
The Use of Acceptance Test-Driven Development in the Construction of

Cryptographic Software

Alexandre Melo Braga
12

, Daniela Castilho Schwab
1
, and André Luiz Vannucci

1

1
Centro de Pesquisa e Desenvolvimento em Telecomunicações (Fundação CPqD)

Campinas, São Paulo, Brazil
2
Universidade Estadual de Campinas (UNICAMP)

Campinas, São Paulo, Brazil

Email:{ambraga,dschwab,vannucci}@cpqd.com.br

Abstract—This paper describes a work in progress on the

usage of Acceptance Test-Driven Development (ATDD) during

the construction of cryptographic software. As cryptography

becomes universalized, it is becoming hard to separate good

implementation from bad ones. The paper argues that Test

Vectors for cryptography can be used as User Stories in

Behavior-Driven Development (BDD) and automate ATDD

during software development, complementing algorithm’s

specification, and contributing to augment software reliability

and the overall trust in the correctness of cryptographic

implementations. The acquired confidence is preserved even

after performing program transformations for improvements,

such as performance optimization and hardenings.

Keywords-BDD; TDD; ATDD; User Stories; Security; Test

vectors; Cryptography; Assurance.

I. INTRODUCTION

Nowadays, it is a well-accepted idea that the most likely
attacks over software-based cryptosystems are against
implementation faults and key management failures
[2][16][17]. On the other hand, as cryptography becomes
universalized, it is becoming difficult to assure that what is
implemented in the real world is actually good cryptography.

The objective of this paper is to discuss preliminary
results on the understanding of how the concepts of
Behavior-Driven Development (BDD) and Acceptance Test-
Driven Development (ATDD) can be applied to the
construction of cryptographic software, and how these two
concepts can increase both the security and overall trust of
software that rely on cryptographic implementations. The
idea discussed here was experienced during the construction
of a cryptographic library for Android devices [1].

Test-Driven Development (TDD) has become very
popular in the agile programming community. In any secure
software construction, the correctness of basic security
functions is of major concern, and must be preserved even in
an ever changing environment. The idea behind this text is
that, in cryptography implementation, Test Vectors are User
Stories formulated as automated acceptance tests, which can
be successfully used to validate the implementation of a
cryptographic algorithm against a specification, and prepare
the room for future code optimizations and hardenings.

Once automated acceptance tests are available for a
specification-based implementation of cryptography, further

improvements on the source code can take place in order to
address industry concerns, such as performance
optimizations, power consumption, and security controls
against side-channel attacks and other vulnerabilities in
source code. Even after all these transformations, acceptance
tests preserve trust by giving strong evidence of correctness.

This work has two motivating drivers. The first is an
actual need for increasing the confidence in cryptographic
algorithm implementations, which are not under the scrutiny
of cryptologists. It is a fact of life that cryptologists are
scarcely available human resources, and ordinary
programmers are not only more available, but less expensive
as well. A frequently asked question in industry is whether or
not it is possible to produce high quality implementations of
good cryptography, even when there is no cryptologist
neither writing source code nor deeply inspecting it.

The second is a lack of literature concerning the
combination of TDD, ATDD, or BDD and specific security
technologies, like cryptography. Today, common usages of
TDD are related to general topics in software, such as
enterprise applications, mobile code, data-access code, and
so on. The authors could not find any reported case of TDD
in cryptographic software.

The text is organized as follows. Section II offers
background information on related subjects. Section III
details the proposed idea. Section IV discusses practical
issues of the proposed approach. Section V contains
concluding remarks and future work.

II. BACKGROUND AND RELATED WORK

This section offers background on ATDD, BDD, TDD
for security, and Test Vectors for cryptography validation.

A. Acceptance Test-Driven Development

ATDD is strongly related to BDD, both of them drive
TDD, Acceptance Tests, and Unit Test from User Stories.
The core idea of TDD was proposed in 2002 [7] and the state
of the practice was studied recently [18], with good text
books available on the subject [9].

ATDD drives development on the feature level, similarly
to TDD in code level with Unit Tests. Acceptance tests act as
micro specifications for the desired behavior and
functionality of a system. They tell how the system handles
certain conditions and inputs and with what kinds of
consequences and outputs. The benefits of ATDD are the

55Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

following: (i) clear definition of “work done”, by providing
the knowledge of where the development is and of when to
stop working; (ii) promotion of trust and commitment,
because there’s a direct connection between what the
customer specifies and what she gets; and (iii) specification
by example, when requirements are expressed by
comprehensible examples, rather than by complex formulas
or ambiguous descriptions. Tests expressed with concrete
examples are easier to read, easier to understand, easier to
validate, and easier to write [9].

