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Abstract—The steady evolution of browser tools and scripting
languages has created a new, emergent threat to safe network
operations: browser hijacking. In this type of attack, the user
is not infected with regular malware but, while connected to
a malicious or compromised website, front end languages such
as javascript allow the user’s browser to perform malicious
activities; in fact, attackers usually operate within the scope
of actions that a browser is expected to execute. Paradigmatic
examples are the recent attacks on GitHub, where malicious
javascript was injected into the browser of users accessing
the search-giant Baidu, launching a devastating denial-of-service
against a US-based company. Detecting this type of threat is
particularly challenging, since the behavior of a browser is context
specific. Detection can still be achieved, but to effectively hamper
the effectiveness of this type of attack, users have to be empowered
with appropriate detection tools, giving them the ability to
autonomously detect and terminate suspicious types of browser
behavior. This paper proposes such a tool. It uses information
available within the browser (and is, thus, implementable as a
browser extension), and it allows users to detect and terminate
the suspicious types of behavior typical of hijacked browsers.

Keywords–IDS; Browser hijacking; Malicious attack detection;
User empowerment.

I. INTRODUCTION

The detection of malicious behavior that does not directly
target the user’s browser is largely unexplored. Since the
majority of existing detection methods focus on the detection
of specific attacks (exploit attempts, for example), behaviors
such as having javascript code send thousands of back-to-
back connections to different remote destinations is typically
not considered malicious, even though it constitutes a behav-
ior associated with several types of attacks, from browser-
based denial-of-service [1][2], stealth botnet command-and-
control [3] and even network reconnaissance techniques, such
as network and port scanning [4]. Another example of un-
desired behavior that a malicious javascript might inflict on
a browser is the use of the host’s computational power to,
for example, participate in mining crypto-currencies [5]. Un-
fortunately, until recently, browsers did not provide access to
statistics on how a particular tab was behaving, giving the
user information only on behavior of the browser as a whole.
By leveraging the fact that browsers such as Google Chrome
now allow the access to very granular information about the
actions being taken by the browser itself, we can create tools
that analyse the behavior of each tab individually, and inform
the user of potentially suspicious behavior.

In this article, we will show results which indicate that,
with the appropriate choice of the classification dimensions,

a linear multi parameter detector is capable of flagging such
attacks and, hence, of giving users the capability to disconnect
from malicious sites if and when their browser is being
wrongly used. In fact, empowering users with such a detector
allows us to go further ahead in the road of cooperation
between users and researchers. One of the problems that are
yet to be solved, is the fact that even for samples of javascript
that can be detected and classified as malicious by existing
tools, we still have to come in contact with them in the
first place. Crawling the internet seems like a losing battle;
it is just not feasible to do it at a rate where a piece of
malicious code can be detected before the attacker has already
taken advantage of the bandwidth and processing power of
several thousands of users. If users can detect the hijacking of
their browsers for malicious purposes, then it will be possible
to have these users’ browsers automatically submit URLs
where potentially malicious javascript might be running, in
an anonymous fashion. This, together with the unification of
the several blacklists currently in existence, could be a great
defuser (and deterrent) of this kind of attack.

The vulnerabilities of front end languages such as javascript
have long been recognised, and much work has been devoted
to protection against the risks posed by the considerable
capabilities of such languages to the user’s systems (e.g.,
[6][7][8]). These approaches typically limit the power of
javascript, either by restricting the language to an accepted
subset of capabilities, or simply by monitoring the scripts
degree of adherence to a designated secure framework, and
dynamically modifying untrusted code to allow only operations
and API calls deemed to be secure. The major drawback of
such an approach lies in the fact that it effectively hampers
front end capabilities for both good and evil purposes alike.
The use of data driven approaches to analyse network traffic
behavior and, hence, build intrusion detection systems (IDS)
by anomaly detection, has also received much attention; a
plethora of tools have been proposed, ranging from purely
stochastic approaches, to machine learning based clustering
and classification algorithms (e.g., [9][10][11][12][13][14]).
These approaches are network oriented, and are typically based
on network wide routing and/or protocol execution data.

