
A Method for Preventing Slow HTTP DoS attacks

Koichi Ozaki1), Astushi Kanai2)

Faculty of Science and Technology

Hosei University

Tokyo, Japan
1) koichi.ozaki.3t@stu.hosei.ac.jp, 2)yoikana@hosei.ac.jp

Shigeaki Tanimoto

Faculty of Social Systems Science

Chiba Institute of Technology

Chiba, Japan

shigeaki.tanimoto@it-chiba.ac.jp

Abstract—A Slow Hypertext-Transfer-Protocol (HTTP)

Denial-of-service (DoS) Attack looks like a genuine user and

can block access to genuine users. Over the past few years,

several studies have been performed on the defense against

Slow HTTP DoS Attacks. However, little attention has been

given to a Slow HTTP DoS Attack that resembles a normal

DoS Attack. In this paper, the effectiveness of setting the

longest session time and the longest packet interval with an

appropriate threshold was evaluated by changing each

threshold and comparing the results. As a result, we

demonstrated the effectiveness of the proposed method. To

prevent a Slow HTTP DoS attack completely, it is necessary to

not only take measures for typical Slow HTTP DoS attacks but

also set a threshold for anomaly detection in consideration of

Slow HTTP DoS attacks that resemble a normal DoS attack.

Keywords- Slow HTTP DoS Attack; session time; packet

interval

I. INTRODUCTION

DoS attacks are mainly classified as three types of attacks
[1]. The first type is an attack that sends mass requests or a
huge amount of data to a leased line and thereby fills up the
line’s bandwidth. The second type is an attack that exhausts
the system resources (processing capacity of central-
processing-units (CPUs), memory, etc.) of a Web server. The
third type is an attack that exploits vulnerabilities of routers
and servers. The aims of these attacks are to violate the
availability of services and to impose the accompanying
economic burden on the server owner. If a DoS attack is
considered from the viewpoint of the layers of the network
system, when the DoS attacks were initially made, the
network layer and the transport layer were often attacked
with a large amount of data traffic. However, as DoS attacks
diversified over the years, they started to attack the
application layer with a small amount of data traffic. Most
DoS Attacks targeting the application layer are difficult to
detect because many of them follow regular processes in the
network layer and the transport layer. A “Slow HTTP DoS
attack” is one such attack targeting the application layer
[2][3]. Unlike other DoS attacks, as shown in Figure 1, it
continues Transmission-Control-Protocol (TCP) sessions for
a long time with a small number of packets. A normal
communication and a Slow HTTP DoS attack are shown in
Figure 2.

The attack method is classified into three categories:
“Slow HTTP Headers Attack,” “Slow HTTP BODY

Attack,” and “Slow Read DoS Attack,” depending on how
the duration of the TCP session is extended. A Slow HTTP
Headers Attack (aka “Slowloris”) extends the duration of a
TCP session by sending a long HTTP request header little by
little with a wait time in between returning responses and
sending requests. A Slow HTTP BODY Attack (aka “Slow
HTTP BODY Attack” or “R.U.D.Y”) extends the duration of
a TCP session by sending a long HTTP request body little by
little with a waiting time in between returning responses and
sending requests. A Slow Read DoS Attack extends the
duration of a TCP session by specifying a very small TCP
window size and receiving an HTTP response from the Web
server little by little. This rest of paper is organized as

follows: Section Ⅱ introduces related works, Section Ⅲ

describes the proposed method for prevent Slow HTTP DoS

Attacks, Section Ⅳ describes the experimental environment

under which the method was evaluated, Section Ⅴ presents

results of an evaluation of the effectiveness of the method,

and Section Ⅵ presents the conclusions of this work.

Figure 1. Conceptual diagram of the range of a Slow HTTP DoS Attack.

Figure 2. Normal communication and Slow HTTP DoS Attack

71Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

II. RELATED WORKS

Generic DoS attacks with large amounts of data traffic
can be detected by anomaly detections and signature
detections. However, a Slow HTTP DoS Attack looks like a
genuine user, and it can attack the Web server (without
alerting the Web server) with a small amount of traffic.
Accordingly, it cannot be detected by anomaly detections; it
can only be detected by signature detections. Over the past
few years, how to defend against a Slow HTTP DoS Attack
has been studied [3]-[7]. However, many problems remain to
be solved. For example, a method of limiting the number of
simultaneous sessions from the same Internet-Protocol (IP)
address has been introduced [8]. However, when multiple
genuine users use a common Network-Address-Translation
(NAT) and simultaneously use a Web server with the same
global address, the Web server may recognize genuine users
as attackers and restrict their accesses. Also, if the attacker
imitates an IP address, uses multiple IP addresses, or uses a
Botnet, the defense method cannot defend the Web server as
shown in Figure 3 [9].