In Acceptance TDD, a requirement is translated into a set
of executable tests and then applied to the implementation,
which is validated against tests, rather than against the
developer’s interpretation of a requirement.

1) User Stories
User Stories are a useful, lightweight technique for

managing requirements. User Stories are short sentences
written with customer’s assistance, stating who does what
and why. The story is intended to represent a requirement,
acting as a promise of a future conversation between the
customer and the developer. A story is typically only one
sentence long, it is not intended to document the
requirement, and it does not substitute actual specifications.

The most common format or template for User Stories
contains the name of the story and three phrases: As a [user
role of the system], so that [I can achieve some goal or
objective], I want to [perform some task]. These three
phrases resemble a simple desire of users or customers.

Ideally, a User Story can be formulated as acceptance test
before code is written. Well written User Stories, that
produce good acceptance tests, usually have quality
attributes called Specific, Measurable, Achievable, Relevant,
and Time boxed (SMART). The SMART attributes mean
that it has to be at least a pair of valid input and
corresponding output that: (i) is expressed in the language of
the domain specialists; (ii) is concise, precise and
unambiguous; and (iii) could be tested within a finite (and
short) amount of time. As discussed further in this text,
cryptographic test vectors comply with all these attributes.

2) Behavior-Driven Design and TDD
 Behavior-Driven Design (BDD) is a way to develop

User Stories to describe features on computer programs.
BDD concentrates on program’s behavior, instead of its
implementation. In BDD, the development team asks
questions about program’s behavior, before and during
development, to reduce miscommunication. The questions
generate requirements written down as simple User Stories.
Later on, User Stories become acceptance tests and
integration tests of those programs.

The advantages of BDD are that User Stories are
expressed in common language for all stakeholders, and
make it feasible to write tests before or during coding. This
only feature turns debugging time into validation time. The
disadvantages of BDD are twofold: (i) continuous contact
with customer is difficult to achieve in most software
projects and (ii) BDD almost always leads to bad software
architecture, thus requiring frequent refactoring of source
code. The compliance to standard Application Programming

Interfaces (APIs) and algorithm specifications minimize the
impact of this disadvantage in cryptographic software.

Test-Driven Development (TDD), or Test-First
Development (TFD), is the practice of writing automated
Unit Tests for low-level program constructions (e.g., objects)
based on simple User Stories. TDD is guided by a sequence
of User Stories obtained from the customer or user. On TDD,
the supposed result of writing low-level Unit Tests is that
only few defects show up during tests.

Advocates of TDD may question the usefulness of Unit
Tests in the presence of automated ATDD. Unit Tests are
still useful to validate compliance to programming contracts
of an API or to the programming dialog of Frameworks,
contributing to regression tests when acceptance tests are not
effective. That is exactly the case of cryptography
implementation, when testing accessory functionality, such
as padding schemes, and conformance to APIs are
requirements.

B. TDD and Software Security

There are few works relating TDD or ATDD and

security [3][10][21][22]. The work of Smith, Williams, and

Austin [3] assesses the relative effectiveness of system and

unit level testing of web applications to reveal both SQL

injection vulnerabilities and error message information

leakage vulnerabilities, when used with an iterative test

automation practice by a development team.

More recently, three related works [22][21][10]

addressed TDD for security testing. First, Kobashi et al [22]

proposed a method to validate implementations of security

pattern using TDD. In this method, developers specify the

threats and vulnerabilities in the target system during an

early stage of development, and then the proposed method

validates whether the security patterns were properly

applied and assessed whether vulnerabilities were resolved.

Then, Yoshizawa et al [10] evolved the previous work

by proposing a validation method, using TDD, for security

design patterns in the implementation phase of software

development. Finally, Kobashi et al [21] implemented their

method in a tool called TESEM (Test Driven Secure

Modeling Tool), which supports pattern applications by

creating a script to execute model testing automatically.

During an early development stage, the developer specifies

threats and vulnerabilities in the target system, and then

TESEM verifies whether the security patterns are properly

applied and assesses whether vulnerabilities are resolved.