Hence, most of the tools used in this paper have already
been individually used and proposed in the general field of
IDS, even though in different particular contexts, and with
different particular objectives. To the authors knowledge, the
approach proposed in this paper is, however, unique, due
to the set of properties it presents: i) isolated operation:
detection is achieved by individual users, without the need
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for any network related data; ii) No cooperation from the site
hosting the script is required; iii) The set of capabilities of the
scripting language is not restricted in any way; iv) the decision
parameters required by the classifier are all obtainable within
the user browser, thus allowing for algorithm implementation
as a simple browser extension. Hence, this approach empowers
users in a very effective and simple way, allowing them
to autonomously detect the hijacking of their browsers for
malicious purposes. As previously discussed, this will heavily
contribute to safer network operation. The rest of this paper
is organized as follows: Section II describes the detector,
its rationale and implementation. Section III discusses the
obtained experimental results. Section IV concludes the paper.

II. DETECTION

Even though general in scope and nature, the proposed
tool is currently focused on providing an effective defense
against the type of threats that use legitimate users’ browsers
to amplify the network capabilities of the attackers. Good
examples are the javascript version of Low Orbit Ion Cannon
(JS LOIC) [15], a denial-of-service (DoS) tool used by the
hacker group Anonymous, and the javascript based botnet
command-and-control discussed in [3]. As such, the detection
problem setup will be based on the type of behavior adopted
by a hijacked browser in these particular cases.

While the objective of a malicious payload that delivers a
DoS tool is fundamentally different than a payload that allows
attackers to do network reconnaissance, both imply a dramatic
increase in the rate of new HTTP requests, and a subsequent
increase in CPU usage of the browser tab that hosts the mali-
cious code. In the particular case of the command-and-control
architecture described in [3], there is an initial phase of ran-
dom (or semi-random) IP scanning, where hijacked browsers
are used in an attempt to disseminate malicious commands to
one or more infected bots. Due to this massive scanning phase,
any recruited browsers will dramatically increase the rate of
new HTTP requests to distinct destination IP addresses. If we
are able to reliably detect either this bot reaching behavior, or
the less complex situation of a DoS based on HTTP requests
flooding, the browser can automatically terminate the session
with the site, or simply close the affected tab, effectively
stopping the attack. Also, as previously mentioned, it will be
possible at this point, to automatically submit URLs where
potentially malicious javascript might be running, something
which could be a great defuser of this kind of attack.

The proposed detector will thus be designed to detect
this scanning and request flood behavior. No single parameter
can, however, constitute a reliable indicator of this malicious
behavior. An increase in HTTP requests may be the result of a
legitimate action; an increase in the computational effort being
consumed by the browser may easily occur in many legitimate
instances (e.g., video streaming); in general, the same can be
said of any single parameter/indicator. We will, thus, employ
a multiparameter detector. Each one of the used dimensions
will produce an indicator which, in itself, will be incapable
of completely typifying the ”hijacked” behavior but, taken
together, they will be capable of flagging this behavior, as will
be seen.

The associated detection problem is, however, not trivial.
Since a false alarm will imply the disconnection from the site
(or the tab) and, thus, a serious inconvenience to the user, it is

important to guarantee the adequacy of the detection algorithm.
Ad-hoc heuristics based on a single parameter evaluation of,
for example, new HTTP requests to new IPs (mean rate, maxi-
mum rate, effective rate, accumulated number of requests, etc)
are prone to fail, and are easily deceivable; multi-parameter
heuristics (e.g., a linear combination of the above parameters)
are more complex, they are typically highly arbitrary in the
parameter weights, don’t always generate an adequate final
metric, and are not easily scalable, due to the many dimensions
along which scaling can be independently done. The problem
of multi-criterion detection will therefore be handled by a data
driven mechanism, to avoid imposing arbitrary heuristic rules
to the detector. In this article, the classifier will be a simple
perceptron, but any equivalent linear classifier might have been
used. It will be trained with different instances of “normal”
and “hijacked” browser behavior. Being a linear classifier,
the performance of the perceptron will depend on the two
classes of behavior (“normal” and “hijacked”) being, or not
being, linearly separable [16]. As will be shown below, in all
performed tests, the rate of correct classification was 100%,
which implies that, with the chosen classification dimensions,
the problem seems to be, indeed, linearly separable.

