
A Brief Survey of Nonces and Nonce Usage

Geir M. Køien

Faculty of Engineering and Science
University of Agder
Grimstad, Norway

Email: geir.koien@uia.no

Abstract—Last year the European Union Agency for Network
and Information Security (ENISA) published a report on cryp-
tographic protocols. A main verdict was that we still have not
reached maturity for the design and analysis of cryptographic
protocols. This is bad news for a society that has become
dependent on well-functioning information- and communication
technology (ICT) infrastructures. In this paper, we address this
by investigating the nonce. The nonce, a number-used-once, is
but one small element of a cryptographic protocol. That is, a
small, but nevertheless a critically important element. Yet, there
is relatively little to be found in the literature regarding the
properties of the nonce. This is thus an attempt to improve on
this, by providing an initial analysis of nonces and classifying
types of nonces used in different cryptographical protocols.

Keywords–Number-used-once; Nonce; Randomness; Freshness;
Timeliness; Uniqueness; Non-repeatability; Cryptographic protocol.

I. INTRODUCTION

A. Background
The ENISA report “Study on cryptographic protocols” [1]

published in 2014 investigates the state-of-the-art for crypto-
graphic protocols. The conclusion is clear and points out that
cryptographic protocols are not well understood:

Whilst the security of basic cryptographic building blocks,
such as primitives and protocols, is well studied and
understood, the same cannot be said of cryptographic
protocols. The scientific study of such protocols can be
said to be still not mature enough.

– from the executive summary of [1]

Also, we have the ENISA report “Algorithms, key size and
parameters report 2014” [2]. This is an important report, in
a yearly series, as it represents the nearest thing to consensus
about state-of-the-art in cryptographic algorithms and levels of
protection. Here we learn, amongst others, that when using a
nonce as an Initialization Vector (IV), there are several traps to
fall in. Section 4, “Basic Cryptographic Schemes”, goes into
detail about concerns with using nonces as IVs for block cipher
modes and in hash-based schemes. The worries are mainly
about non-randomness and predictability. Yet, the report is
surprisingly vague about what a nonce really is:

Many modes make use of either a nonce or an random IV.
A nonce is a number used once, it is a non-repeating value
but not necessarily random. Thus a nonce could be a non-
repeating sequence number. On the other hand a random
IV should be random, and unpredictable to the adversary.

– from Section 4.1 in [2]

Nonces are an important part of many, if not most, cryp-
tographic protocols. They do serve different purposes and the
requirements on the nonces are not always explicit, making it

hard to determine exactly what properties the nonces must have
and to verify that they indeed to have the required qualities.

B. Randomness, Computationally Infeasible, The Birthday
Paradox and Collisions

We shall use the terms randomness and pseudo-
randomness. Actual bit-field randomness in a nonce informa-
tion element (IE) is not always necessary or even desirable. For
our purpose, we want the term merely to mean that the value
of the “random” IE is uniformly distributed over the whole
value range and that a priori guessing the value of a random
IE is computationally infeasible. That is, even when knowing
very large series of prior values, the adversary shall not have
gained any practical advantage in guessing the next value.

In this paper, we will use the term computationally in-
feasible. We intend it to mean that it will not, under any
circumstance, be practical for an adversary to brute-force guess
the random IE. That is, pre-computation attacks of dictionaries
and rainbow tables must be utterly impractical and beyond the
reach of even the most powerful adversary. This implies that
the range of IE values must be so large that pre-computation
indeed becomes impractical.

The birthday paradox is well known in cryptography (Sec-
tion 2.1.5 in [3]). In our context, we shall worry about it’s
application to collisions. Nonce collisions will, in some cases,
be a severe security problem. The collision-free property may
therefore be required. It is well known that collision probability
for a random draw is roughly 2N/2, where N is the bit-field
size of the random IE. This means that one will need the
random IE to have a bit-field size of 2 x N . It seems generally
accepted that “128 bit complexity” is enough to provide the
computationally infeasible property. If collisions are a security
problem, then one need a 256 bit field for the IE in question in
order to reach the required security level. On the other hand, if
collisions are not a worry, then a 128 bit nonce should suffice.

II. BRIEF LITERATURE SURVEY

There is a considerable body of literature concerning
security protocols and cryptographic methods available. In this
paper, we have focused mostly on investigating nonce usage
as described in security protocols. That is, our focus is from a
“user’s perspective”. In this respect we have investigated some
classic security papers, some papers concerning formal veri-
fication of security protocols and some papers that explicitly
mention and discusses nonces.

85Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

A. Older Literature
Nonces are a very important part of BAN logic, as reported

in in the seminal research reports “A Logic of Authentication”
[4]. In [4], there is substantial emphasis on the freshness as
property of a nonce.

Nonces are also explicitly mentioned in “Prudent Engineer-
ing Practice for Cryptographic Protocols” [5]. Here, the authors
clearly relate authentication challenges with nonces. We here
also find a description of what a nonce may be:

• Timestamps
• Serial numbers (which must be recent somehow)
• Random numbers

These three examples are also found elsewhere in the
literature. In [5], the authors also a provide a principle for
nonces:

Be clear what properties you are assuming about nonces.
What may do for ensuring temporal succession may not
do for ensuring association – and perhaps association is
best established by other means.

We concur with the above principle (Principle 6).
The paper “A Survey of Authentication Protocol Literature:

Version 1.0” [6] is not about nonces per se, but nonce use is
mentioned frequently throughout the survey.

B. Books Covering Nonces
In the book “Handbook of Applied Cryptography” (HAC)

[3] we find a fair amount of material on nonces. Here the
authors have explicitly highlighted the time-variant properties.
They put emphasis on the role nonces play in preventing replay
attacks. This is of course in line with the freshness property
of [4]. We furthermore note that the authors highlight the
following (Section 10.3.1 [3]):

The term nonce is most often used to refer to a random
number in a challenge-response protocol, but the required
randomness properties vary. Three main classes of time-
variant parameters are discussed in turn below: random
numbers, sequence numbers, and timestamps. Often, to
ensure protocol security, the integrity of such parameters
must be guaranteed (e.g., by cryptographically binding
them with other data in a challenge-response sequence).
This is particularly true of protocols in which the only
requirement of a timevariant parameter is uniqueness, e.g.,
as provided by a never-repeated sequential counter.

The “time-variant” property seems to be as much about
ordering as about time per se. In this sense it is more concerned
with uniqueness and freshness than about temporal properties.

In the book “Security Engineering” [7], by Anderson, we
find only a few brief passages. This, otherwise quite compre-
hensive text, mentions that nonces may be random numbers,
serial numbers or timestamps, but does not say much more.
That is, the problem with synchronizing clocks are mentioned
as a drawback to timestamps. Another comprehensive book,
“Computer Security: Art and Science” [8], also provides next
to nothing on nonces. A brief passage is all, with a few
extra sentences for timestamps added to it. The book “Applied
Cryptography” [9] is also mostly silent on the topic.

The book “Protocols for Authentication and Key Establish-
ment” [10] does cover nonces and nonce usage. In Chapter
1.5 “Freshness” is handled. The text recognizes Timestamps,
Nonces (Random Challenges) and Counters as ways to achieve

freshness. This classification is somewhat different from the
one found in the HAC or in [5], [7]. The authors also places
emphasis on key freshness, which may be assured by use of
nonces.

The book “Cryptography Engineering” [11] barely men-
tions nonces, in conjunction with Initialization Vectors (IVs),
and have only a brief mention of timestamps. Here, they
highlight what they call the “same-state” problem, which in
effect seems to be lack of uniqueness.

C. Some Research Papers Covering Nonces
In the paper “Nonce-Based Symmetric Encryption” [12]

the author discusses encryption mode-of-operations using IVs.
The IVs in question are nonce based, and here the authors
emphasises the uniqueness property. In the “Encode-then-
encipher encryption: ...” paper [13], the general assumption
is that the nonce is a counter or a random value. Collisions
are problematic, and so the collision probability must be kept
low.

An analysis of nonces used for authentication in a smart-
card context can be found in [14]. The authors seems only
to be concerned about “random” nonces, although it is not
clear from the text whether they intend this to be random
or pseudo-random. Still, it appears to be a trivial application
where unpredictability and uniqueness seems the essential
characteristics. Freshness is not directly mentioned, but it is
probably assumed. Use of nonces in SIP is studied in [15]. The
basis is a Diffie-Hellman exchange [16] and the use of random
nonces, one for the client and one for the server. The scheme is
relatively complicated, and somewhat bewilderingly, there are
no other requirement on the nonces than they be “random”.
We assume this implies freshness and uniqueness.

The lack of preciseness and explicitness as demonstrated by
the two latter papers seems to be fairly common, and informal
browsing of the literature indicates that this state of affairs are
the norm for many conference papers.

D. The Key Wrap Problem and Synthetic IVs
During the late 1990s, the National Institute of Standards

and Technology (NIST) posed the so-called “Key Wrap”
problem. The essential problem is how to develop secure
and efficient cipher-based key encryption algorithms. This call
caused quite a lot of research activity and then standardization.
Amongst the notable papers are [17], in which the authors
discusses use of the so-called Synthetic IV (SIV) and how
to have misuse-resistant nonce-based authenticated encryption.
Use of SIVs are also captured in RFC 5297 [18].