 None of the above mentioned works treat ATDD in the

context of cryptographic software development.

C. Test Vectors for Cryptography

Test Vectors have been used in validation of
cryptographic implementations for many years, mostly for
product certification, post construction. This section
describes the validation of cryptographic implementations
with Test Vectors during development.

Test Vectors are data sets constructed with the aim of
evaluating the correctness of cryptographic implementations,
not their security. However, the functional correctness is a

56Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

Figure 2. The User Story for a single Test Vector.

01 @Test

02 public void pkcs5PaddingTest(){

03 byte[] result = new byte[8],

04 input = "AAAA".getBytes();

05 int inputOffset=0, inputLen=4;

06 int totalInputLen=8, blockLength=8;

07 result = Padding.pkcs5Padding(input,

08 inputOffset,inputLen,totalInputLen,

09 blockLength);

10 assertEquals(Util.ByteArrayToHexStr(result),

11 "4141414104040404");

12 }

Figure 1. Unit Test for PKCS#5 padding of size 4 on a 8-byte block.

strong prerequisite for security because, in principle, an
incorrect implementation is both unreliable and insecure.

In order to make de validation feasible, cryptographic
software under evaluation should allow the necessary control
over the input parameters needed for testing. For example,
the ability to configure or load known values for the
variables required for a specific test may be available via an
API. Tests cannot be performed if cryptographic software
does not allow control over the values of input parameters.

There are publicly available Test Vectors [11][13][14]. A
well-known set of vectors is provided by US National
Institute of Standards and Technology (NIST) within the
Cryptographic Algorithm Validation Program (CAVP) [13].
All validations based on Test Vectors are designed to test
compliance with the norms and standards of the specific
algorithm being evaluated. Therefore, they are not meant to
provide a measure of the security for a particular
cryptographic implementation.

Crafted validation tests are designed to detect accidental
defects of implementation and operation, and are not
designed to detect intentional attempts to misrepresent
validation. For example, malicious implementations can be
constructed to give the correct answer for a particular set of
tests, then passing as a correct implementation, while
concealing some other malicious function. Hence, it is a
good practice the use of updated, randomly-generated
vectors in conjunction with crafted or standard vectors.

It is noteworthy that Test Vectors are constructed using
statistical sampling. That is, only a small amount of samples
is extracted from the universe of test cases. Therefore, the
successful validation implies strong evidence, but not
absolute certainty, of correctness for the implementation
under evaluation.

In order to exemplify the structure of Test Vectors, this
text uses the Advanced Encryption Standard (AES) [12],
along with NIST’s vectors [8]. The validation of AES covers
various operation modes (e.g., ECB, CBC, OFB, CFB1,
CFB8, and CFB128). For each mode, three key sizes are
selected (128, 192, and 256 bits).

The AES validation consists of three types of test:
Known Answer Tests (KAT), Multi-block Message Test
(MMT), and Monte Carlo Test (MCT). There are extra
vectors for GCM and XTS modes. The KAT test suite tests
four algorithm-specific components. For instance, the
GFSbox set tests finite field arithmetic, the KeySbox set tests
transactions on subkeys, the Variable Key set tests fixed

plaintext against varying keys, and the Variable Text set tests
fixed keys against varying plaintext or cipher texts.

The MMT tests are designed to test the ability of the
implementation to process input data consisting of many
blocks, and require correct implementation of chaining from
block to block. Both KAT and MMT are simple comparisons
of known values. MCT still performs comparisons of known
values of ciphertexts, but the current ciphertext is computed
by chaining previously generated ciphertexts as input to new
encryptions into a loop. The last ciphertext is then compared
to the value of test vector.

Table I shows KAT vectors for AES encryption in CBC
mode with a 128-bit key. The table follows NIST’s format
and contains examples of the four KAT subtypes. IV, PT and
CT stand for Initialization Vector, Plain Text, and Cipher
Text, respectively.

III. TDD AND ATDD FOR CRYPTOGRAPHY

This section proposes an approach to perform TDD and
ATDD over cryptographic implementations. First, it
discusses a strategy for conducting Unit Tests that fits on the
TDD framework. Then, a strategy to perform ATDD with
Test Vectors as User Stories is presented and discussed.

