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Abstract—We propose a system that allows policy to be
implemented at the library call level. Under our scheme, calls to
libraries are monitored and their arguments examined to ensure
that they comply with the security policy associated with the
running program. Our system automatically creates wrappers
for libraries so that calls to external functions in the library
are vectored to a policy enforcement engine. In this paper, we
describe our system, which screens calls to protected functions,
while allowing the implementation of a high level form of control
flow integrity based on library calls. It is a transparent approach
that can protect applications in many different domains and real-
life environments.

Keywords—policies; library calls; argument examination; wrap-
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I. INTRODUCTION

Access control, in a narrow sense, is the ability of a system
to grant or reject access to a protected resource. This way, in
the context of software security, the system can keep track of
who has access to what code, who can call what function in
a library and under which conditions this is possible. These
restrictions are imposed by a set of mandatory controls that
are enforced by the system in the form of policies. Policies
may represent the structure of an organization or the sensitivity
of a resource and the clearance of a user trying to access it.
A mechanism maps a user’s access request to a collection of
rules that need to be implemented in order for the system to
function in a secure manner.

An access control system can be implemented in many
places and at different levels in an infrastructure (e.g., op-
erating system, database management system, etc.) and must
be configured in a way that provides the assurance that no
permissions will be leaked to an unintended actor, which may
give her the ability to circumvent any defenses in place.

In this paper, we propose a novel mechanism that aims to
allow access control policies for library calls to be enforced at
the user-code level in order to restrict access to functions held
in a protected library, in addition to identifying the complete
execution path regarding the functions in question. At run-
time, the policy system may be used for policy enforcement.
It can coexist with existing defense techniques, boosting the
security of the protected system.

The remainder of this paper is organized in the following
manner: Section 2 describes related work done to address
relevant issues. In Section 3, we present the architecture of
our framework. In Section 4, we describe the implementation
details, along with possible applications. In Section 5, we

present a simple use-case scenario. Section 6 concludes this
paper.

II. RELATED WORK

This work revisits our earlier work on Access Controls
For Libraries and Modules (SecModule) [1]. This framework
forces the user-level code to perform library calls only via a
library policy enforcement engine providing mandatory policy
checks over not just system calls, as in the case of Systrace [2],
but calls to user level libraries as well. This results in a system
which can be used to systematically formulate and formalize
rights management for software. The access rights in question
would be whether a process (which may be malicious) is
allowed to execute some function held securely in a library
module. Initially, the mechanism retrofitted functions in order
to be included in a secure “enclosure” (SecModule). The
kernel has a list of all the SecModules and when a process
asks for access to a secured function, the kernel verifies that
the requested SecModule is registered and that the process is
valid with respect to its policy. Then, it allows that and only
that process to use only the specific function.

This means that access to a specific function or procedure
is controlled by the kernel. While this is particularly suited to
SecModule-enabled applications, the overhead of two context
switches per function invocation (once to transfer control to
the kernel and – when it reaches a decision – once more to
transfer control back to the caller) makes the technique quite
expensive for more general use.

One of the issues identified by the authors of the SecModule
paper was the difficulty in encapsulating library modules. This
manual process was error prone and extremely labor intensive,
since most of the applications compiled within the framework
required patching. Another issue was the inability to evaluate
call arguments. Although they were contained in a known
structure pointed to by a stack pointer, their examination
required lots of casting in the C++ functions, which in turn
needed additional information for these functions held in the
module.