E. Keeping Time in the Face of An Intruder
Maintaining synchronized clocks in a distributed network

is no small problem in itself, and it gets worse when one may
expect a dishonest party. As highlighted in the Network Time
Protocol (NTP) ver. 4 [19], there are serious security consider-
ations for synchronized global clocks. Section 15 in [19] goes
into considerable detail about the security implications.

F. Same-State and Time Resolution
Timestamps may suffer from resolution problems too, also

known as the the same-state problem. That is, a timestamp
nonce is not unique within the time resolution period. The

86Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

problem can be solved by combining timestamps and counters.
One such scheme is presented in a paper by Mitchell [20], with
a hybrid timstamp/counter based nonce. The Mitchell approach
was the input to the sequence number scheme used in the
UMTS Authentication and Key Agreement (AKA) protocol
(Annex C in [21]). To avoid tracking by the sequence numbers,
the actual sequence number is masked by an anonymity key
in the UMTS AKA protocol.

III. NONCES AND FORMAL VERIFICATION

This is just a few examples of the assumptions made by
formal verification tools with regard to nonce properties.

A. BAN Logic
The research report “A Logic of Authentication” [4] did

in many ways bootstrap the field of formal security protocol
analysis. The logic devised in the report, commonly known as
the BAN logic, is a belief logic and it is, by today’s standard,
both incomplete and flawed. However, it is interesting to note
that the so-called “freshness formula”, is essential to the logic.

1) The Freshness Formula:

#(X) (1)

The formula X is fresh, that is, X has not been sent in a
message at any time before the current run of the protocol.
This is usually true for nonces, that is, expressions gen-
erated for the purpose of being fresh. Nonces commonly
include a timestamp or a number that is used only once,
such as a sequence number.

2) The Nonce-Verification Rule: The rule is concerned with
freshness, and if and only if the message is fresh/recent will
the receiver believe in the message. It is noteworthy that [4]:

“This is the only postulate that promotes from |∼ to |≡.”

That is, the nonce-verification rule is the only rule that
promotes once said to believes. This again means that the
freshness property is required in BAN logic in order to
successfully prove that the target protocol was successful. We
observe that (pseudo-) randomness is not actually mentioned
here, but it not excluded either. Timestamps and serial numbers
are explicitly mentioned. Formal verification tools for verifying
security protocols must necessarily have some way to capture
what the nonce is to achieve. In BAN logic [4], it is clear that
freshness is the main nonce objective.

B. Process Algebra
The book “Modelling and analysis of security protocols”

[22] covers formal modelling and analysis in the context of the
process algebra “Communication Sequential Processes” (CSP).
There is an associated compiler, Casper, and a model checker,
the “Failures-Divergence Refinement” (FDR) tool.

The authors discuss nonces and nonce properties. The
Station-to-Station (STS) protocol is one of the protocols dis-
cussed, and interestingly they note that “Note how the Diffie-
Hellman terms double as nonces, so providing assurances
of freshness.” (Section 0.2 in [22]). This dual role can be
problematic, unless explicitly defined and unless the properties
matches both roles. Nonces is defined as (Section 0.7 in [22]):

In the context of security protocols a nonce can informally
be taken to be a fresh, random value. It is created as

required in a way that is supposed to guarantee that it is
unpredictable and unique. Giving precise formal meaning
to terms like unpredictable, fresh and unique is itself rather
subtle and we will see later how this can be done in a
number of frameworks, including our own.

The authors differentiates between nonces, where random-
ness is involved, and timestamps. They also notes that “If we
are using time-stamps to help maintain the security of the
protocols we need to bear in mind ways that an intruder might
try to subvert the mechanisms.”. There is no mentioning of
counters or serial numbers. That is, the authors briefly mention
“identifiers for runs” and this may indeed be a counter.

As a modelling strategy, a nonce must be strictly unique
in CSP. This in effect precludes the use of timestamps, and
it explains why the authors distinguishes between nonces
and timestamps. Also, a nonce can only be used once. This
shouldn’t be a surprise, but it is quite common to allow a nonce
to remain within a protocol sequence as a way of binding
the message sequence together (providing association). But,
as noted in Principle 6 in [5], this is a task that perhaps
is best solved by other means. There are also schemes to
differentiate Initiator (I) and Responder (R) nonces, although
this has no real bearing on the nonce properties. Nonces are
defined by the Nonce constructor, where Nonce.n defines n
as a nonce. It is possible to capture the notion that n should
be secret, but this is not a characteristic of n per se.