The proposed detector should be implementable as a
browser extension and will, thus, be based solely on the data
accessible by the browser, concerning its own behavior. It will
be based on three different dimensions (all of them accessible
and quantifiable within the browser itself, on a per-tab basis):

• Computational effort;
• Periodicity of new HTTP requests;
• The sequence of destination IP addresses of new HTTP

requests;

The rationale behind the first indicator (computational
effort) is clear. An attempt to establish an effective massive
scanning strategy will necessarily correlate with an increase
in the computational effort required by that browser’s tab. The
same is true if the browser is recruited to perform a DoS attack.

The second indicator has a more subtle rationale: indepen-
dently of the computational power of the host and, therefore,
of its achievable maximum rate of new HTTP requests, when-
ever the host is driven close to its maximum power in the
massive task of flooding a single remote target or scanning
the full internet address space, the new HTTP requests will
become increasingly periodic, the period being dictated by the
minimum cycle time achievable with the host’s computational
abilities; it is, thus, a dimension which, even though capable of
indicating a browser hijack, is fairly insensitive to the amount
of computational power available to the host computer.

The third and last indicator (sequence of destination IP
addresses of new HTTP requests) is used to capture the
addressing schemes typical of blind scanning strategies.

As has already been stated, none of these indicators will
be capable of completely typifying the ”highjacked” behavior,
since periodicities will arise in legitimate video streaming, high
computational loads will appear in many legitimate instances,
etc; the same can be said, mutatis mutandis, for each one of
the individual indicators. However, when considered together,
they will be capable of flagging this behavior, as will be seen
below.

Obtaining the indicators to feed the perceptron will require
some pre-processing of the browser traffic data in each one of
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the considered dimensions, as will be seen. A fourth parameter
(absolute number of new HTTP requests during the analysis
period) will be used, not as a decision parameter, but as an
enabler mask. This will be detailed below.

A. Computational effort
This dimension of the detection scheme evaluates the

fraction of available computational effort that a particular
browser tab is requiring. In a sense, this is the easiest one
of the three indicators to be obtained, since we can obtain the
fraction of the available computing power being consumed by a
tab, directly from the browser. To account for the possibility of
different profiles in the computational requirements within the
analysis period, the obtained data passes through an integrator
finite impulse response (FIR) filter. Hence, only the total
computational power consumed in the analysis period (as a
fraction of the available computational power in that period)
is considered. Every second, a new measure of the fraction
of computational power being consumed by the browser’s tab
is taken (c(n), n being the time index of the sample). This
sample is fed to an integrator FIR filter, which implements the
composite Trapezoidal Quadrature rule, whose output pn is the
total consumed computational power over the last 5 seconds;
the Trapezoidal rule was chosen due to its more acceptable
behavior at sampling rates close to Nyquist, when compared
with other short impulse response rules such as, for example,
the Simpson rule (see, for example, [17], for details.).

The filter’s gain is also adjusted, to guarantee that its
output remains in the interval [0,1]. Since the interval between
samples is 1 s, the filter’s impulse response has 6 taps; the
integrator filter thus becomes (noting that 0 < c(i) < 1, ∀ i):

pn =
1

10

(
c(n) + 2

4∑
i=1

c(n− i) + c(n− 5)

)
Since this filter is implemented as a sliding window, we have

Figure 1. Computational indicator.

a new value of pn at every second (see Figure 1), to be used
as an indicator of the ”computational effort” dimension, and,
therefore, to be directly fed into the detector. This indicator
is, therefore, valued in the [0, 1] range, with higher values
corresponding to higher computational loads.

B. Periodicity of new HTTP requests

As discussed, whenever the host is driven close to its
maximum power in the single massive task of scanning the
internet address space, the new HTTP requests will become
increasingly periodic. The period depends on the host’s com-
putational abilities and the cycle time it can achieve, but the
appearance of a periodic behavior may itself be used as an
indicator. To decrease the computational complexity of the
periodicity evaluation, no spectral analysis is performed. The
indicator is, thus, obtained strictly via time domain processing,
and relies on the analysis of the time between successive new
HTTP requests.

