
Mobile Agent Security using Reference Monitor-based Security Framework

Sandhya Armoogum, Nawaz Mohamudally
Dept. Industrial Systems & Engineering

University of Technology, Mauritius (UTM)
La Tour Koenig, Mauritius

email: asandya@umail.utm.ac.mu

Nimal Nissanke
Emeritus Professor,

London South Bank University, London, UK
email: nissanke@gmail.com

Abstract— In distributed systems and in open systems such as
the Internet, often mobile code has to run on unknown and
potentially hostile hosts. Mobile code, such as a mobile agent is
vulnerable when executing on remote hosts. The mobile agent
may be subjected to various attacks such as tampering,
inspection, and replay attack by a malicious host. Much
research has been done to provide solutions for various
security problems, such as authentication of mobile agent and
hosts, integrity and confidentiality of the data carried by the
mobile agent. Many of such proposed solutions in literature are
not suitable for open systems whereby the mobile code arrives
and executes on a host which is not known and trusted by the
mobile agent owner. In this paper, we propose the adoption of
the reference monitor by hosts in an open system for providing
trust and security for mobile code execution. A secure protocol
for the distribution of the reference monitor entity is described
as well as a novel approach to assess the authenticity and
integrity of the reference monitor running on the destination
agent platform before any mobile agent migrates to that
destination. This reference monitor entity on the remote host
may provide several security services such as authentication,
integrity and confidentiality of the agent's code and/or data.

Keywords- Security; Mobile agents; Reference monitor, Trust

I. INTRODUCTION
During the last decade, there have been major changes in

distributed computing. Programs are no longer constrained to
execute on one machine. Code can now be migrated to other
hosts for execution. The most well-known example of
mobile code is the use of Java applets and JavaScript code in
a Web browser. This form of code mobility is referred to as
code on demand. Code mobility has many uses, i.e., vendors
can use mobile code to reconfigure software, Microsoft uses
mobile code to distribute software patches, mobile code can
also be used to manage distributed system by performing
load balancing [1]. Mobile agents represent a more
sophisticated and powerful form of code mobility. A mobile
agent is a program that can move from one host to another
according to its own internal logic. Such mobile agents can
have weak or strong mobility.

Mobile agent computing paradigm presents numerous
advantages, compared to the traditional client-server based
computing model, which include reduced network usage,
better fault tolerance, adaptability to changes in the
environment, and platform independence [2]. Thus, the
mobile agent computing paradigm has become a natural and
flexible way for implementing many applications on the
network such as e-commerce and auctioning, network

monitoring, real-time control systems and cloud computing.
Recently, mobile agent computing proves to be very useful
in the context of wireless sensor network (WSN) [3]. As
such, the mobile agent computing paradigm provides a very
intuitive and flexible approach to solving old and new
problems arising in many areas of computing (e.g. intrusion
detection [4], web crawling [5], Big Data analysis [6],
searching and communications in Internet of Things [7] and
e-learning [8] due to their mobility and autonomous nature,
their ability to learn and adapt to changing environments,
their ability to communicate and collaborate with one
another to perform some complex task, and their ability to
clone themselves, if needed.

However, for mobile agent applications to be widely
adopted, some security issues have to be addressed, as
mobile agent applications, mainly deployed in open
environments, may possibly be exposed to attacks.
Currently, the lack of an integrated security solution is a
main drawback, which has to be tackled before the mobile
agent computing paradigm is widely accepted by industry.
Four threat categories have been identified in [9] as follows:
(1) mobile agent attacking an agent platform (AP), (2) AP
attacking a mobile agent, (3) a mobile agent attacking
another agent on the AP, and (4) other entities attacking the
agent system. Some practical solutions exist for securing AP
against malicious mobile agents. However, securing the
mobile agents against malicious AP is more challenging as
the host has full control of the execution environment.
Moreover, the mobile agent computing model violates some
of the fundamental assumptions of conventional security
techniques, i.e., programs runs on hosts which are trusted.
Other important assumptions are the identity and intention
assumptions [10]. Usually, when a program attempts some
action, the program acts on behalf of a known user and it is
assumed that the person intends the action to be taken. When
mobile agents execute on unknown hosts, then neither
identity or intention of the host is clear.