C. The AVISPA and AVANTSSAR Toolsets
The AVISPA project was funded by the European Union

during the early/mid 2000. The acronym AVISPA stands for
Automated Validation of Internet Security Protocols and Ap-
plications. The project goals was to develop formal modeling
techniques for the analysis of security protocols. The formal
verification tools rely on an abstract notion of the nonce, where
freshness and uniqueness are the main properties [23].

The follow-up AVANTSSAR project provided considerable
improvements to the AVISPA formal modelling tools, in partic-
ular the somewhat awkward High Level Protocol Specification
Language (HLPSL) was substituted with the AVANTSSAR
Specification Language (ASLan++) [24], which more closely
resembles the familiar Alice-Bob notation. However, the se-
mantics for the nonce is the same, and symptomatically, the
way to initialize a nonce in ASlan++ is by assignment with a
value from the pre-defined fresh() function.

While freshness may appear to be the only aspect captured
here, we note that secrecy may additionally be defined as a
goal for the nonce. This would captured as a protocol goal
rather than as an intrinsic aspect of the nonce.

IV. NONCE ATTRIBUTES

In the following section we try to capture the attributes
we may require of a nonce. It is a synthesis of requirements,
explicit and implicit, found in the literature.

A. Base Attributes
We need to define the attributes that a nonce may or may

not have in order to properly classify the nonce types. The
definitions are given with respect to a nonce of a given bit
field size. The bit field size is assumed to be large enough
to exceeds any practical computational means for exhaustive
guessing or testing with respect to any given property.

87Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

B. Uniqueness Properties
We have two uniqueness variants.

Attribute 1. Uniqueness
Uniqueness is the property that that the value of the nonce

will never be repeated.

This is another way of expressing the once-only property. It
also implies a collision-free property. The uniqueness may be
expressed within a given context, and if so, it is prudent prac-
tice to make this constraint explicit. The uniqueness property
effectively precludes the use of a random function for assigning
the nonce value. Pseudo-random numbers will generally satisfy
this property, as will sequence numbers. Uniqueness, if it can
be demonstrated, is one way to ensure the never-used-before
aspect of freshness.

Attribute 2. Statistical Uniqueness
A statistically unique nonce shall be computationally in-

distinguishable from a unique nonce.

The probability of a collision for a statistically unique
nonce must be exceedingly low. It must be computationally
infeasible to distinguish between a unique nonce and a statis-
tically unique nonce. If nonces are truly randomly generated,
then one may experience collisions. However, with uniformly
distributed random draws with a very large outcome space,
collision will be exceedingly infrequent.

C. Freshness and Recentness
Uniqueness, or statistical uniqueness, does not quite cap-

ture timeliness or recentness. This is a problem since in many
protocols it is important to demonstrate that all principals,
including certificate authorities and authentication centers, are
online during the protocol run. Ideally, we want to capture
recentness directly in the nonce, but this harder than one might
initially envision. Proving that all principal parties are online
may therefore best be carried out by application of nonces,
rather than being an inherent property of “fresh” nonces.
We therefore exclude recentness as an inherent property of
freshness.

Attribute 3. Freshness
Freshness is the attribute that a certain nonce value has

never been used before in the given context.

Freshness is an essential property and it is likewise essen-
tial that the freshness is verifiable by the receiver. If freshness
verification, for the receiver, is not implicit in the scheme, we
prefer to label it as weak freshness. Then, to attain verifiable
freshness may require additional steps in the protocol itself.
This is acceptable, provided that the verification is indeed
carried out.

D. Unpredictable Nonces
Uniqueness and freshness are fundamental properties, but

there are cases where they are insufficient or unnecessary.
For instance, unpredictability is not intrinsic to uniqueness or
freshness. Nonces that only require uniqueness and freshness
may be produced by a sequential number scheme, but they
will certainly not be unpredictable.

For some cases, one must explicitly require that the nonce
is unpredictable. That is, the nonce must appear to be randomly

drawn. We generally assume, but do not require, that the ran-
domness is pseudo-randomness. The pseudo-random number
generator (prng()) function must have uniform distribution
over the whole outcome space and it must be computationally
infeasible to guess the next value even when given very long
series of previous values. The quality of the prng() function
and security associated with the initialization of the function
is essential. In [25], we find many examples of security being
compromised due to what the authors call “bad randomness”.
We define unpredictable here as compliant with our statistical
uniqueness requirement, and hence it is really a “statistically
unpredictable” attribute.