If new connection requests appear in a purely random
fashion, a Poisson arrival process is to be expected. This
means that the times between successive connection requests
(inter-arrival times) should be exponentially distributed (see,
e.g., [18]). One useful measure of the type of use being
required from the browser can, therefore, be obtained by
testing the sequence of inter-arrival times, and determining if
their distribution is, indeed, exponential (implying that we are
facing random, non periodic, requests), or if they have some
deviation from this pure theoretical random pattern. A simple
Kolmogorov-Smirnoff (KS) test may be used for this purpose
(e.g., [19][20]). The test proceeds as folows [19]:

As is standard in the KS test, it relies on comparing the
sample cumulative distribution function with the cumulative
exponential distribution function: given a sequence of N ob-
servations, one determines

d = max
{∣∣S(X)− C(X)

∣∣} , (1)

where S(X) is the sample cumulative distribution function,
and C(X) is a cumulative exponential distribution function
with mean µ̄, the sample mean. If d exceeds a given threshold
Ψ, one rejects the hypothesis that the observations were taken
from an exponential distributed population. For sequences of
30 or more samples, and a level of significance of 0.05, the
threshold Ψ may be approximated by [19]:

Ψ =
1.06√
N
, (2)

N being the number of samples in the sequence. For lower
values of N , the corresponding values of Ψ can be found in
[19].

We can, therefore, easily verify if the inter-arrival times
are (or are not) exponentially distributed. However, ”not being
exponential” is far from being a sufficient indicator that an
attack is under way. As such, instead of using a binary variable
to represent the exponential/not exponential nature of the inter
arrival times as in the KS test, we will use the (continuous)
ratio d/Ψ. Also, a complementary measure will be used: the
ratio

√
σ2/µ of the inter arrival times (σ2 being their variance,

and µ their mean value); when the HTTP requests become
increasingly periodic, this ratio becomes increasingly smaller
(since the inter-arrival times become increasingly concentrated
around the mean) and, as such, it constitutes an additional
measure of periodicity. To compute this ratio at each moment
(the sampling period is again 1 second), we consider the inter
arrival-times observed in the previous 5 seconds. The estimate
for the mean arrival time is the sample mean (µ̄), and the
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estimate for the variance is obtained by the unbiased sample
variance:

µ̄ =
1

N

N∑
i=1

xi (3)

s2 =
1

N − 1

N∑
i=1

(xi − µ̄)2 (4)

(5)

Combining the two previous measures, the final indicator
for periodicity of new HTTP requests becomes:

pern =
d
√
s2

3Ψµ̄
. (6)

The scaling factor 1/3 is used simply to maintain a common
scale to all tree used indicators.

C. The sequence of IP addresses of new HTTP requests
The behavior of a hijacked browser in what concerns the

pattern of contacted IP addresses varies widely with the type of
attack into which the browser is recruited. While attacks such
as DoS will result in an endless repetition of a single IP (or a
short list of IPs), an attack where the hijacked browser must
scan the internet (as in the case of the referred stealth botnets)
will generate a very high dispersion of addresses where,
typically, no address is attempted more than once. To further
complicate matters, the strategies for blind scanning may also
differ widely, ranging from deterministic sequential scanning
to purely random scanning. To address the issue with a single
indicator, we used a two step procedure, applied, at each
second, to the list of IP addresses of new connections attempted
in the 5 s period ending at moment n (ln(i), 1 < i < M ), M
being the number of new connections attempted within that
period :

1) A new list Ln is obtained, by computing the absolute
values of the second order divided diferences of ln:

Ln = |∆(∆(ln)) | , (7)

where the ∆ operator is defined by:

∆(ln) = {ln(i)− ln(i− 1), 2 < i < M}; (8)

2) If all elements of Ln are 0, indicator addrn is considered
to be 0. Otherwise, addrn = σLn/3µLn , where µLn is the
mean value of elements in Ln, σLn

its standard deviation,
and the 1/3 factor is, again, simply a scaling factor. That
is:

addrn =

{
0 if Ln(i) = 0, 1 < i < M − 2
σLn

3µLn
otherwise

(9)
This indicator thus has the following properties: i) DoS

attacks to a single address will map to addrn = 0 (due to
the inner ∆ operator); ii) Sequential scanning strategies will
map to addrn = 0 (due to the sequence of inner and outer
∆ operators); iii) random scanning strategies will also map
to low values of addrn, due to the resulting high standard
deviation of Ln. This means that both DOS attacks and the two
most common scanning strategies (sequential and random) will
generate low values of this indicator, something which makes
it a powerful dimension of the detection scheme.