The fact that mobile agents may have to operate in such
unknown and open environment requires the concept of trust
of the hosting agent platforms despite that they may be
previously unknown to the mobile agent's owner [11]. In this
paper, we propose an approach for building trust in a mobile
agent system by exploiting the reference monitor concept
which provides trust of unknown APs and subsequently trust
enhanced security. Such a reference monitor entity is
obtained from a trusted third party (TTP) and can provide or
arbitrate several security services resulting in a system which
supports mobile agent applications in an open system.

112Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

The rest of this paper is structured as follows. Section II
discusses related work. Section III presents the proposed
security framework based on trust provided by the Reference
Monitor for providing a trusted computing environment.
Section IV discusses the integration and evaluation of the
reference monitor entity in an agent platform. Section V
presents the experimental setup used and results. Finally,
Section VI presents the conclusions drawn and outlines
future work.

II. RELATED WORK
Several security mechanisms exist to secure mobile

agents as they execute on remote hosts. However, most of
the existing schemes mainly allows the detection of integrity
attacks on the mobile agent and none of these solutions
provide a comprehensive integrated security framework for
protecting mobile agents.

One approach for mobile agents to have comprehensive
security against malicious platform involves allowing mobile
agents to migrate to known and trusted APs only [12]. Then,
agents are sent in encrypted form from one trusted AP to
another, where they execute, often after authentication of the
AP. However, such an approach seriously limits the agent’s
execution on a limited number of known and trusted APs. It
is also not suitable for some applications like search agents
(searching for information) on the internet, and mobile e-
commerce agents where AP may not always be known and is
against the notion of an open multi-agent system where new
APs can be dynamically added or removed from an agent's
itinerary.

Another proposed solution for providing comprehensive
security to mobile code advocates the use of trusted, tamper-
proof hardware which is not controlled by the local system
and which supports secure mobile agents execution [13].
This secure trusted computing base on each AP, thus,
provides the trusted environment for running critical code of
the mobile agent. Here, mobile agents move from one trusted
environment to another. Local resources on the system are
accessed in a client-server mode. The system outside the
trusted hardware has no access and thus cannot interfere with
the execution of the mobile agent. The external system can
only interact with the trusted tamper resistant hardware via
some restricted interface. The main drawback of this
approach is that every host has to be supplied with secure
trusted hardware which is not a simple task as such hardware
installation and maintenance may be expensive.
Furthermore, the use of tamper-proof hardware may not
scale-up efficiently and may be limited to highly security-
sensitive mobile agent computing areas such as banks and
stock markets. Moreover, the tamper-resistant devices could
also become a performance bottleneck in the execution of
mobile agent especially in cases where smart cards are used
as a cheap alternative for providing hardware trusted
computing base [14].

Another approach for protecting mobile agents involves
code obfuscation, whereby the agent's program is made
illegible and data hidden, thus rendering it difficult to read
and modify the agent code, data and partial results [15]. An
obfuscated mobile agent is like a black-box entity; it only

permits AP to provide inputs and read outputs from the
mobile agent. Thus, even if the mobile code runs on
unknown and untrusted APs, it can maintain confidentiality
and integrity. However, this technique often only provides
limited code confidentiality as given time, the malicious AP
will be able to de-obfuscate the code. In [16], the authors
actually show that complete obfuscation is impossible.
Furthermore, the malicious host could still re-execute
(replay) the mobile agent several times so as to observe its
reaction and guess its decision making strategy for example.
Esparza, et al. [17] proposes to monitor the execution time
on an AP. A longer than expected execution time on an AP is
indication that the AP may be attempting to de-obfuscate the
agent, modify the agent code, data and/or partial results or
replay the mobile agent. The main drawbacks of the
approach are that it requires the agent to return with the
partial results from each host visited to the Home Agent
Platform (HAP), i.e., HAP must be connected until the
transaction is over. The application would then no longer
support disconnected and asynchronous processing as
promised by mobile agent technology, though it does provide
security of mobile agent such as integrity, execution
integrity, and detection of Denial of service (DoS) attack.

