database credentials properties as parameters. More details on
generating a Provisioning Order Graph can be read in [10].
Please note that the calculation of the provisioning order is
independent of the specified Provisioning Policies.

D. Provisioning Plan Skeleton Transformation Phase

The second phase transforms the POG into a plan language-
dependent Provisioning Plan Skeleton (PPS) that follows
the provisioning order of the Node and Relationship Tem-
plates specified by the POG (third graph in Figure 2 from
the left). These PPSs are implemented in a certain process
modelling language, such as BPEL [18], BPMN [19], or
BPMN4TOSCA [20][21]; but only entail empty placeholders
for deployment activities and the general provisioning order.
Therefore, each node in the POG is transformed into one place-
holder while the provisioning order of the POG is translated
into language-specific control flow constructs between these
placeholders. Thus, the skeleton is not executable yet as the
placeholders contain no provisioning logic. The Policy-Aware
Plan Generator has different plug-ins for generating skeletons
in different plan languages. For example, in BPEL these
placeholders can be realized as empty <scope> activities.

procedure: CompletePPS(Topology Template t, Provisioning
Plan Skeleton s)

1: for (∀ Node- and Relationship Templates temp ∈ t) do
2: if (temp has attached Policy Set p ∧ p 6= ∅) then
3: for (∀ Policy-Aware PLPs papl) do
4: if (papl can handle temp enforcing p) then
5: Replace Placeholder in s of temp with Exe-

cutable Policy-Aware Provisioning Logic from
papl

6: else if (No Policy-Aware PLP papl can handle
temp with p) then

7: Abort completion of s
8: end if
9: end for

10: else
11: for (∀ PLPs plp) do
12: if (plp can handle temp) then
13: Replace Placeholder in s of temp with Exe-

cutable Provisioning Logic from plp
14: else if (No PLP plp can handle temp) then
15: Abort completion of s
16: end if
17: end for
18: end if
19: end for
Figure 3. Pseudocode for completing a Provisioning Plan Skeleton into an

executable Policy-Aware Provisioning Plan.

E. Policy-Aware Provisioning Plan Completion Phase
In the third phase, the generated Provisioning Plan Skeleton

is completed by adding the technical deployment activities
into the placeholders. The Plan Generator provides a plugin
system for Provisioning Logic Providers (PLPs), which are
responsible for filling the placeholders by executable technical
provisioning logic. Each PLP is capable of providing the
technical activities for the provisioning of one Node Type or
Relationship Type to complete the skeleton into an executable
form (See the graph on the right in Figure 2). We extend this
original completion phase [10] by Policy-Aware Provisioning
Logic Providers (PAPLPs), which are capable of providing
provisioning logic similarly to PLPs but additionally ensure
that all policies attached to the Node or Relationship Template
they support are enforced by the injected technical provisioning
logic. An overview of this extended phase is outlined in
Algorithm 3, which we now describe in detail.

As the input of the policy-aware completion phase the
Topology Template t and its Provisioning Plan Skeleton (PPS)
s is given (see Input before line 1 in Algorithm 3). The
completion phase will begin to cycle through all Node- and
Relationship Templates temp (line 1) of the topology t, and
checks whether temp has a non-empty set of Provisioning
Policies p attached (line 2). If this is the case, the algorithm
starts to cycle through all available PAPLPs papl (line 3) and
checks whether there is one papl that can provide executable
activities to provision temp while enforcing all attached Pro-
visioning Policies p (line 4). A PAPLP is allowed to inspect
the whole Topology Template t to decide whether it can
provide provisioning logic for the given Node- or Relationship
Template, respectively, while fulfilling the attached policies.
For example, by traversing the topology t from a Node

146Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

Template temp to find all port properties specified, which have
to be set for enforcing the Only Modeled Ports Policy. If a
papl is found that is able to add technical activities for temp
ensuring that the attached policies p are enforced, the generator
requests this papl to inject the necessary activities to provision
and enforce the policies into the corresponding placeholder
in the PPS s (line 5). The injected activities typically invoke
the Management Operations provided by the respective Node
or Relationship Template and range from uploading files to
executing scripts, etc. When there is no suitable papl that can
provide provisioning logic for a certain Node or Relationship
Templates temp while fulfilling all attached policies, (line 6),
the system will abort the completion as it is not possible to
provisioning the given topology t while enforcing all specified
policies p (line 7).