 Another method of defense is to limit parameters such as
longest session time, minimum reception rate, and longest
packet interval [10]. However, a genuine user
communication via a Secure-Socket-Layer (SSL) or slow
communication lines must not be misrecognized as an
attacker. Also, Slow HTTP DoS Attacks have received little
attention compared to that paid to normal DoS Attacks. Even
though it is configured to detect only typical Slow HTTP
DoS Attacks, the defense based on this method cannot
defend Web servers from a Slow HTTP DoS Attack that
resembles a normal DoS attack in order to sneak through the
detection mechanism.

A so-called high-performance “Web-application
firewall” (WAF) compares an assumed amount of data with
the actual amount of data while gradually decreasing
window sizes. It thereby distinguishes genuine users from
attackers [11]. However, a high-performance WAF is costly,
and in some cases, it cannot be introduced from the
viewpoint of the balance between asset value and risk of
service outage. High-performance protection with low cost
and easy set-up is thus desired.

Figure 3. Problems when limiting access by IP address

Figure 4. Position of Slow HTTP DoS Attacks in relation to generic DoS

Figure 5. Conceptual diagram of the range to be defended

III. PROPOSED APPROACH

It is relatively easy to detect typical Slow HTTP DoS
Attacks with long packet intervals and little conections.
However, attackers may sometimes make a Slow HTTP DoS
Attack like a normal DoS attack in order to sneak through a
detection-and-defense mechanism. Little attention has been
paid to such attacks. It is impossible to prevent such attacks
if, as shown in Figure 4, the threshold length of the longest
session time and the longest packet interval are not
appropriate or only one defense measure is applied. A
defense method proposed in this study limits session time,
packet interval and average reception rate with appropriate
values. As shown in Figure 5, it can thus prevent a wider
range of Slow HTTP DoS Attacks.

The Web service was unavailable when the number of
connections exceeds the-maximum number-of-connections-
that-could-access-the-Web-server (Maxclients). In this
proposed method, it is whether the packet is for an attack or
a usual usage in following three steps. In step 1, when the
average packet interval is longer than the threshold of packet
intervals, it is judged as an attack. Thereby, if the number of
connections connected within the packet interval threshold
time does not exceed Maxclients, the Web service becomes
available. However, even if the packet intervals are limited,
attacks with short packet intervals cannot be blocked. Such
attacks are prevented in step 2 and step 3. Step 2 prevents
false detection of a usual usage who takes much traffic and
long communication time as an attack. If the average
reception rate is larger than the threshold of reception rate, it
is judged as a usual usage. Otherwise, the process shifts to
step 3. In step 3, when the session time is longer than the
threshold of session time, it is judged to be an attack.

72Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

Thereby, if the number of connections connected within the
session time threshold time does not exceed Maxclients, the
Web service becomes available.

IV. EXPERIMENTAL ENVIRONMENT

An experimental environment in which a defending Web
server and an attacking client are directly connected by a
switch was set up as shown in Figure 6.

A. Environment of the defending Web server

The OS of the defending Web server used CentOS 6.5,
and Apache version 2.2.27 (with mod_reqtimeout as a
standard feature) [12][13]. The Apache configuration was set
in the /etc/httpd/conf/httpd.conf file, and the main

configuration is listed in TABLE Ⅰ. The maximum number

of connections that could access the Web server was 256.
The longest packet interval was limited by setting the value
of Timeout to 2 or 60 s. The mod_reqtimeout configuration
of the defending server was described in httpd.conf. The
longest session time was limited by setting the value of
mod_reqtimeout to 20 or 3 s. When the average reception
rate was 300 Mbps or more, the time limit was extended to
120 s.