Finally, the use of mobile cryptography (also referred to
as function hiding) which aims to offer provably strong
protection to mobile agents against both modification and
inspection attacks has been proposed. Mobile cryptography
is such that a mobile agent program is encrypted into a
ciphered executable program where it can execute on the
untrusted AP while remaining in the ciphered form [18] [19].
The efficiency of this approach is unknown and to the best of
our knowledge, there is no practical implementation. It is
still unclear if such a scheme can be implemented for real-
life applications. It is thus obvious that securing mobile agent
remains a challenging research problem.

Trust is an important component of mobile code security
[20]. When agents are executing in open environments on
unknown and untrusted APs, if they could have some
guarantees of trust, this would provide a basis for better
security solutions. In [21], the authors describe a trust
management architecture (MobileTrust) that can be
developed to manage security related trust relationships
explicitly and to make trust decisions. In such a system, trust
management brings an improvement in security as by
leveraging the trust knowledge gained on the past behaviours
of other execution hosts, the mobile agents itinerary can be
composed such as to minimize security attacks from
potential malicious APs. Similar trust computation can allow
the AP to evaluate the trustworthiness of a mobile agent from
a specific agent owner. However, such a technique may not
be suitable for all open environment applications. For
example, in a mobile agent based e-commerce application, a
mobile agent from an owner may not visit the same AP twice
and thus the trust values of the current execution may never
be useful. In [22], a trusted third party called a Clearing
House is proposed to maintain trust information about APs.
Before a mobile agent migrates to an AP, trust level
associated with the AP may be found out. However, this
solution heavily relies on the Clearing House which keep

113Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

tracks of the trustworthiness of each AP and also may not be
suitable for applications where the mobile agent have a
dynamic itinerary. Finally, such mechanisms of monitoring
behaviour of AP may be unpractical since not all attacks can
be detected and thus reported, especially breach in agent data
and code confidentiality.

III. REFERENCE MONITOR BASED SECURITY
FRAMEWORK

In this research work, we propose a practical and
pragmatic technique for providing mobile agent security
based on the reference monitor (RM) concept. Since its
introduction, in the early 1970s, in the “Anderson Report”
[23], the RM concept has been adopted for securing
computer and network. This concept visualises a system
component, called a reference validation mechanism, to be
responsible for administering the system's security policy. It
thus defines the requirements for implementing such a
mechanism in a manner that ensures that malicious entities
cannot circumvent policy enforcement [24]. The RM concept
thus provides a trusted and verifiable security policy
enforcement mechanism[25]. This is in line with the U.S
Government's criteria for building secure systems, the
Trusted Computer System Evaluation Criteria (the Orange
book) [26], where the reference monitor is mentioned. The
diagram in Figure 1 depicts the logical structure of the RM.

Implementations of the reference monitor concept make

use of several traditional security measures, which apply to
the agent environment. Such conventional techniques include
cryptographic methods for authentication of AP/agent,
encryption of data, integrity of data, and access control
methods, thereby providing an integrated security solution.
Thus, an implementation of the RM can be used to enforce
security. The security policy for agent computing can
involve different security requirements, however, any AP
which implements an RM entity can be considered to be
trustworthy. The mobile agent may then migrate to such an
AP for secure execution. Thus, the presence of an RM entity
which enforces security suffices to turn any remote and
unknown host into a trusted computing base in an open
system. In the case of mobile agent computing, we propose
that the RM entity be in the form of an agent (RM-agent)
which runs on the each AP. We define the following
fundamental assumptions about the trust association of all
entities in the security framework, for providing mobile

agent security. These trust associations comprise the trust
model in our system.