While cycling through the Node and Relationship Tem-
plates and the algorithm detects that a temp has no attached
Policy Set p, it will start to cycle through the set of normal (non
policy-aware) PLPs plp (line 11). Within the cycle it checks
whether temp can be provisioned by one of the PLPs plp (line
12), and if one plp is found it will be requested to replace the
respective placeholder of temp in s (line 13). When no plug-in
plp is found (line 14), the algorithm aborts (line 15).

This algorithm forces the completion step to produce either
Policy-Aware Provisioning Plans where policy enforcement is
guaranteed or the generation will be aborted. Please note:
We strictly separate the handling of Node and Relationship
Templates that have attached policies from the ones that
specify no policies. Thus, the algorithm does not try to
find a PAPLP for a template that specifies no policies. The
reason for this is that the injected provisioning logic should
reflect exactly the deployment model and should not be more
restrictive as required in terms of adding unrequested security
stuff. However, the algorithm could be easily modified in
line 11 to also check if there is a PAPLP papl capable of
providing (possibly unnecessarily secured) provisioning logic
for a certain Node or Relationship Templates that does not
specify any Provisioning Policy to be enforced.

After the step of completing the Provisioning Plan Skele-
ton into an executable Policy-Aware Provisioning Plan, all
placeholder activities resembling the deployment graph of
the original POG are replaced by language-dependent sets of
executable provisioning activities whose execution provisions
the respective Node- and Relationship Template while enforc-
ing the attached Policy Templates. Finally, the Cloud Service
Creator is able to review the generated plans and if needed, and
may alter the technical activities to his needs. However, after
modification of the generated activities, it cannot be guaranteed
that the altered Policy-Aware Provisioning Plan correctly en-
forces the specified Provisioning Policies. Therefore, a manual
adaptation is possible but should be considered carefully.

The presented algorithm is completely independent of
any policy language used to specify Provisioning Policies:
A PAPLP by itself decides if (i) it understands all attached
policies of a Node or Relationship Template, respectively, and
(ii) if it is able to provide appropriate provisioning logic. Thus,
the presented algorithm is extensible to any policy language, by
developing PAPLPs that are able to process elements of such
a language and generate appropriate activities that enforce the
specified policy.

V. VALIDATION

In this section, we describe a prototypical implementation
of our approach to validate its practical feasibility. In the
following two subsections, we describe how the Cloud Service
Creator (See Subsection IV-A) can model the motivating
scenario within the OpenTOSCA Ecosystem [11] using the
TOSCA modeling tool Winery [12] and how the create can
generate a Policy-Aware Provisioning Plan that provision the
application while fulfilling all Provisioning Policies. Moreover,
we explain how the OpenTOSCA Container [11] is able to
execute these plans automatically to provision the application.

Modeling TOSCA Topology Templates and the generation
of the Policy-Aware Management Plans is done solely within
the Winery modeling tool. Winery is a Java-based web ap-
plication that can be deployed on servers, such as Apache
Tomcat (http://tomcat.apache.org). Users can define all their
types, such as Node, Relationship, Artifact, and Policy Types
inside the Entity Modeler and use them inside the Topology
Modeler to graphically model the wanted Topology Template
for their Service Template. By creating Node Templates from
Node Types and connecting them by Relationship Templates
of a certain Relationship Type, the user is able to specify a
topology of the application. Afterwards, the modeler is able
to configure the Topology Template by setting appropriate
Properties on the Node- and Relationship Templates. To finally
attach the required Provisioning Policies, Winery supports
specifying Policy Templates from defined Policy Types. After
modeling, the user can request the creation of a Policy-Aware
Provisioning Plan for the Topology Template. Winery will then
invoke the Policy-Aware Plan Generator to generate a BPEL
Provisioning Plan, which is then packaged into the CSAR.