Attribute 4. Unpredictable
This is the property that predicting the value of the next

nonce must be computationally infeasible. This must hold even
if the adversary have observed a large number of previous
nonces and the associated contexts.

E. Predictable Nonces
Freshness can be assured without randomness, and times-

tamps and counters are obvious solutions. Encoding-wise, a
timestamp may be seen as a special case of a counter. The
counters must be monotonically increasing, although discrete
continuity seems not to be required. This allows for timestamps
to be interpreted as counters. It is also possible to abandon
the requirement for monotonicity, but then obviously one can
no longer guarantee sequential order. Schemes exits where a
window mechanism is used (See SEQ use in UMTS [21]),
but this opens up to the risk of replays and one looses
the possibility to guarantee that the principals are all online
during the transaction. Use of window mechanisms may be
permissible under some circumstance, but we generally argue
against it.

Counter wrap-around is a potential hazard for sequentially
ordered nonces. We mention this explicitly since it is not un-
common to use protocol frame numbers and similar as “nonce-
like” inputs, and these counters will generally be allowed to
wrap-around. Special care must be taken for cases where this
may occur.

Attribute 5. Sequentially ordered
This is the property that the nonce is a counter with

monotonically increasing values.

Since sequential order alone cannot provide timeliness, we
have added timeliness as a separate attribute.

Attribute 6. Timeliness
Timeliness is the property that the nonce is encoded as

a unique timestamp. The clock source(s) must be trusted and
clock synchronization must be protected.

We note that the collision-free property is satisfied for the
predictable nonces. However, be warned that counter wrap-
around and period resolution problems may re-introduce the
same-state problem, and thereby the potential for collisions.

F. Secrecy and Authenticity
Privacy is a concern and sequential nonces may be used

for tracking purposes. To avoid this one may require the nonce
to be encrypted (data confidentiality).

88Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

Attribute 7. Secrecy
Secrecy is defined to be data confidentiality for the nonce.

In some protocols, there is also a need for verified nonces.
We believe that this should be explicitly captured, and hence
that a integrity/authenticy attribute is needed.

Attribute 8. Authenticity
Authenticity is defined to be data integrity for the nonce.

Authenticity is here equivalent to the once said property
of BAN logic.

G. Basic Nonce Types
We now define a few basic nonce types. These will be

defined in the context of the base attributes. We have qualified
the freshness attribute with weak and verifiable, depending on
whether the responder is directly able to verify the freshness.

Definition 1. Random Nonce

• Statistical Uniqueness
• Weak Freshness
• Unpredictable

Definition 2. Pseudo-random Nonce

• (Guaranteed) Uniqueness
• Weak Freshness
• Unpredictable

Definition 3. Sequential Nonce

• (Guaranteed) Uniqueness
• Sequentially ordered
• Freshness

Definition 4. Timestamp Nonce

• Uniqueness (with resolution constraints)
• Verifiable Freshness
• Sequentially ordered
• Timeliness

H. Complex Nonce Types
A Timestamp Nonce may suffer from the same-state prob-

lem. It may be mitigated with a high-resolution timestamp,
but this introduces its own problems. For strict real-time
environments this may be irrelevant. Alternatively, one may
relax the timeliness guarantee to be within a slightly longer
period, while maintaining the requirement for strict sequential
order. That is, one may augment a timestamp nonce with
a serial number to alleviate the same-state problem while
avoiding a high-resolution timestamp.

Definition 5. Augmented Timestamp Nonce

• (Guaranteed) Uniqueness
• Verifiable Freshness
• Sequentially ordered
• (relaxed) Timeliness

We define a Encoded Nonce to be a sequential, timestamp
or augmented timestamp nonce that has been “encoded”. With
encoded we here mean that the target nonce has been trans-
formed by some cryptographic function such that the output
will appear to be random and unpredictable to an external
observer. However, to the initiator/responder, it is possible
to reverse the encoding and retrieve the original sequential
nonce. One such scheme is mentioned in Section V-A. Note
that such schemes may be convoluted, and that decoding may
potentially only be possible in the later phases of the protocol.
One may also envisage encoded nonces that are based on
random nonces, but we have not found reason to investigate
this further.

Definition 6. Encoded Nonce

• (Guaranteed) Uniqueness
• Freshness
• Sequentially ordered
• Unpredictable
• Optionally: Timeliness

I. Nonce Qualifiers
The above nonce types, which should be well in line with

suggestions in the literature, may optionally be augmented by
what we call the nonce qualifiers. The use of qualifiers should
be based on requirements on the nonce in the protocol. The
previously defined basic nonce types may then be qualified as:

• Secret – possessing the secrecy attribute
• Authentic – possessing the authenticity attribute

Note that an Encoded Nonce does not necessarily achieve
secrecy, and cannot be used in this way unless the required
properties are explicitly confirmed.