 The Certificate Authority (CA) authenticates
principals and issues certificates to entities such as
the agent owner, AP administrator, RM-agent,
trusted-third party (TTP) RM entity distributor.
Users/agent owners and APs with valid certificates
are considered trustworthy.

 Trusted Third Parties (TTPs) are principals with
genuine certificates from CA and are trustworthy.
These TTPs distribute standard RM-agents, which
satisfy some design specifications, for use by any
AP. Such TTPs can also act as subordinate CAs. The
trusted CA delegates them the right to issue
certificates to APs. Then, the TTP can also maintain
a directory server where it stores information about
each AP and their corresponding RM-agent.

 RM-agents on APs with genuine certificates from
the TTP are trustworthy. These certificates are
signed by the TTP who must have full knowledge of
the RM agent's behaviour and capabilities and thus
all the possible consequences of its operation. The
system administrator of the AP can request for an
RM-agent and its certificate from the TTP,

 Agents signed by trustworthy owners are
trustworthy. The agent-owner is expected to have
knowledge of the capability and behaviour of the
agent and to take responsibility of the actions of the
agent acting on behalf of the user/owner.

The underlying idea of our trust model is based on the
usage of undeniable proofs like digital signatures, i.e., RM-
agents are signed by the TTP (using the private key of the
TTP), thus ensuring that the RM-agents are genuinely from
the TTP. The digital signature of the RM-agent also allows
to check the integrity of the RM-agent, i.e., indication of
tampering, if any, on the RM-agent. In the next section, we
describe how the RM-agent can be delivered securely to an
AP and how a mobile agent can assess the authenticity and
integrity of the RM-agent before deciding to migrate to the
remote AP. In this work, we focus on the RM integration
into the AP to establish trust, rather than on how the RM-
agent enforces the security policy to provide security to
mobile agents executing on the AP.

IV. INTEGRATION AND EVALUATION OF RM-AGENT
In this section, we describe how the RM-Agent, which

embodies the reference monitor concepts, can be securely
obtained and integrated in an AP to establish trust so as a
mobile agent can safely migrate and execute on the
destination AP.

A. Distribution and Integration of RM-agent into an AP
The different steps required for an AP to obtain a trusted

RM-agent from a TTP in a secure manner is illustrated in
Figure 2.

Step 1: AP registers with TTP and requests an RM-agent
for enforcing security policy. The security to be provided by
the RM-agent, and thus the AP, may vary based on the
security policy of the AP.

Reference
Monitor

Subjects

Security
Policy

Objects

Audit
Trails

Enforces security
policy

Figure 1. Logical Structure of RM

114Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

Trusted Third Party
RM Distributor Server

Agent Platform

1.Register & Request for RM Agent

3.RM-agent + RM Certificate signed by TTP

5. Secure AP, RM-
agent integrated

in AP.

2. Generate
& Sign RM
certificate

4. Verify
authenticity and
integrity of RM-

agent.

Figure 2. Distribution of RM-agent by TTP distributor

Step 2: TTP generates a digital certificate (RMTTPCert) for
the RM-agent. This certificate contains information that
would allow the receiving AP to verify the authenticity and
integrity of the received RM-agent from TTP. Some
important information on the RMTTPCert certificate includes:
identity of AP to whom RM-agent is distributed;
cryptographic hash value of RM-agent code; digital signature
of the RM-agent, version no. of RM-agent, and security
policy ID implemented by RM-agent. The RMTTPCert
certificate is itself signed by the TTP.

Step 3: The TTP sends the RM-agent and the RMTTPCert
certificate to the AP administrator/owner.