B. Environment of the attacking client

The attacking client's OS used Ubuntu 14.04, and
slowhttptest 1.7 was used as an attack-testing tool [14][15].
The purpose of the attacking client is usually to occupy all
connections with a small amount of traffic so that the
defending Web server does not notice it is being attacked. As
such a typical Slow DoS HTTP Attack, the attacking client
attacked with 15 new connections per second and with a
packet interval of 10 s. Also, for attacks with short packet

Figure 6. Experimental environment

TABLE I. APACHE CONFIGURATION

Timeout 60 or 2

KeepAlive On

MaxKeepAliveRequests 5

KeepAliveTimeout 2

StartServers 8

MinspareSevers 5

MinspareSevers 20

ServerLimit 256

MaxClients 256

MaxRequestsPerChild 4000

TABLE II. COMMON CONFIGURATION OF SLOW HTTP

HEADERS ATTACK AND SLOW HTTP BODY ATTACK

Total number of connections 300 or 2000

Number of new connections per second 15 or 100

Should results be generated in CSV and HTML

format
Yes

Path and name of generated file for example：head-test1

Response RTT to check connection status (s) 1

Attacked URL http://centostestsrv.com

Test time (s) 20

Packet interval (s) 10 or 1

intervals, the attacking client made a Slow HTTP DoS
Attack with 15 new connections per second and short packet
intervals of 1 s. Moreover, for attacks with many new
connections per second, the attacking client made a Slow
HTTP DoS Attack with 100 new connections per second and
a packet interval of 10 s. Both Slow HTTP Headers Attacks
and Slow HTTP BODY Attacks were made, and the
experimental results were evaluated. Both attacks were set as

common configurations as shown in TABLE Ⅱ . The

experimental result was evaluated by the HTML generated
by the attacking client's slowhttptest.

V. EVALUATION

In this paper, implementation and evaluation are not as

Section Ⅲ, but based on the following test model in two

steps. In step 1, packet interval is longer than the threshold of
packet intervals, it is judged as an attack. And the
effectiveness of appropriately limiting the packet intervals
was evaluated by changing the threshold of the longest
packet interval and comparing the results. The inappropriate
threshold was set to 60 s (which has been used by default).
The appreciate threshold was set to two seconds in
consideration of genuine users who are communicating via
SSL or a slow communication line. In step 2, when the
session time is longer than the threshold of session time, it is
judged to be an attack. And the effectiveness of appropriately
limiting the session time was evaluated by changing the
threshold of the longest session time and comparing the
results. The inappropriate threshold was set to 20 s (which
has been conventionally used). The appropriate threshold
was set to 3 seconds in consideration of a genuine user using
communication via SSL or a slow communication line.

This paper focuses only on Slow HTTP Headers Attacks
and Slow HTTP Body Attacks, not Slow HTTP Read
Attacks. Effectiveness of the proposed attack-prevention
method was experimentally evaluated under four conditions,
namely, “Timeout,” “mod_reqtimeout” setting of the
defending server, “packet interval,” and “number of new
connections per second” of the attacking client, listed as

“cases A to D” in Table Ⅲ.

A. Typical Slow HTTP DoS Attack (case A)

Timeout of the defending Web server was set to 60 s as
the default setting, and the threshold of mod_reqtimeout was
set to 20 s. The attacking client made a typical Slow HTTP

73Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

DoS Attack with 15 new connections per seconds and a
packet interval of 10 s. The experimental results when the
Slow HTTP Headers Attack was made and those when the
Slow HTTP BODY Attack was made are shown in Figures 7
and 8, respectively.

As for the graphs in the figures, the horizontal axis shows
the elapsed time of the experiment, the blue line on the
vertical axis indicates the number of closed connections, the
red line indicates the number of waiting connections, the
yellow line indicates the number of connections being made,
and the green line indicates whether the Web server service
is available or not.

As shown in the figures, the Web service became
unavailable because the number of connections established
during the longest session time exceeded MaxClients. Even
the typical Slow HTTP DoS Attack could not be prevented
because the longest session time was limited inappropriately.