Relevant to our work is the Systrace [2] system which
supports fine-grained policy generation. It guards the calls to
the operating system at the lowest level, enforcing policies
that restrict the actions an attacker can take to compromise
a system. In the process, although, it makes higher level
actions indistinguishable. As an example, we can look at
libancillary [3], a tiny library that provides an interface
to operations that can be done on Unix domain sockets.
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Programs that use this library can send/receive one or more
file descriptors to/from a socket, actions particularly useful
when the primary process lacks the rights required to open a
file or a device. In this case, another – privileged – process
opens the resource and sends a corresponding file descriptor
to the requesting process for further processing. To control
this exchange and prevent arbitrary usage of this library,
the system calls (open(2), send(2), recv(2)) would
need to be examined and policies enforced under Systrace.
However, these calls result in a number of lower level calls
to the operating system all of which Systrace would need to
check. Since only the high-level calls are of importance in
this case, the examination of underlying calls would be not
only unnecessary, but unwanted too. The fine-grain control
offered by the framework while checking calls required by
system or user level libraries when implementing complex
operations, is overly verbose. Additionally, it may leave a
library in an inconsistent state if the sequence of these calls
is interrupted in the middle of execution by a misconfigu-
ration [1]. Furthermore, for applications that use high-level
abstractions away from low-level system calls, there may
be difficulties generating precise policies. Later research [4]
showed that concurrency vulnerabilities were discovered that
gave an attacker the ability to construct a race between the
engine and a malicious processes to bypass protections. More
specifically, in a multiprocessor environment the arguments of
a system call were stored by a process in shared memory. After
Systrace performed the check and permitted the call, another
malicious process had a time window to replace the cleared
arguments in shared memory, effectively negating the presence
of Systrace and evading its restrictions. In a uniprocessor
environment, this could be achieved by forcing a page fault or
in-kernel blocking so the kernel would yield to the attacking
user process.

Multics [5] operating system uses multiple rings of pro-
tection [6] – [7] that isolate the most-privileged code from
other processes, forming a hierarchical layering. Each process
is associated with multiple rings – domains – so it is necessary
to change the domain of execution of a process. This way
the process can access specific domains only when particular
programs are executed. To prevent arbitrary usage, specific
“gates” between rings are provided to allow passing from
an outer (less-privileged) to an inner (more-privileged) ring,
restricting access to resources of one layer from programs of
another layer. The change of domain occurs only after the
control is transferred to a gate of another domain. Switching
to a lower ring requires more access rights as opposed to a
higher ring where reduced rights suffice. Downward switching
requires a control transfer to a gate of an inner ring, if the
transfer is to be allowed, whereas an upward domain switch is
an unrestricted transfer that can be performed by any process.
Nevertheless, the need-to-know principle cannot be enforced,
because if a resource needs to be accessible by a ring a but
not from another b, then a needs to be lower than b. But, in
this case every resource in b is accessible in a.

Similar to our mechanism, ltrace [8] [9] is a utility that

runs a specified command until it exits. It intercepts the calls
made to shared libraries by an application and displays the pa-
rameters used and the values returned by the calls. Moreover, it
can trace system calls executed by the application. However,
because it uses the dynamic library hooking mechanism, it
cannot trace statically linked executables/libraries, as well as
libraries that are loaded automatically using dlopen(3).
This mechanism gives the programmer the ability to inject
symbols in the dynamic library, but these symbols need to
be unresolved in the main executable or be exported in its
dynamic symbol table. When the linker tries to resolve them,
it will find the injected symbols and not the original ones.
A statically linked application has neither unresolved symbols
nor a dynamic symbol table. Additionally, ltrace can only
display the parameters used and values returned by the calls.
It offers no ability to manipulate them.

Abadi et al. proposed CFI [10] which enforces the execution
of a program to adhere to a control flow graph (CFG),
which is statically computed at compile time. If the flow of
execution does not follow the predetermined CFG, an attack
is detected. This approach, however, suffers from two main
disadvantages. First, the implementation is coarse-grained.
Computing a complete and accurate CFG is difficult since
there are many indirect control flow transfers (jumps, returns,
etc.) or libraries dynamically linked at run-time. Furthermore,
the interception and checking of all the control transfers incur
substantial performance overhead.

In our work, we also implement access control similar to
the work presented above. Under our scheme, each call to
an external function of a library is intercepted and checked
to ensure that it complies with the security policy associated
with the running program. Every time a call to such a function
is made, its arguments are examined and it is vetted by policy
evaluation code to determine whether the control flow transfer
is warranted. This allows high-level policy checks to be carried
out in a similar fashion to the Systrace engine [2] – which,
however operates at the system call level – and SecModule [1]
that introduced a form of authentication when calling functions
from a library.