Step 4: Upon receipt of the RM-agent code and RMTTPCert
certificate from the TTP, the AP administrator/owner can
verify that the signature of the certificate is correct. The AP
administrator/owner then uses the digital signature of the
RM-agent, provided in the RMTTPCert to ensure that RM-agent
was sent by the TTP (authenticity check). Finally, the AP
administrator/owner, checks if the hash of the RM-agent file
downloaded is the same as that on the certificate to ensure
that the RM-agent has not been replaced or tampered with
(integrity check). AP administrator/owner also checks other
information on the certificate.

Step 5: Finally, the AP administrator integrates the RM-
agent in the AP to establish the AP as a trusted entity which
provides security as per the security policy ID.

Thus, it can be seen that the RM-agent can be easily and
securely downloaded from a TTP by any AP in an open
system and integrated into the agent execution environment
to provide trust enhanced security.

B. Verifying Authenticity and Integrity of RM-agent
Before a mobile agent migrates to the destination AP, if

security is required, it has to ensure that RM-agent running
on the destination AP has not been modified and is truly
from a TTP. This problem is heightened by the fact that in an
open system, the destination AP may not be known by the
mobile agent. Verifying the trustworthiness of the RM-agent
on a remote AP is necessary as one of the property of the
RM is that it should be tamperproof and verifiable. It is true
that the RM-agent has a certificate, provided by the source
TTP (RMTTPCert), but the certificate is no guarantee that the
RM-agent running on the AP has not been modified. The
RMTTPCert from the destination RM-agent allows the mobile
agent to check the signature of the certificate to determine if
the certificate and the data it contains are genuine and
unmodified. The certificate shows that the RMagent was

obtained from a TTP. The certificate also contains the
security policy ID which informs the agent of the security
provided by the destination AP. However, neither the
RMTTPCert certificate nor the digital signature of the RM-
agent allows to verify that the RM-agent running on the
destination AP is the same as the one distributed by the TTP.
Thus, it is not sufficient to confirm the trustworthiness of the
RM-agent on the destination AP.

Alternatively, if the mobile agent could compare the hash
value of the RM-agent code from the certificate with the
hash code of the actual RM-agent to verify authenticity and
integrity of the RM entity. However, given that the RM-
agent is on the destination AP, the mobile agent on a source
AP cannot calculate the hash value of the RM-agent. The
mobile agent cannot also rely on the hash value received by a
destination AP, as the destination AP may send a stored hash
value of RM-agent, while it is running a modified version of
the RM-agent. In such circumstances, the static validation
approach fails to allow the mobile agent on a source AP to
determine the integrity and authenticity of the RM-agent
running on the destination AP prior to migration. Verifying
the integrity and authenticity of code running at a remote
destination is a challenging issue which we address as
follows.

We identify the following requirements regarding the
verification of the integrity and authenticity of the RM-agent
running on the destination AP:

1. The source AP should be able to verify the integrity
and authenticity of the RM-agent on the destination AP by
storing minimal information about the RM-agent.

2. The integrity and authenticity checking mechanism has
to stay secure even if the destination AP is malicious.

3. The communication bandwidth used during the
verification process should be minimal, i.e., it should not
involve the transfer of large amount of data.

4. The verification mechanism should be efficient in
terms of computation.

5. It should be possible to run the verification several
times, if desired, to ensure that integrity and authenticity of
the RM-agent is maintained at all times. Static validation
actually fails to satisfy this requirement because the hash
code can be stored and sent back by the destination AP
whenever required.

We propose a dynamic validation mechanism that
satisfies the above conditions based on the challenge
response approach. The mobile agent on a source AP can
thus effectively verify the integrity and authenticity of the
RM-agent on the destination AP that it wishes to migrate to.