TABLE III. VALIDATION CONTENTS

case
Timeout

(s)

mod_reqtimeout

(s)

packet

interval (s)

number of

new
connections/s

A 60 20 10 15

B 60 3 1 15

C 60 3 10 100

D 2 3 10 100

Figure 7. Typical Slow HTTP Headers Attack on Web server with

incorrect mod_reqtimeout

Figure 8. Typical Slow HTTP BODY Attack on Web server with

incorrect mod_reqtimeout

B. Slow HTTP DoS Attack with short packet intervals

(case B)

Timeout of the defending Web server was set to 60 s (as
the default setting value), and the threshold of
mod_reqtimeout was set to 3 s. The attacking client made a
Slow HTTP DoS Attack with 15 new connections per second
and a short packet interval of 1 s. The experimental results
when the Slow HTTP Headers Attack was made and when
the Slow HTTP BODY Attack was made are shown in
Figures 9 and 10, respectively.

As shown in the figures, the Web service was available
because the number of connecting connections was stable at
70 to 80, and the connections were closed steadily. The Slow
HTTP DoS Attack with short packet intervals could be
prevented because the longest session time was limited
appropriately.

C. Slow HTTP DoS Attack with many new connections per

second (case C)

Timeout of the defending Web server was set to 60 s as
the default setting value, and the threshold of
mod_reqtimeout was set to 3 s. The attacking client made a
Slow HTTP DoS Attack with many (100) new connections
per second and a packet interval of 10 s. The results when
the Slow HTTP Headers Attack was made and when the
Slow HTTP BODY Attack was made are shown in Figures
11 and 12, respectively.

Figure 9. Slow HTTP Headers Attack with short packet intervals on Web

server with appropriate mod_reqtimeout

Figure 10. Slow HTTP BODY Attack with short packet interval on Web

server with appropriate mod_reqtimeout

74Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

As shown in the figures, the service became unavailable
because the number of new connections being made was
larger than the number of connections closed. Even though
the longest session time limit is appropriate, a Slow HTTP
DoS Attack with many new connections could not be
prevented.

D. Slow HTTP DoS attack with many new connections per

second (case D)

Timeout of the defending Web server was set to 2 s, and
the threshold of mod_reqtimeout was set to 3 s. The
attacking client made a Slow HTTP DoS Attack with many
(100) new connections per second, and a packet interval of
10 s. The results when a Slow HTTP Headers Attack was
made and when a Slow HTTP BODY Attack was made are
shown in Figures 13 and 14, respectively.

As shown in the figures, the Web service was available
because the number of connections being made was stable
(except for a short time) below MaxClients of 256. However,
when it exceeded MaxClients for only the short time, the
service was unavailable. This instability is considered to be
due to processing delay of Apache and mod_reqtimeout. The
Slow HTTP DoS attack with many new connections could
be prevented because the longest packet interval was limited
appropriately.

Figure 11. Slow HTTP Headers Attack with many new connections per

second on Web server with appropriate mod_reqtimeout

Figure 12. Slow HTTP BODY Attack with many new connections per

second on Web server with appropriate mod_reqtimeout

Figure 13. Slow HTTP Headers Attack with many new connections per

second on Web server with appropriate Timeout

Figure 14. Slow HTTP BODY Attack with many new connections per

second on Web server with appropriate Timeout

VI. CONCLUSION

In this experiment, aiming to sneak through detection by
a defending Web server against a Slow HTTP DoS Attack,
the attacking client made an attack with many new
connections per second (with 100 new connections per
seconds and a packet interval of 10 s) or an attack with short
packet intervals (with 15 new connection per seconds and
packet a packet interval of 1 s). These attacks could be
prevented by limiting the longest packet interval and longest
session time. In other words, applying multiple measures
with an appropriate threshold was effective in preventing
these attacks. However, this defense method cannot prevent
attacks in which the number of new connections per second
is further increased and "Timeout × new connections per
second > MaxClient" (example: an attack with 150 new
connections per seconds and second packet interval of 10 s)
or an attack with many new connections per second and
short packet intervals (example: an attack with 100 new
connections per seconds and second packet interval of 1 s).
However, increasing the number of new connections per
second or shortening the interval between packets means
increasing the number of packets. Such attacks with such a
large number of packets are subject to anomaly detection
against general DoS attacks intended to fill the line
bandwidth. To prevent a Slow HTTP DoS Attack completely,
it is necessary to not only take measures for typical Slow

75Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

HTTP DoS Attacks but also set a threshold for anomaly
detection in consideration of Slow HTTP DoS Attacks that
resemble a normal DoS Attack.