III. DESIGN

Our system aims to automate the process of encapsulating
library modules and allow entire libraries to be instrumented,
checking the arguments of the calls to functions within a
library along the way, before reaching a policy decision.
The flow of execution inside the protected library can also
be detailed, revealing the sequence of calls to its functions.
Figure 1 depicts a high level overview of the steps taken when
an untrusted app calls a protected function.

In step (1), the application calls a function secured in our
custom library (in this case SHA1). In step (2), instead of the
intended function, the secure wrapper version of it is executed.
Instrumented inside the wrapper, there is argument and policy
evaluation code, which is first run before any other steps are
taken (step 3). If the evaluation is successful, the originally
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Third-party app

unsigned char in[] = "Hello World";
unsigned char out[strlen(ibuf)];
SHA1(in, strlen(in), out);

...

(1)

Custom library

typedef unsigned char *(*original_SHA1_type)(const unsigned char *d, size_t n, 
unsigned char *md);
unsigned char *SHA1(const unsigned char *d, size_t n, unsigned char *md)
{
   /** Argument evaluation code
   ** Policy evaluation code
   **/
   if (policy_verified && arguments_verified){
      original_SHA1_type original_SHA1;
      original_SHA1 = (original_SHA1_type) dlsym(RTLD_NEXT, "SHA1");
      return original_SHA1(d, n, md);
   }
}

...

(2) 

(3) 

(4) 

...

...

Figure 1. Overview of the call sequence

intended function is called (step 4) and the execution continues
normally.

Due to the fact that we interject our evaluation code between
the original call and the intended function, our approach is
transparent. It requires no code modifications on the library’s
code, which makes it suitable for legacy applications. Also, it
can be used on binary programs, since there is no need to have
access to or recompile the source code of the application.

The product of the customization of a library – which is
a shared custom library – can be easily adopted by security
experts and used in real-life environments, since it only needs
to be preloaded before running an application.

No context switch is necessary, using our custom library,
since the kernel is not invoked in anyway whatsoever. Con-
trary to SecModule, our technique is inexpensive that way.
Furthermore, the encapsulation of the library functions is
straightforward using just a python script to automate the
procedure, requiring only minimal manual intervention. Past
experience of the writers and simplicity in producing the code,
as well as major support from the community, lead to the
decision of using Python as the means to create the shared
library.

Under our scheme, the parameters of the intercepted calls
can not only be observed, but also manipulated in order to
be sanitized if necessary. Unlike ltrace, our mechanism
relies on dlsym(3) and dlopen(3) to find the address
of a symbol in memory, but because it also relies on dynamic
library hooking, it is unsuitable for tracing statically linked
applications.

Based on our current approach, the size of the code is
increased because extra code needs to be added for every
function. Before making the intended call, an extra wrapper
is executed in order to decide whether to redirect the flow to
the initial call or not.

Additionally, our framework depends on the programming
language used to develop the protecting application, since –
currently – it can only protect applications written in C/C++.

Furthermore, if an attacker knows of the presence of the
protection mechanism, he might be able to bypass the policy
evaluation step and call the intended function directly. Nev-
ertheless, we believe that randomization techniques, such as
ASLR [11], will make direct calls to libraries untenable.

IV. IMPLEMENTATION

Our technique aims to monitor calls to external functions
inside a protected library. We investigated two ways of doing
this: (a) individual wrappers or (b) one overall wrapper

• In the first approach, we install separate wrapper func-
tions. Each function in the library that has an interface
to the outside world is enclosed in a wrapper. When the
wrapper is called, first it executes policy evaluation code
to determine if the caller is permitted to call the function
and then redirects the flow to the originally intended
function or not.

• In the second case, the wrapper stands at the entry point
of the library. A policy enforcement engine inside the
wrapper monitors the incoming requests and when a call
is made to a function, it determines whether that call is
warranted (i.e., in accordance to the system policies). It
then diverts the flow of execution to the called function.

In both approaches, the policy evaluation code examines
the arguments of the call to ensure that they comply with the
security policy associated with the running program.