C. Authentication and Integrity Checking Protocol (AICP)
 The task of checking the integrity and authenticity of the

RM-agent on the destination AP in our security framework
lies upon the RM-agent on the source AP, since it is a service
that may be requested by any mobile agent. If the mobile
agents themselves were to perform this task, it would have
added unnecessary burden on the mobile agent. The mobile
agents thus remain lightweight and are programmed to only
perform their tasks in the application. Accordingly, when a
mobile agent wishes to migrate from its current AP to

115Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

Hash
Algorithm

Hash
Value

RM class file

Random, R

Random R

RM class file

Figure 3. Calculating the response of the challenge at source

Hash
Algorithm

Hash
ValueClass file of

this agent

Random
Number, R

Random
Number R

 class file of
this agent

Decrypt
Encrypted

Challenge (R)

Encrypted
Challenge

Figure 4. Calculating the response of the challenge at destination

another, it requests the RM-agent on the source AP to assess
the security of the destination AP. Given that mobile agents
can only interact with one another by communicating using
an Agent Communication Language (i.e. an agent cannot
invoke a method of another agent but it can request the
destination agent for some processing), the proposed
dynamic validation of authenticity and integrity of the RM-
agent involves interaction which we refer to as the
Authentication and Integrity Checking protocol (AICP).

This interaction begins with the source RM-agent
requesting the RMTTPCert certificate from the destination RM-
agent. From the certificate, the source RM-agent learns about
the TTP from which the destination RM-agent has been
acquired. Based on this knowledge, the source RM-agent can
retrieve the distributed RM-agent files from the TTP (same
files/codes are running on the destination AP as the
destination RM-agent), so that the hash value of the RM-
agent can be computed locally. It is assumed that the TTP
makes available the RM-agent file for download for such
verification process. It may be argued that downloading the
RM-agent code for this purpose may require a large amount
of bandwidth and storage space on the source AP.
Nonetheless, our implementation of the RM-agent in JADE
results in an RM-agent Java class file which is 17 KB in size.
JADE is used as it is one of the most popular APs and it is
Java-based; most of the existing APs are Java-based APs.
Given the increasing bandwidth capacity and high speed of
today's network, retrieving and caching the RM-agent for a
short period of time should not pose any problem. Assuming
there are ten different TTP sources with different
implementations of the RM-agent, and that each RM-agent is
of the size 20KB, for an AP to temporarily cache all the RM-
agents, only 200KB (0.2 MB) of storage space is required.
Thus the proposed protocol is storage efficient.

Next, the source RM-agent issues a challenge (random
number -R) to the destination RM-agent. This challenge (R)
can be sent encrypted using the public key of the destination
RM-agent. The source RM-agent also calculates the
expected response as follows and as depicted by Figure 3.

 Challenge (R) is concatenated with the RM-agent
class file (RMCF): R || RMCF

 The concatenated output is hashed to obtain the hash
value H(R || RCMF)

Similarly, the destination RM-agent uses its Private key
to decrypt the encrypted Challenge sent by the source RM-
agent. This step ensures that only the destination RM-agent
has access to the Challenge (R). The destination RM-agent
concatenates the Random number R to the current actual

RM-agent file and then calculates the hash value of the
concatenated input as shown in Figure 4. The response from
the destination RM-agent is compared with the expected
response computed by the source RM-agent. If they matches,
then it is safe to assume that the destination RM-agent has
not been tampered with (integrity). If the two hash values are
the same, we can also assume authenticity of the destination
RM-agent as the hash value has been computed using the
RM-agent file from the TTP.

V. EXPERIMENTS AND RESULTS
Experiments were designed with JADE agent

development environment. The destination RM-agent uses
its own class file for generating the Hash value. Using the
this.getClass() method allows to find the agent's Java class
filename. Once the class filename is known, the path of the
file can be found. Because the RM-agent is running, the RM-
agent java class file is read-only, i.e., cannot be modified.
We read the file and copy it into another file, e.g., CopyFile.
Concatenation is implemented by appending the Random
number to the "CopyFile". The "CopyFile" is then hashed
using SHA-256 to generate the hash value. Thus, it can be
observed that the hash value generated truly correspond to
the destination RM-agent. Similarly, on the source RM-
agent, the RM-agent class file is read and copied into a new
file, to which the random number is appended in the end
(concatenation). This new file is passed as an argument to
the hash function to generate the expected hash value. The
same hash function is used by the source RM-agent and the
destination RM-agent.