The appropriate Timeout and mod_reqtimeout thresholds
will change depending on the service provided by the Web
server, communication method, and so on. If a genuine user
accesses the Web server with the defense method in this
study via SSL or a line with low communication speed, and
communication takes time due to sending of large files, they
may be misrecognized as an attacker. In this evaluation, two
kinds of the threshold of packet interval and session time was
set and evaluated, but it was not the best threshold. Also,
there was no setting of the threshold of the minimum
reception rate. Accordingly, a future direction of this study
will evaluate all the threshold in detail and reduce the
possibility of misrecognizing a genuine user as an attacker as
much as possible and expand the range that can be defended
by further improving the detection accuracy and performance
of the proposed method for preventing Slow HTTP DoS
Attacks.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant
Number 15H02783.

REFERENCES

[1] AndMen, “About DoS/DDoS Attack,” [online]. Available:
http://andmem.blogspot.jp/2014/02/dosattack.html. [retrieved: 7,
2017].

[2] E. Cambiaso, G. Papaleo, G. Chiola, and M. Aiello, “Slow DoS
attacks: definition and categorisation,” Int. J. Trust Management in
Computing and Communications, Volume 1, Number 3-4, pp.300-
319, 2013.

[3] @police, “Notice on Slow HTTP DoS Attack,” [online]. Available:
https://www.npa.go.jp/cyberpolice/detect/pdf/20151216.pdf.
[retrieved: 1, 2017]

[4] Kuzmanovic and E. Knightly, “Low-Rate TCP -Targeted Denial of
Service Attacks (The Shrew vs. the Mice and Elephants),” roceedings
of ACM SIGCOMM 2003, Karlsruhe, Germany, August 2003, pp.
75-86.

[5] Dalia Nashat, Xiaohong Jiang, and Susumu Horiguchi, “Router based
detection for Low-rate agents of DDoS attack,” In 2008 International
Conference on High Performance Switching and Routing, pp.177–
182, May 2008.

[6] Amey Shevtekar and Nirwan Ansari, “A Proactive Test Based
Differentiation Technique to Mitigate Low Rate DoS Attacks,” In
2007 16th International Conference on Computer Communications
and Networks, August 2007.

[7] Ian Muscat, “How To Mitigate Slow HTTP DoS Attacks in Apache
HTTP Server,” [online]. Available:
https://www.acunetix.com/blog/articles/slow-http-dos-attacks-
mitigate-apache-http-server/ [retrieved: 8, 2017].

[8] Jieren Cheng, Jianping Yin, Yun Liu, Zhiping Cai, and Min Li,
“DDoS attack detection algorithm using IP address features,” In
Frontiers in Algorithmics, pages 207–215. Springer, 2009.

[9] Esraa Alomari, Selvakumar Manickam, B. B. Gupta, Shankar
Karuppayah, and Rafeef Alfaris, “Botnet-based Distributed Denial of
Service (DDoS) Attacks on Web Servers,” Classification and Art.
International Journal of Computer Applications, July 2012. Published
by Foundation of Computer Science, New York, USA.

[10] S. Sarat and A. Terzis, “On the Effect of Router Buffer Sizes on Low-
Rate Denial of Service Attacks,” Proceedings of IEEE ICCCN 05,
San Diego, California, October 2005, pp.281-286.

[11] @IT, “Barracuda strengthens the WAF appliance, measures to "Slow
DoS Attack",” [online]. Available:
http://www.atmarkit.co.jp/ait/articles/1211/09/news067.html.
[retrieved: 7, 2017].

[12] CentOS, “Download CentOS,” [online]. Available:
https://www.centos.org/download/. [retrieved: 7, 2017].

[13] Apache, “Download - The Apache HTTP Server Project,” [online].
Available:https://httpd.apache.org/download.cgi. [retrieved: 7, 2017].

[14] Ubuntu, “The leading operating system for PCs, TABLEts, phones,
IoT devices, servers and the cloud | Ubuntu,” [online].
Available:https://www.ubuntu.com. [retrieved: 7, 2017].

[15] slowhttptest, “GitHub - shekyan/slowhttptest: Application Layer DoS
Attack simulator,” [online]
Available:https://github.com/shekyan/slowhttptest. [retrieved: 7,
2017]

76Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