In this first version of our prototype, we decided to follow
the first path, due to the simplicity of the implementation. As
an example, we created a wrapper for the OpenSSL library.
The header files of the library can be included in any C/C++
program by the developers and contain all the functions that
they can call. First, we extracted from the header files all
the relative functions and their signatures. The extraction
was done using a custom Python script that identifies each
function that is within the scope of our work and analyzes its
arguments. This way we are able to manipulate each of the
arguments in any way necessary. Before calling the originally
intended function we added code that verifies that the module,
indeed, captured the call and that we operate from within the
custom library. After implementing the security features (i.e.,
argument examination, policy enforcement, etc.) and if the
continuation of the execution is permitted, the flow progresses
to the original path. The result is a C file that is compiled to
a shared library which is preloaded when running a program.

Automatic generation of policy (learning phase) will also
be supported in future versions, while at run-time the policy
system will be used for policy enforcement and/or for ensuring
that the program behaves in a similar manner as in the learning
phase. During this phase, as many as possible execution paths
will need to be discovered, that correspond to actions taken
from a benign application, aiming to implement a CFI [10]
scheme that uses library calls to extract execution paths,
instead of intercepting or instrumenting or emulating the
control flow instructions. This will form a basis on top of
which more complete policies will be built.
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Applications

Wrapped functions can be accessed in a controlled manner
via mandatory policy checks prior to the execution of the orig-
inal flow. When an attacker tries to manipulate the protected
library, the malicious efforts will be thwarted since they do not
conform with the policies enforced. Nevertheless, our code
can be bypassed if the attacker knows of its existence and
calls the original library function directly. However, within the
SHARCS project [12], we are working on hardware primitives
that will force the user code to go through our wrapper.

Digital Rights Management (DRM) is another domain that
our framework can be used for. In this context, it can provide
access control in order to restrict usage of a piece of software
the owner of which retains the right to distribute on his own
conditions (e.g., after getting some form of payment or even
just recognition for his efforts) or prevent the theft of it.

In the case of a library that requires heavy resources from
the host system, the administrator may wish to control access
to the rights to invoke the code in such a way that the system
does not hang by over-use or is not affected by a DDoS attack.
Access restrictions can be imposed according to certain criteria
or security policies enforced by an organization.

The misuse of a critical component in a secure infrastructure
can result in unforeseen consequences for the system. Our
framework can make sure that only authorized personnel can
have access to the secure part. Even in the case of deliberate
actions that lead to an attack that jeopardizes the system,
our framework can be used as a logging mechanism. The
inner workings of a protected library will be traced, which
will follow the flow of execution of functions held within the
library. Forensic actions (after the fact) can, then, be taken
to analyze in a more detailed view the events that led to the
compromise and identify the culprits responsible.

V. USE-CASE STUDY

In this section, we present a scenario where a vulnerability
of an application is exploited to affect the availability of
the system. In our use-case, we use a vulnerable version of
OpenSSL library, where a buffer overflow is triggered under
specific circumstances to launch a DoS attack, in order to crash
the application. By using our instrumented library to observe
calls to the OpenSSL functions, we can better understand the
behavior of the attack and characterize the vulnerability.

A. ChaCha20-Poly1305 heap buffer overflow

CVE-2016-7054 [13] [14] is a recent heap-based buffer
overflow vulnerability related to TLS connections using *-
CHACHA20-POLY1305 cipher suites. It was discovered on
September 2016 and characterized as highly severe. Servers
implementing versions 1.1.0a or 1.1.0b of OpenSSL, can crash
when using the ChaCha20-Poly1305 cipher suite to decrypt
large payloads of application data, making them vulnerable to
DoS attacks. It is triggered by an error during the verification
of the MAC. If it fails, the buffer on which the decrypted
ciphertext is stored, is cleared by zeroing out its content via
the memset function. However, the pointer to the buffer that

is passed to the function points to the end of the buffer instead
of the beginning. If the payload to be cleared is large enough,
the contents of the heap will be erased, resulting in a crash
when OpenSSL frees the buffer.

B. Custom library implementation

Although the vulnerability described in the previous section
was addressed in versions later than 1.1.0b, we can use our
prototype to examine the chain of events inside the OpenSSL
library that result in a crash when the vulnerability is exploited.