V. SOME NONCE-BASED INFORMATION ELEMENTS

A. Initialization Vector
An IV is a value used as the initial input to a cipher function

mode-of-operation. For instance, in cipher block chaining
(CBC) mode, one uses the ciphertext output of the previous
stage as input to be mixed (XOR’ed) with the plaintext block.
That is, the IV is the input to the initial stage of a CBC chain,
where there is no previous output available.

In Section 4.3 in [11], the authors describes IV use in CBC
and how to choose the IV. Specifically, they argue that one may
use a “Nonce-Generated IV”. The specific scheme proposed
involves using a message number, which needs to be unique
within its context, and then encrypting the message number to
produce the nonce. The nonce is then used as the IV. However,
message numbers are generally predictable and visible to the
intruder, and so one must be careful not to allow the intruder
to use the message number as a source for known plaintext
attacks. We note that a counter/serial number that is encrypted
and then used as an IV, would be a kin to a Encoded Nonce.

B. Random Challenge
By definition a normal random challenge information ele-

ment may be a Pseudo-random Nonce. Potentially, it may also
be Random Nonce, but this would be the exception. Depending
on the protocol, it may be desirable to have an Authentic
Pseudo-random Nonce.

89Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

C. Key Agreement
It is quite common to have a key derivation function,

kdf(·), that accepts nonces as inputs. One example is the f4()
function in UMTS [26].

f4K(RAND) → IK (2)

In (2), the random challenge is accepted as input and the
integrity key, IK, is the output. The key, K, is the permanent
pre-shared subscriber symmetric-key credential. In this case
the RAND is equivalent to an Pseudo-random Nonce.

D. Pseudonymous Identifiers
Privacy is of growing concern, and identity privacy is

a pronounced concern for authentication protocols, where
corroboration of a claimed identity (or identifier) is a primary
goal (Chapter 4 in [27]).

With symmetric-key schemes one has no option but to
present the claimed identifer in plaintext form. This invariably
exposes the identifier and identity privacy is lost. For a mobile
subscriber, location privacy is simultaneously lost. One way
to solve the problem is to use asymmetric cryptography and
hide the presented identifer so that only the intended recipient
is able to decrypt the message. It is quite common with such
protocols to also forward (or agree on) a temporary identifier,
to be used subsequently [21], [28]. This temporary identifier
must then be free of any apparent association with the primary
identifier. That is, to any external observer there must not
appear to be any correlation between the primary identifier
and the temporary identifier. This, of course, can only be done
if the temporary identifier appear to be random with respect
to the primary identifier.

The temporary identifier must be unique, or at least sta-
tistically unique, within the given context. A Pseudo-random
Nonce will nicely fit this description.

VI. AN EXAMPLE OF NONCE USAGE

We have chosen to use the UMTS AKA protocol as an
example protocol. It should be a relevant example, as it is
both a fairly simple protocol and it is a widely used protocol.

A. Case Study: The UMTS AKA Protocol
The UMTS AKA protocol includes a random challenge and

a sequence number scheme. The random challenge is clearly
a nonce and the sequence number, the SQN field, fits the
number used once requirement. The primary reference for the
UMTS AKA protocol are the 3GPP technical specifications TS
33.102 [21] and TS 33.105 [26]. See also [29] for an overview.

The UMTS AKA protocol is a 3-way protocol with the
following principal entities:

• User Equipment (UE) – represents the subscriber.
• Visited Network (VN) – the local access network.
• Home Network (HN) – UE subscription point.

A central component of the protocol is the Authentication
Vector (AV):

AV = {RAND,XRES,CK, IK,AUTN} (3)

The RAND is the pseudo-random challenge (128 bit),
XRES is the expected response (64 bit), CK and IK
are the session keys (128 bit each) and the AUTN is the

authentication token (128 bit) compound IE. XRES and RES
are identical, but that the former is the expected response while
the latter is the actual response (as computed by the USIM).
The Authentication Token (AUTN) is defined as:

AUTN = {SQN ⊕AK,AMF,MAC−A} (4)

Here AK is an anonymity key, AMF is the authentication
management field and MAC−A is the cryptographic check
sum for the challenge.

The Protocol:

1) VN → HN: SendAuthInfo-req(IMSI)
2) HN: Generate AV
3) HN → VN: SendAuthInfo-resp(AV)
4) VN → UE: AuthReq(RAND,AUTN)
5) UE: Compute MAC−A,RES,CK/IK and AK
6) UE: Verify validity of challenge
7) UE: Verify timeliness of challenge
8) UE → VN: AuthResp(RES)
9) VN: Verify that RES = XRES

The challenge is verified by checking MAC−A. The
timeliness is verified based on the sequence number. The SEQ
may be seen as a Secret Sequential nonce. The secrecy is
provided by the used of the anonymity key (AK).