Given that in the context of agent computing all
interaction takes place by means of ACL messaging between
agents, the AICP is implemented as a series of messages
exchanged between the source RM-agent and the destination
RM-agent. The RM-agent is programmed by adding the
following two behaviours: InitiatorAICP and ResponseAICP
implemented as a OneShotBehaviour.

It was assumed that both the source AP and destination
AP uses the same TTP source for the RM-agent. We run the
AICP, with different versions of the destination RM-agent
class file. It was observed that when the proper destination
RM-agent was used at the destination AP, the response
obtained was as expected. However, when the destination
RM-agent code has been changed, the response obtained was
different than the expected response. Thus, using the AICP, a
source AP may successfully assess the authenticity and

116Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

integrity of the destination RM-agent and consequently the
trustworthiness of the destination AP.

VI. CONCLUSIONS AND FUTURE WORK
We introduced the RM-agent, as a fundamental

component of our framework. The RM-agent allows to
implement the reference monitor concept, whereby a
reference validation mechanism (implemented by the RM-
agent), is responsible for enforcing the system's security
policy. The RM-agent satisfies the requirements of the
reference monitor concept in the sense that the mobile agent
can verify that the RM-agent is from a trusted source (RM-
agent is verifiable and trustworthy) and it is hasn't been
tampered with. A novel dynamic verification approach was
proposed for assessing authenticity and integrity of the
remote RM-agent running on the destination AP.

RM-agents contribute to providing a secure computing
environment to mobile agents. Altogether, with the security
framework, it is possible for a mobile agent to migrate to any
AP with the assurance of security. In this case, it is not
important for a mobile agent to know every AP, as long as
the AP deploys a RM-agent obtained from a TTP. Thus, our
security framework is most suitable for open systems.
Additionally, the security framework supports mobile agent
computing with static as well as dynamic itineraries. Future
works, revolves around equipping the RM-agent to ensure
different security services by integrating different behaviours
to the RM-agent. Then, the RM-agent will be able to enforce
security such as code and data confidentiality, integrity,
execution integrity.

REFERENCES
[1] R. R. Brooks, "Mobile Code Paradigms and Security Issues", IEEE

Internet Computing, vol.8, no. 3, pp. 54-59, May/June 2004
[2] D. B. Lange and M. Oshima. "Seven good reasons for mobile agents."

Communications of ACM , March 1999, 88-89.
[3] R. K Verma and S. Jangra, S., "Significance of Mobile Agent in

Wireless Sensor Network". International Journal of Advance
Research in Computer Science and Management Studies, 1(7), 2013,
pp. 328-335.

[4] T.T. Khose Patil, and C, Banchhor, "Distributed Intrusion Detection
System using mobile agent in LAN Environment." International
Journal of Advanced Research in Computer and Communication
Engineering, 2(4), 2013. pp. 1901-1903.

[5] V. Upadhyay, J. Balwan, G. Shankar, and Amritpal, "A Security
Approach for Mobile Agent Based Crawler." Proceedings of the
Second International Conference on Computer Science, Engineering
& Applications (ICCSEA 2012) New Delhi, India, 2012.

[6] Y. Essa, G. Attiya, and A. El-Sayed, "Mobile Agent Based New
Framework for Improving Big Data Analysis." IEEE International
Conference on Cloud Computing and Big Data (CloudCom-Asia).
Fuzhou, 2013.

[7] W. Godfrey, S. Jha, and S. Nair, "On a Mobile Agent Framework for
an Internet of Things". IEEE International Conference on
Communication Systems and Network Technologies (CSNT), 2013

[8] M. Higashino et al., "Management of Streaming Multimedia Content
using Mobile Agent Technology on pure P2P-based Distributed e-
Learning System. Barcelona", In the Proceedings of the 27th IEEE
International Conference on Advanced Information Networking and
Applications, 2013

[9] W. Jansen, and T, Karygiannis, " NIST Special Publication 800-19-
Mobile Agent Security", Technical paper, Computer Security
Division: National Institute of Standards and Technology, 2000.