When we first start an OpenSSL server (e.g.,
LD_PRELOAD=/home/user/Desktop/custom_lib.so
./bin/openssl s_server -cipher
’DHE-RSA-CHACHA20-POLY1305’ -key cert.key
-cert cert.crt -accept 4433
-www -tls1_2 -msg), an initialization phase takes
place, where we can see that memory is allocated for the
s_server app. Excerpt from our framework:

...............
Intercepted call to function CRYPTO strdup
String parameter: apps/s server.c”.
...............

Then, the private key and certificate files are read. Excerpt:
...............
Intercepted call to function BIO new file
String parameter 1: cert.key
String parameter 2: r
...............
Intercepted call to function BIO new file
String parameter 1: cert.crt
String parameter 2: r
...............

After that, a pointer to every cipher supported by TLS v1.2 is
pushed on the cipher stack, if it is not already there. Excerpt:

...............
Intercepted call to function EVP add cipher
Intercepted call to function EVP aes 256 ccm
Intercepted call to function EVP add cipher
Intercepted call to function EVP aes 128 cbc hmac sha1
...............

Continuing in a similar manner, a pointer to every message
digest supported by TLS v1.2 is pushed on the digest stack,
if it is not already there. In addition, aliases are mapped to
ciphers/digests. Excerpt:

...............
Intercepted call to function EVP md5
Intercepted call to function EVP add digest
Intercepted call to function OBJ NAME add
String parameter 1: ssl3-md5
String parameter 2: MD5
Intercepted call to function EVP add digest
Intercepted call to function EVP sha1
...............
Intercepted call to function OBJ nid2sn
Intercepted call to function EVP get cipherbyname
String parameter: DES-EDE3-CBC
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...............
Then, memory is allocated based on the compiled-in ciphers
and aliases. Excerpt:

...............
Intercepted call to function CRYPTO malloc
String parameter: ssl/ssl ciph.c
Intercepted call to function FIPS mode
...............

At the end of this initialization process, an “ACCEPT” mes-
sage is displayed, notifying the user that the server is up and
running and awaits incoming connections. Excerpt:

...............
Intercepted call to function BIO printf
String parameter: ACCEPT
...............

To automate our efforts we used an open-source, python, TLS
test suite and fuzzer named tlsfuzzer [15] which includes a
script to exploit CVE-2016-7054.

When the script is executed, we see a number of calls
to BIO_printf function which display the messages ex-
changed between client and server (ClientHello, ServerHello,
ServerKeyExchange, etc.). Then, at some point during execu-
tion, we see a call to ERR_put_error which signals that
an error occurred and adds the error code to the thread’s error
queue. Excerpt:

...............
Intercepted call to function ERR put error
String parameter 1: ssl/record/ssl3 record.c
...............

Continuing, the program gets the error’s code from the queue
via ERR_peek_error. Then ERR_print_errors is
called to print the error string. At this point, memory is freed
via calls to functions like CRYPTO_free, BIO_free_all,
CRYPTO_free_ex_data, OPENSSL_cleanse,
EVP_CIPHER_CTX_free etc. Under normal circumstances,
the server would reset the connection awaiting new incoming
messages, but due to the CVE-2016-7054 bug the heap is
nullified and the sever crashes, potentially indicating a DoS
attack.

During the exploitation of this vulnerability, our library
shows all the system calls made from the phase of the
initialization of the server, to the handshake between it and the
client, to the crash after the attack. This can provide a forensic
trail to identify the functions executed in the OpenSSL session,
in order to pinpoint where the vulnerability is triggered – in
this case, when the memory is freed.

VI. CONCLUSION

In this paper, we presented an access control scheme that
produces custom libraries and examines calls to functions
within them along with their arguments, to ascertain if they
adhere to specific security policies. Our framework improves
important aspects of SecModule in which it can be incorpo-
rated, simplifying and automating the generation of libraries
and providing a seamless way of evaluating the arguments of
each call.

Our approach is transparent and can be used on bi-
nary/legacy applications and existing environments, as well
as serve as a complimentary measure of defense alongside
already implemented mechanisms.
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