The RAND, in conjunction with the associated AUTN ,
may be seen as an Authentic Pseudo-random Nonce.

VII. DISCUSSION AND ANALYSIS

A. Being Explicit
We note that Principle #6 in [5], which said “Be clear

what properties you are assuming about nonces.”, tend to be
ignored. That is, the requirements on the nonce may have been
clear to the designer(s) of the protocol, but the requirements
must be made explicit and well documented. This will not only
remind the designers about what assumptions there are on the
properties of the nonce, but it will also be essential in order to
carry out formal verification of the protocol. And, clearly, it is
vital for the implementors that all assumptions are explicit.

B. Multiple Usages
As exemplified by the UMTS AKA protocol, the random

challenge nonce is used for different purposes simultaneously,
including entity authentication and key derivation. This may be
permissible, but then certainly these nonce requirements must
be explicit. It is also not clear that it is advisable to use a
nonce for different purpose, even if the nonce properties does
match the nonce usage well. That is, this may be detrimental
to security in much the same manner as using a shared secret
key for different algorithms may lead to added vulnerability.

C. Formal Verification and Type Systems
In [30], [31] there are deep and broad background coverage

of type theory and type systems in computer languages. The
last part is quite relevant, as formal modelling of security
protocols is captured in a modelling language. To enhance a
modelling language to capture more aspects of nonces and
perhaps even to have a set of different nonce types would
clearly be useful. The properties can then at least be checked
for consistency and one may even prove that certain properties
are adhered to (or not).

90Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

However, as noted by Gollmann in [32], proving a protocol
correct may not be the most important aspect (Gollmann even
declares this to be a non-goal). In fact, the most important
aspect may indeed be to adhere to Principle 6 [5]. This
would make it easier to define exactly what the protocol is
to achieve in the first place, and it would make it easier to
construct the protocol. In [33] this is recognized, and the
authors does see formal verification tools in the context as
a design aid. Correctness is one thing, but improved clarity
and less ambiguity in the description may also lead to more
reliable and robust implementations.

We agree with this view and would welcome further
research in capturing nonce properties in type systems for use
with formal verification tools. This would represent one step
in the right direction for designing better and more secure
protocols.

VIII. SUMMARY AND CONCLUDING REMARKS

In this paper, we have made a brief survey of how nonces
are discussed in the literature. The survey is by no means
exhaustive, but then even our selected sources demonstrates
quite well that description of nonce properties in cryptographic
protocols often are vague or even missing. And, certainly, the
descriptions are almost invariably incomplete.

We have not strived for completeness, or even rigorousness,
but we have attempted to further the field by providing
improved nonce attribute characteristics and better and more
useful nonce definition. However, more work is needed here
and we intend to extend our study of nonce usage by inves-
tigating more cryptographic protocols. We will also continue
our work with type systems for nonces and investigate ways
to verify the properties.

Ultimately, we believe greater awareness about nonce prop-
erties should lead to less ambiguity and thereby better designs
for security protocols. Clarity in what a security protocol
should achieve is obviously essential and a goal in itself.
Protocol designs may certainly benefit from being captured
in a formal languages, not only because it may allow for
formal verification of selected properties, but also because
increased awareness and preciseness ultimately may lead to
better implementation too. In the end then, we may have hope
for better, more reliable and robust security protocols.

REFERENCES
[1] N. P. Smart, V. Rijmen, M. Stam, B. Warinschi, and G. Watson, “Study

on cryptographic protocols,” ENISA, Report TP-06-14-085-EN-N, 11
2014.

[2] N. P. Smart et al., “Algorithms, key sizes and parameters report - 2014,”
ENISA, Report TP-05-14-084-EN-N, 11 2014.

[3] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of
applied cryptography; Fifth Printing (August 2001). CRC press, 2001.

[4] M. Burrows, M. Abadi, and R. Needham, “A logic of authentication,”
DEC System Research Center, Research Report 39, 2 1990.

[5] M. Abadi and R. Needham, “Prudent engineering practice for cryp-
tographic protocols,” DEC System Research Center, Research Report
125, 6 1994.

[6] J. Clark and J. Jacob, “A survey of authentication protocol literature:
Version 1.0,” 1997.