For the generation of Policy-Aware Provisioning Plans, we
implemented our approach by extending the Plan Generator
prototype that already is able to generate BPEL Provision-
ing Plans executable within the OpenTOSCA Ecosystems’
TOSCA Runtime Environment OpenTOSCA (https://github.
com/OpenTOSCA/container). The original implementation it-
self is written in Java and utilizes the OSGI-Framework as
a plug-in system that enables adding additional provisioning
logic as Provisioning Logic Providers (PLPs). For implement-
ing our approach, we extended the plug-in system to allow the
usage of Policy-Aware Provisioning Logic Providers (PAPLPs)
and specified an according plugin interface. After creating the
BPEL Provisioning Plan Skeleton, the additional policy plug-in
layer is invoked to add its logic by processing attached Policy
Templates while cycling through the Node- and Relationship
Templates with the set of available PAPLPs as described in
Section 2. Each of the PAPLPs is able to verify whether it can
create activities that can enforce the given Policy Templates
while provisioning the Node- or Relationship Templates. The
implementation of the PAPLP plug-ins resulted in extended
versions of the original PLP plug-ins [10].

The implementation for enforcing the Secure Password
Policy resulted in a PAPLP plug-in for the MySQL Database
and MySQL Database Management System Node Types. Each
checks either the input of the BPEL plan at runtime or the
specified passwords in the Node Template Properties, and
stops execution of the plan when the given password data
was not strong enough based on commonly accepted criteria.
To enforce the No Public Access, Public Access, and Only
Modeled Ports Provisioning Policies, we extended the PLP

147Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

plug-in that already was able to provision an Ubuntu 14.04
virtual machine on an OpenStack cloud in two ways: The
(i) first extension was made for the (No) Public Access
Policy, which was implemented in a PAPLP plug-in that is
additionally able to add activities to the BPEL Provisioning
Plan Skeleton that configures the security group of a virtual
machine to be either publicly available or not. The extension
for the Only Modeled Ports Policy resulted in a (ii) second
extension of the plug-in that enables it to additionally add
activities that set a Unix Cron job to regularly re-set the ports
modeled inside the application. The plug-in determines based
on the hostedOn relations of the Topology Template which
component is installed on the Ubuntu 14.04 Node Template
attached with an attached Only Modeler Ports Policy Template,
and while doing so, fetches the set ports or reads them at
runtime and configures the activities in the BPEL Provisioning
Plan Skeleton to set the Cron job on the Ubuntu 14.04 virtual
machine after provisioning.

In summary, we implemented our scenario within the
OpenTOSCA Ecosystem which already was extended by us
to generate BPEL Provisioning Plans to be executed in the
TOSCA Runtime Environment OpenTOSCA Container. In this
paper, we further extended the prototype of the Plan Generator
component to enable policy-aware provisioning by allowing
to register Policy-Aware Provisioning Plugins that are able to
generate provisioning activities for Node Templates of specific
Node Types while enforcing the specified Policy Templates.

VI. RELATED WORK

In this section, we present related work, which range
from Management and Deployment Frameworks to Workflow
and configuration management technologies that focus on
enforcing policies at provisioning time.

Walraven et al. [22] present PaaSHopper, a Policy-Driven
middleware for multi-PaaS environments. The main com-
ponents of the approach enabling policy-awareness are the
Dispatcher and the Policy Engine. While the Policy Engine
retrieves data about the PaaS execution environment to monitor
whether or not a policy is enforced, the Dispatcher uses
the Policy Engine to decide based on the current context
of the policies to which component a request is dispatched
and, additionally, handles the deployment of components. To
adapt the applications on changing policies at runtime, the
PaaSHopper middleware is able to change deployment descrip-
tors of the application components. The main difference to
our approach is the ability to model policy-aware applications
not only restricted to PaaS solutions and the ability to audit
the generated plans whether the polices are enforced correctly
at provisioning time as we explicity generate an executable
Policy-Aware Provisioning Plan model.