The code snippet in Figure 1 is an example of how JUnit
[6], a simple framework to write repeatable tests in Java, can
be used in automated testing of security functions. The
method tests the structure of padding in PKCS#5 format. The
code works for blocks of 8 bytes (for example, used by
3DES) and the input data of 4 bytes, so the function must
include 4 bytes of padding with the hexadecimal value 0x4.
This code can be generalized to other test cases for padding.

In the case of padding, the exhaustive coverage of all
possible test cases becomes feasible, since the padding has a
small number of options that depend on the block size of the
cryptographic algorithm. For instance, there are 8 test cases
for algorithms with 64-bit block, as well as 16 test cases for

TABLE I. FOUR AES KAT VECTORS (ENCRYPTION, CBC, 128-BIT KEY).

Vector type

and index
Vector value for each parameter

GFSbox

test data

for CBC #0

KEY = 00000000000000000000000000000000

IV = 00000000000000000000000000000000

PT = f34481ec3cc627bacd5dc3fb08f273e6

CT = 0336763e966d92595a567cc9ce537f5e

VarKey

test data

for CBC #0

KEY = 80000000000000000000000000000000

IV = 00000000000000000000000000000000

PT = 00000000000000000000000000000000

CT = 0edd33d3c621e546455bd8ba1418bec8

KeySbox

test data

for CBC #0

KEY = 10a58869d74be5a374cf867cfb473859

IV = 00000000000000000000000000000000

PT = 00000000000000000000000000000000

CT = 6d251e6944b051e04eaa6fb4dbf78465

VarTxt

test data

for CBC #0

KEY = 00000000000000000000000000000000

IV = 00000000000000000000000000000000

PT = 80000000000000000000000000000000

CT = 3ad78e726c1ec02b7ebfe92b23d9ec34

57Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

algorithms with 128-bit blocks. Considering both insertion
and removal of padding as distinct test cases, there are 48
test cases. In terms of JUnit, there are two approaches for
implementing these test cases. In one, all the 48 test cases
can be individually automated. In other, one single function
can be built for all test cases. An option sitting in between is
to build two separated functions, one for padding additions
and other for removals.

The choice of a method for each test case is preferable
because complies with TDD’s philosophy of identifying
errors quickly and directly. Moreover, the option with a
single method encapsulating all test cases still implies that
there must be debugging to identify which test cases have
failed. Therefore, by not eliminating depuration, it yields
only partial benefit from TDD philosophy. A similar
approach can be adopted to test cryptographic routines, but
with major limitations. TDD and JUnit can be used to test
the basic operation of the encryption routine by using
particular Test Vectors for encryption and decryption.

Despite being useful for simple functional tests of
security functions, unit tests (based upon JUnit) do not scale
well when applied to ATDD for cryptography. If each
possible cipher text is considered a test case, then the amount
of test cases, though finite and countable, is incredibly large.
Even a small sample, but statistically significant, greatly
increases the time to perform unit tests. For this reason,
ATDD is most suitable for the validation of cryptographic
implementations than simple TDD based upon stand-alone
JUnit tests. Figure 2 illustrates the first vector of Table 1
represented as a User Story for AES encryption. This single
test case is one in thousands of test cases. For instance,
NIST’s vectors for AES in CBC mode consist of more than
2,700 single tests.

Figure 3 depicts the overall idea of using ATTD for
cryptography. Test vectors are input data to test cases, which
are programmed as (automated) User Stories intended for
Acceptance Tests. Then, ATDD asserts the expected
behavior of cryptographic algorithms, resembling BDD. This
approach can be complemented by ordinary unit tests. The
point of contact between User Stories and cryptographic
implementations is the cryptographic API. In this way, test
cases do not act directly on algorithms internals, but verifies
its behavior, as seen from the API perspective.

Java programs, such as the one shown in Figure 4, were
built to enable ATDD through Java Cryptographic
Architecture (JCA) [4][5]. Before being used in a custom
cryptographic library [1], the ATDD test suite was validated
against two presumed correct implementations of JCA
[5][23]. The test suite was used for testing not only pure Java
code, but also C code encapsulated by Java Native Interface
(JNI) adapters and available through the JCA API.