D. Absolute number of new HTTP requests
As will be seen, with the previous three indicators, the

perceptron is capable of separating the ”normal” and ”hi-
jacked” cases, for all periods with a reasonable amount of
activity. However, in some periods when the browser is idle,
the indicators are incapable of characterizing the activity, due
to an insufficient number of new connections and, thus, the
unreliabilty of the derived statistics. To account for those cases,
and since the absence of traffic is a consistent indicator that no
attack is under way, a threshold Φ = 10 is established for the
minimum number of new HTTP requests, under which it is
always assumed that no attack is under way. In fact, with such
low rates of probing, and the correspondingly high intervals
between probes, any eventually ongoing attack (be it a DOS
attack, or an attempt to scan the internet address space) would
be highly ineffective, and thus inexistent as a real threat, in
this context.

III. EXPERIMENTAL RESULTS

To train the perception performance, 50 browser sessions
were logged. From these sessions, 450 non-overlapping 5
seconds periods were extracted, to be used as training set
(D); of these, 150 correspond to regular browser use, 150 to
a simulated DOS attack, and 150 to forced random scanning
periods; 50 other periods were obtained, to be used as a test
set. The three indicators x1, x2, and x3 for the training 450
periods were fed to the perceptron, for supervised training;
100 iterations (epochs) were used in training, with a learning
factor α = 0.1; the perceptron weights w were randomly
initialized. At each epoch, all samples were presented to the
perceptron, sequentially, in random order. For each sample
x(i) = [1, x1(i), x2(i), x3(i)] in the training set D (the
indicator vectors have been extended with a trailing 1, for
mathematical convenience in the training equations below),
training proceeds as follows (see, e.g., [21][22], for further
details on the perceptron concept, design and training):

1) Obtain the perceptron output:

y(i) = f
(
w(i) · x(i)

)
= f

(
w0(i) + (10)

+ w1(i)x1(i) + w2(i)x2(i) + w3(i)x3(i)
)
,

where

f(τ) =

{
1 if τ > 0
0 otherwise, (11)

2) Update the weights:

w(i+ 1) = w(i) + α(d(i)− y(i))x(i), (12)

d(i) being the correct decision label (1- attack, 0 - no
attack) for the ith 5 second period.

After training, classification of a given observed period is
done simply by computing

y(i) = f
(
w(i) · x(i)

)
= f

(
w0(i) + (13)

+ w1(i)x1(i) + w2(i)x2(i) + w3(i)x3(i)
)
,

with w being the final set of weights that resulted from
the training phase, and x(i) = [1, x1(i), x2(i), x3(i)] the
augmented indicator vector for that period.
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When the 450 training periods were run through the trained
perceptron, no errors in classification were observed, which
means that the problem, as mapped by these three indicators,
is indeed linearly separable, within the training set. For the test
set (constituted by 50 5-seconds period, as discussed above),
classification was also 100% successful, with no misclassi-
fications. Even though the number of examples used in this
paper is somewhat limited, and no real life attacks have been
used, the obtained results seem to indicate that the proposed
indicators may, indeed, be capable of transforming the browser
highjacking detection problem into a linearly separable one,
thus addressable by simple linear classifiers, implementable
by simple, lighweight, browser extensions.

IV. CONCLUSION

Our results show that, with the appropriate choice of
indicators, it seems to be possible to create a linearly separable
setup, amenable to the detection of browser hijacking by mali-
cious sites with a simple linear detector. This conclusion must
still be validated with bigger, real life, datasets. Detection is
accomplished using only variables which the browser provides
access to, and it can be done with a per-tab granularity. Two
main types of attack are thus defused: attacks that utilize honest
user’s browsers as a platform to launch denial-of-service, and
attacks which imply mass IP address scanning (both sequential
and random). In particular, this detector allows users to become
a vital part in defusing a particularly dangerous type of
stealth botnet, by detecting that their browser is being used
as part of the botnet command-and-control structure. Finally,
our solution also paves the way for automatic submission of
URLs where potentially malicious javascript might be running,
something which can be a great defuser and deterrent for future
attacks.
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