The contributions of Ouyang et al. [23] integrate policies
into workflows by using a Policy Server and a Policy Repos-
itory. The Policy Server acts as a service bus between the
components and the workflow at runtime, similar to [22], but
with the exception that the evaluation of actions to be taken is
done in so-called Decision Point Activities of the workflow at
runtime by interacting with the Policy Server. The difference to
our approach is the use of a Policy Server, while our approach
is based on provisioning logic injected by specific plugins to
automatically generate a Policy-Aware Provisioning Plan.

Blehm et al. [24] present an approach to define policies
on TOSCA Topology Templates similar to ours. The main
difference between the two approaches is within the initial
configuration and enforcement of the policies. While both
phases of initial configuration and enforcement in the approach
of Blehm et al. rely on special services packaged with the
Policy Type definitions, our approach utilizes the Management
Operations of the Node Templates itself and the policy-aware
provisioning logic is injected by external plugins. An addi-
tional difference is that the approach of Blehm et al. requires
manually developing the Provisioning Plan, while our approach
supports automatically generating this plan.

In Keller et al. [25] the CHAMPS system to enable Change
Management of IT systems and resources is presented. Sim-
iliarly to our approach Keller et al. generate so-called Task
Graphs that specifies the abstract steps that have to be taken
to serve a so-called Request for Change for the used IT systems
and resources. These Task Graphs are then transformed into an
executable plan as within our approach. CHAMPS also enables
the specification of policies and SLAs, although the work gives
no detail on how these are processed by their system.

Mietzner et al. [26] present the standards-based enterprise
bus ProBus that is able to optimize resource and service
selection based on policies. Clients are able to send invocation
request with attached policies to ProBus, which then must be
enforced by the service providers. Similar to our approach
is the usage of processes to orchestrate provisioning services
while enforcing the set policies, however, these processes are
developed manually, a complex and error-prone task, and not
generated as within our approach.

Jamkhedkar et al. [27] present a Security on Demand
architecture which allows to provision and migrate virtual
machines (VMs) with different security requirement levels for
the servers they are running on. A user is able to request the
provisioning of a VM along with a security policy that is pro-
cessed by the so-called Policy Validation Module. The Policy
Validation Module is connected to a Trust Monitor that mon-
itors properties of the available servers the virtual machines
are running on. Based on the properties collected, the Trust
Monitor derives security capabilities, such as the isolation
mechanism of the environment, for the hosting servers. These
capabilities are matched by the Policy Validation Module to
select an appropriate server to provision, or in case of changing
server capabilities, migrate a VM. The main difference to
our approach is the enforcement point of policies. While
Jamkhedar et al. enforce security requirements on the level of
hypervisors, our approach is generic and can support various
types of components, e.g., also PaaS-based deployments.

Waizenegger et al. [28] present two approaches to imple-
ment security policy enforcement based on TOSCA. The two
approaches are the IA-Approach and P-Approach. Within the
IA-Approach the Implementation Artifacts implementing Node
Type Management Operations are extended to enable policy
enforcing capabilities by implementing the same operations
but with additional policy enforcing steps. The P-Approach
extends the Provisioning Plan of an application with policy
enforcing activities similar to our approach, but with the
difference that the plans determine the policies to enforce at
runtime. Additional differences to our approach are the missing
generation of plans and the need for extending Implementation
Artifacts for each policy type to support.

148Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach that enables users
to model and provision composite Cloud applications with
their set non-functional requirements specified as Provisioning
Policies. The approach extends our previous work in which
we showed how to provision applications by transforming an
application model into an executable Provisioning Plan. To
transform such an application model our approach (i) generates
a Provisioning Order Graph (POG) that specifies the order
of provisioning, afterwards, this is (ii) transformed into a
language-dependent Provisioning Plan Skeleton that has place-
holders with the same order to provisioning the application. As
the last step (iii), the placeholders are replaced with provision-
ing activities to generate an Executable Provisioning Plan. The
approach presented in this paper extends our previous work by
replacing placeholders of the Provisioning Plan Skeleton with
activities to provision applications while enforcing specified
non-functional requirements. This extension eases the mod-
eling of non-functional requirements, as the user only has to
specify the Provisioning Policies for his application without the
need of deep technical knowledge. We validated our approach
by a prototypical implementation within the OpenTOSCA
Ecosystem and by applying our approach to a scenario with
the focus on non-functional security requirements. In future
work, we plan to decouple the provisioning logic from the
policy enforcement logic and extend the set of policy types
applicable to scenarios, such as the Internet of Things.

ACKNOWLEDGMENT

This work is partially funded by the projects SePiA.Pro
(01MD16013F) and SmartOrchestra (01MD16001F) of the
BMWi program Smart Service World.

REFERENCES

[1] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do internet
services fail, and what can be done about it?” in Proceedings of the
4th Conference on USENIX Symposium on Internet Technologies and
Systems (USITS 2003). USENIX, Jun. 2003, pp. 1–16.

[2] F. Leymann, “Cloud Computing: The Next Revolution in IT,” in
Proceedings of the 52th Photogrammetric Week. Wichmann Verlag,
Sep. 2009, pp. 3–12.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz et al., “Above
the Clouds: A Berkeley View of Cloud Computing,” University of
California, Berkeley, Tech. Rep., 2009.

[4] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and M. Wieland,
“Policy-Aware Provisioning of Cloud Applications,” in Proceedings
of the Seventh International Conference on Emerging Security In-
formation, Systems and Technologies (SECURWARE 2013). Xpert
Publishing Services, Aug. 2013, pp. 86–95.

[5] U. Breitenbücher, T. Binz, C. Fehling, O. Kopp, F. Leymann et al.,
“Policy-Aware Provisioning and Management of Cloud Applications,”
International Journal On Advances in Security, vol. 7, no. 1&2, 2014.

[6] S. Subashini and V. Kavitha, “A survey on security issues in service
delivery models of cloud computing,” Journal of network and computer
applications, vol. 34, no. 1, 2011, pp. 1–11.

[7] C. A. Ardagna, R. Asal, E. Damiani, and Q. H. Vu, “From Security to
Assurance in the Cloud: A Survey,” ACM Computing Surveys (CSUR),
vol. 48, no. 1, 2015, p. 2.

[8] W. Han and C. Lei, “A survey on policy languages in network and
security management,” Computer Networks, vol. 56, no. 1, 2012, pp.
477–489.

[9] OASIS, Topology and Orchestration Specification for Cloud Appli-
cations (TOSCA) Version 1.0, Organization for the Advancement of
Structured Information Standards (OASIS), 2013.

[10] U. Breitenbücher, T. Binz, K. Képes, O. Kopp, F. Leymann et al.,
“Combining Declarative and Imperative Cloud Application Provisioning
based on TOSCA,” in International Conference on Cloud Engineering
(IC2E 2014). IEEE, Mar. 2014, pp. 87–96.

[11] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann et al.,
“OpenTOSCA - A Runtime for TOSCA-based Cloud Applications,” in
Proceedings of the 11th International Conference on Service-Oriented
Computing (ICSOC 2013). Springer, Dec. 2013, pp. 692–695.

[12] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann, “Winery – A
Modeling Tool for TOSCA-based Cloud Applications,” in Proceedings
of the 11th International Conference on Service-Oriented Computing
(ICSOC 2013). Springer, Dec. 2013, pp. 700–704.