Figure 4 illustrated how NIST’s Monte Carlo Tests
(MCT) [8] can be performed by the proposed ATDD test
suite. The figure shows the source code for a Java method to
perform MCT tests for encryption in ECB mode. This Java
code is almost a direct translation of the pseudo code from
[8]. This code snippet was meant for AES, but can be
generalized for any block cipher, because it does not depend
on the specific test data nor cipher implementation. The

cipher function (a wrapper for the actual encryption function)
is called only two times, in lines 17 and 19. The loop from
line 10 to line 36 computes a chain of ciphertexts, which is
saved (in line 25) for future comparisons.

IV. PRACTICAL ISSUES AND DISCUSSION

This section discusses practical considerations that arise

when implementing the proposed approach.

Figure 3. ATTD asserts whether an implementation follows its specified

behavior.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

void mcEncECB(byte[] key, byte[] plainText) {

 byte[][] bK = new byte[1000][];//WorkingKey

 byte[][] bPT = new byte[1000][];//PlainText

 byte[][] bCT = new byte[1000][];//CipherText

 TestVector vt;

 calcVT = new TestVector[100];

 bK[0] = key;

 bPT[0] = plainText;

 for (int i = 0; i <= 99; i++) {

 vt = new TestVector();

 vt.setPT(b2x(bPT[0]));

 vt.setKey(b2x(bK[i]));

 int j;

 for (j = 0; j <= 999; j++) {

 if (j == 0) {//init cipher with key

 bCT[j] = crypt(bK[i], bPT[j], true);

 } else {//reuse cipher

 bCT[j] = crypt(bK[i], bPT[j], false);

 }

 if (j < 999) { bPT[j+1] = bCT[j];}

 }

 j--; // leaves loop when (j == 1000)

 vt.setCT(b2x(bCT[j]));

 calcVT[i] = vt;

 if (i <= 99) {

 if (key.length == 16) { // 16*8 = 128 bits

 bK[i+1] = xor128(bK[i], bCT[j]);

 }

 if (key.length == 24) { // 24*8 = 192 bits

 bK[i+1] = xor192(bK[i], bCT[j-1], bCT[j]);

 }

 if (key.length == 32) { // 32*8 = 256 bits

 bK[i+1] = xor256(bK[i], bCT[j-1], bCT[j]);

 }

 }

 bPT[0] = bCT[j];

 }

 return;

}

Figure 4. Monte Carlo Test for encryption in ECB mode, in Java.

58Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

A. Examples of Defects Found

Defects did occur during development. Thus, in addition
to assert compliance to specifications, test cases are
structured to detect implementation faults, including
problems with pointers, insufficient memory allocation,
incorrect treatment of errors, and other incorrect behaviors.
This section gives examples of the more interesting defects
found, usually not related to simple misunderstandings of
specifications.

The proposed method was applied over standard (e.g.,
AES, RSA, HMAC, and SHA-2) and non-standard (e.g.,
Serpent, Salsa20, and Blake) cryptography. When testing the
implementation of AES, two kinds of failures were
identified. Failures in padding were found when zero
padding and AnsiX923 padding were used and the value of
the last byte was less than 16, resulting in a mismatch in test
vectors. A failure in the CTR mode of operation occurred
when the first 16 bytes (first block) was correctly encrypted
(matched test vector), but the remaining blocks do not. Other
failure was caused by a missing initialization of the hash
function after the first call to it into HMAC computation.

Non-standard algorithms produced more severe failures
than standard ones. It is worth to mention the cases for three
algorithms: Serpent, Blake, and Salsa20. When testing a C
implementation of Serpent against its test vectors [19],
several implementation failures were discovered concerning
memory leaks, wrong output for either encryption and
decryption, and program crashes after 1,000 iterations.

Salsa20 and Blake lack extensive test vectors. In fact,
only a few unofficial tests were found for Salsa20, which
were complemented by random tests produced by a reference
implementation. Blake was tested only with random tests
produced by a reference implementation. A bug was detected
in Blake that was caused by wrong calls from Blake224 to
functions of Blake256. Also, platform upgrades (from 32 bits
to 64 bits), downgrades (from 64 to 32 bits) and changes
(from different flavors of Linux) caused errors in encryption
and hashes that could be detected by regression tests.

Similar defects were found during development of all
cryptographic algorithm implementations. By the time of
writing, there were no collected statistics on the efficiency of
the proposed method. However, the examples mentioned
above suggest the method worth the effort when there is no
cryptologist timely available to support debugging.

B. Lessons Learned

Standard algorithms produced fewer defects than non-
standard ones. That is probably because standard algorithms
possess better documentation available to developers as well
as good reference implementations.