[7] R. Anderson, Security engineering. John Wiley & Sons, 2008.
[8] M. Bishop, Computer Security: Art and Science. Addison-Wesley,

2003.
[9] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source

Code in C, 2nd ed. john wiley & sons, 1996.

[10] C. Boyd and A. Mathuria, Protocols for Authentication and Key
Establishment, 1st ed. Springer Science & Business Media, 2003.

[11] N. Ferguson, B. Schneier, and T. Kohno, Cryptography Engineering:
Design Principles and Practical Applications: Design Principles and
Practical Applications. John Wiley & Sons, 2011.

[12] P. Rogaway, “Nonce-based symmetric encryption,” in Fast Software
Encryption. Springer, 2004, pp. 348–358.

[13] M. Bellare and P. Rogaway, “Encode-then-encipher encryption: How to
exploit nonces or redundancy in plaintexts for efficient cryptography,”
in Advances in Cryptology (ASIACRYPT 2000). Springer, 2000, pp.
317–330.

[14] N. Junghyun, K. Seungjoo, P. Sangjoon, and W. Dongho, “Security anal-
ysis of a nonce-based user authentication scheme using smart cards,”
IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, vol. 90, no. 1, pp. 299–302, 2007.

[15] J. L. Tsai, “Efficient nonce-based authentication scheme for session
initiation protocol,” International Journal of Network Security, vol. 9,
no. 1, pp. 12–16, 2009.

[16] W. Diffie and M. E. Hellman, “New directions in cryptography,”
Information Theory, IEEE Transactions on, vol. 22, no. 6, pp. 644–
654, 1976.

[17] P. Rogaway and T. Shrimpton, “A provable-security treatment of the
key-wrap problem,” in Advances in Cryptology - EUROCRYPT 2006,
ser. Lecture Notes in Computer Science, S. Vaudenay, Ed. Springer
Berlin Heidelberg, 2006, vol. 4004, pp. 373–390.

[18] D. Harkins, “Synthetic Initialization Vector (SIV) Authenticated
Encryption Using the Advanced Encryption Standard (AES),” IETF,
RFC 5297, 10 2008. [Online]. Available: https://tools.ietf.org/html/
rfc5297

[19] D. Mills, J. Martin, J. burbank, and W. Kasch, “Network Time Protocol
Version 4: Protocol and Algorithms Specification,” IETF, RFC 5905,
06 2010. [Online]. Available: https://tools.ietf.org/html/rfc5905

[20] C. J. Mitchell, “Making serial number based authentication robust
against loss of state,” ACM SIGOPS Operating Systems Review, vol. 34,
no. 3, pp. 56–59, 2000.

[21] 3GPP, TS 33.102, “3G Security; Security architecture,” 3GPP, France,
TS 33.102 (3G), 2014.

[22] P. Ryan, S. A. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe,
The Modelling and Analysis of Security Protocols: the CSP Approach.
Addison-Wesley Professional, 2001.

[23] AVISPA project, “Automated Validation of Internet Security Protocols
and Applications (AVISPA); AVISPA v1.1 User Manual,” AVISPA IST-
2001-39252, Tech. Rep., 06 2006.

[24] AVANTSSAR project, “Aslan++ specification and tutorial,” FP7-ICT-
2007-1, Deliverable 2.3 (update), 01 2008.

[25] B. Schneier, M. Fredrikson, T. Kohno, and T. Ristenpart, “Surrepti-
tiously weakening cryptographic systems,” Cryptology ePrint Archive,
Report 2015/097, 2015.

[26] 3GPP, TS 33.105, “3G Security; Cryptographic algorithm require-
ments,” 3GPP, France, TS 33.105 (3G), 2014.

[27] G. Danezis et al., “Privacy and data protection by design from policy
to engineering,” ENISA, Report TP-05-14-111-EN-N, 12 2014.

[28] G. M. Køien, “Privacy enhanced cellular access security,” in Proceed-
ings of the 4th ACM workshop on Wireless Security. ACM, 2005, pp.
57–66.

[29] ——, “An introduction to access security in UMTS,” Wireless Commu-
nications, IEEE, vol. 11, no. 1, pp. 8–18, Feb 2004.

[30] B. C. Pierce, Types and programming languages. MIT press, 2002.
[31] L. Cardelli, Computer Science Handbook, 2nd ed. CRC press, 6 2004,

ch. Type Systems.
[32] D. Gollmann, “Analysing security protocols,” in Formal Aspects of

Security. Springer, 2003, pp. 71–80.
[33] J. A. Clark and J. L. Jacob, “Protocols are programs too: the meta-

heuristic search for security protocols,” Information and Software
Technology, vol. 43, no. 14, pp. 891–904, 2001.

91Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