[13] OASIS, TOSCA Simple Profile in YAML Version 1.0, Organization for
the Advancement of Structured Information Standards (OASIS), 2015.

[14] ——, Topology and Orchestration Specification for Cloud Applications
(TOSCA) Primer Version 1.0, Organization for the Advancement of
Structured Information Standards (OASIS), 2013.

[15] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, TOSCA: Portable
Automated Deployment and Management of Cloud Applications, ser.
Advanced Web Services. Springer, Jan. 2014, pp. 527–549.

[16] M. Mohaan and R. Raithatha, Learning Ansible. Packt Publishing,
Nov. 2014.

[17] M. Taylor and S. Vargo, Learning Chef: A Guide to Configuration
Management and Automation. O’Reilly, Nov. 2014.

[18] OASIS, Web Services Business Process Execution Language (WS-
BPEL) Version 2.0, Organization for the Advancement of Structured
Information Standards (OASIS), 2007.

[19] OMG, Business Process Model and Notation (BPMN) Version 2.0,
Object Management Group (OMG), 2011.

[20] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann, “BPMN4TOSCA:
A Domain-Specific Language to Model Management Plans for Com-
posite Applications,” in Proceedings of the 4th International Workshop
on the Business Process Model and Notation (BPMN 2012). Springer,
Sep. 2012, pp. 38–52.

[21] O. Kopp, T. Binz, U. Breitenbücher, F. Leymann, and T. Michelbach,
“A Domain-Specific Modeling Tool to Model Management Plans for
Composite Applications,” in Proceedings of the 7th Central European
Workshop on Services and their Composition, ZEUS 2015. CEUR
Workshop Proceedings, May 2015, pp. 51–54.

[22] S. Walraven, D. Van Landuyt, A. Rafique, B. Lagaisse, and W. Joosen,
“PaaSHopper: Policy-driven middleware for multi-PaaS environments,”
Journal of Internet Services and Applications, vol. 6, no. 1, 2015, p. 2.

[23] S. Ouyang, “Integrate Policy based Management and Process based
Management–A New Approach for Workflow Management System,” in
Computer Supported Cooperative Work in Design, 2006. CSCWD’06.
10th International Conference on, IEEE. IEEE, 2006, pp. 1–6.

[24] A. Blehm, V. Kalach, A. Kicherer, G. Murawski, T. Waizenegger
et al., “Policy-framework-eine methode zur umsetzung von sicherheits-
policies im cloud-computing.” in 44. Jahrestagung der Gesellschaft fr
Informatik. GI, 2014, pp. 277–288.

[25] A. Keller, J. L. Hellerstein, J. L. Wolf, K.-L. Wu, and V. Krishnan, “The
CHAMPS System: Change Management with Planning and Schedul-
ing,” in Proceedings of the 10th Network Operations and Management
Symposium (NOMS 2004). IEEE, Apr. 2004, pp. 395–408.

[26] R. Mietzner, T. Van Lessen, A. Wiese, M. Wieland, D. Karastoyanova
et al., “Virtualizing services and resources with probus: The ws-policy-
aware service and resource bus,” in Web Services, 2009. ICWS 2009.
IEEE International Conference on, IEEE. IEEE, 2009, pp. 617–624.

[27] P. Jamkhedkar, J. Szefer, D. Perez-Botero, T. Zhang, G. Triolo et al.,
“A framework for realizing security on demand in cloud computing,” in
Cloud Computing Technology and Science (CloudCom), 2013 IEEE 5th
International Conference on, vol. 1, IEEE. IEEE, 2013, pp. 371–378.

[28] T. Waizenegger et al., “Policy4TOSCA: A Policy-Aware Cloud Service
Provisioning Approach to Enable Secure Cloud Computing,” in On
the Move to Meaningful Internet Systems: OTM 2013 Conferences.
Springer, Sep. 2013, pp. 360–376.

149Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