[10] C. Lin, V. Varadharajan, "Trust Enhanced Security - A New
Philosophy for Secure Collaboration of Mobile Agents", COLCOM,
2006, International Conference on Collaborative Computing:
Networking, Applications and Worksharing, International Conference
on Collaborative Computing: Networking, Applications and
Worksharing 2006, pp. 76.

[11] Jensen, C. Damsgaard. "The Importance of Trust in Computer
Security." Trust Management VIII. Springer Berlin Heidelberg, 2014.
pp 1-12.

[12] X. Guan, Y. Yang, and J. You, "POM-A mobile agent security model
against malicious hosts". IEEE Fourth International Conference on
High Performance Computing in Asia-Pacific Region. Beijing, China,
2000

[13] S. Zhidong, and T. Qiang, "A Security Technology for Mobile Agent
System Improved by Trusted Computing Platform." Proceedings of
the Ninth International Conference on Hybrid Intelligent Systems
(HIS 2009) , Shenyang, 2009.

[14] S. Loureiro, and R. Molva, "Mobile code protection with smartcards."
Proceedings of the Sixth ECOOP Workshop on Mobile Object
Systems: Operating System Support, Security and Programming
Languages, Cannes, France,, 2000.

[15] S. Armoogum, and A. Caully, "Obfuscation Techniques for Mobile
Agent code confidentiality." Journal of Information & Systems
Management, 1(1), 2011 pp. 25-36.

[16] B. Barak, et al. "On the (im)possibility of obfuscating programs."
Proceedings of the 21st Annual International Cryptology Conference
- Advances in Cryptology, Santa Barbara, California, USA, 2001, pp.
pp 1-18.

[17] O. Esparza, M. Soriano, J. L. Munoz, and J. Forne, "A protocol for
detecting malicious hosts based on limiting the execution time of
mobile agents." IEEE Eight International Symposium on Computers
and Communication (ISCC'03), Kemer-Antalya, Turkey, 2003

[18] T. Sander, and C. F. Tschudin, "Towards Mobile Cryptography."
Proceedings of IEEE Symposium on Security and Privacy. Oakland,
CA, 1998

[19] H. Lee, J. Alves-Foss, and S. Harrison, "The use of Encrypted
Functions for Mobile Agent Security." IEE 37th International
Conference on System Sciences, Hawaii, 2004

[20] U. G. Wilhelm, S. Staamann, and L. Buttyn. "On the problem of trust
in mobile agent systems." In Proceedings of Network and Distributed
Security Symposium, San Diego, California, Internet Society, 1998

[21] C. Lin, V. Varadharajan, "MobileTrust: a trust enhanced security
architecture for mobile agent systems", International Journal of
Information Security, Volume 9, Issue 3, 2010, pp 153-178

[22] D. Foster, V. Varadharajan, " Security and trust enhanced mobile
agent based system design," Third International Conference on
Information Technology and Applications. 2005, Vol 1 pp 155 - 160

[23] J. Anderson, " Computer Security Technology Planning Study,
Bedford MA: Technical Report ESD-TR-73-51", Air Force Electronic
Systems Division, Hanscom AFB. 1972

[24] Jaeger, T., 2011. Reference Monitor. Encyclopedia of Cryptography
and Security (2nd Ed.), 2(1), pp. 1038-1040.

[25] C. E. Irvine, "The Reference Monitor Concept as a Unifying Principle
in Computer Security Education." Proceedings of the International
Federation for Information Processing (IFIP 99) & 1st World
Conference on Information Security Education. Kista, Sweden, 1999

[26] D. o. D., "Trusted Computer System Evaluation Criteria, Orange
Book", Library No. S225 711: Dept of Defense CSC-STD-001-83.
1983

117Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