The Java APIs for symmetric encryption, secure hash
functions, and Message Authentication Codes (MAC) have
shown good testability (meaning the ease with which a given
test coverage criterion can be satisfied [15]) against NIST’s
vectors. Unfortunately, the same cannot be said for
asymmetric encryption. JCA was created before the advent
of TDD and ATDD, and is not testable by design. The
authors have found that parts of the API presented poor
testability and are not suitable for testing with NIST’s

vectors. In particular, the API for asymmetric encryption was
designed with “textbook” RSA in mind, and does not allow
for RSA-PSS and RSA-OAEP to be easily tested, because
it’s not possible to setup some of the parameters required by
NIST for these two randomized algorithms. Similarly, the
key agreement API was designed with “textbook” Diffie-
Hellman (DH) in mind and suffers from the same issue when
used with Authenticated DH implemented according to
NIST’s specifications. This means that, in order to be fully
testable, an implementation has to sacrifice conformance to
JCA API. Also, security issues have been found in JCA [16].

Concerning API compliance, a lesson learned is that any
cryptographic implementation should have the ability of
being tested by third parties. Co-design of both functional
code and test code can favor testability. But that may not the
case when testing legacy cryptography with ATDD.

TDD and ATDD can in fact reduce the time of
debugging, when looking for the causes of failures. A lesson
learned is that TDD uses the same techniques of debugging,
but in a productive way, writing automated tests during
software development.

Failure isolation seems to be the most important
advantage of TDD to development of cryptographic
software. In TDD, if a test fails, the cause must be the most
recently added code. Failure isolation is almost trivial in
TDD, because at any moment, all previous test cases must
have passed. Modes of operation as well as the internals of
cryptographic implementations are hard to debug otherwise.

Usually, good test cases are not sufficient for TDD to
produce good code. Also, good design is eventually
accomplished by code refactoring. In the case of standard
cryptographic algorithms, there will always be specifications
and reference implementations. Furthermore, conformance to
an API (e.g., JCA), minimizes the need for refactorization.

Finally, the most criticized disadvantage of TDD is that it
is strongly dependent on tester’s experience to produce good
test cases. In cryptography, there is a concern about the need
for an oracle that could provide good-enough test cases.
According to [15], an oracle is any (human or mechanical)
agent that decides whether a program behaved correctly in a
given test and accordingly gives a verdict of pass or fail. In
case of cryptography, that need is satisfied by test cases
provided either by cryptologists or standards organizations.

Unfortunately, non-standard algorithms usually lack test
cases and can only benefit from relatively small test sets
supplied by their authors or other practitioners. In this work,
for both standard and non-standard cryptography, reference
implementations were used as oracles for generation of
random test cases, in complement of third-part test vectors.

C. Test Vectors as Metrics for Quality Measures

In order to be useful as a quality measure, tests must have
clearly defined meanings for success and failure. This text
adopted the meanings from the Software Engineering Body
of Knowledge (SWEBOK) [15] as follows: a fault is the
(root) cause of a malfunction and a failure is the undesired
effect observed in the behavior of programs. Thus, testing
can reveal failures, but it is the faults that can and must be
removed from programs. Still [15], the generic term defect

59Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

can refer to either a fault or a failure. The result of testing a
single cryptographic implementation with its test vectors is
twofold: passing them all constitutes success with a justified
confidence, but failing only once reveals a failure and
compromises the whole implementation.

Failed test cases can be used as indirect measures of how
distant an implementation is from achieve conformance to
that test cases and can be used for estimation of effort, team
assignment, overall cost estimation, and influencing how
long a test effort should be continued. In this work, the
criteria for test termination could be positively defined by
passing all test cases. The term “passed them all” was
directly related to how much testing was enough and when a
test period could be concluded. It also involved concerns
about costs and risks incurred by possible remaining failures,
as opposed to costs incurred by continuing to test.

Additionally, when considering whole cryptographic
libraries with implementations for various algorithms, to
make testing more effective in making quality predictions, it
is important to know which types of failures may be found
and the relative frequency with which these failures have
occurred in the past. The failure density for an
implementation under test can be evaluated by counting
discovered failures as the ratio between the number of
failures found and the size of that implementation. This
evaluation was left as a future work.

V. CONCLUDING REMARKS

This paper argues that Test Vectors are User Stories and
can automate acceptance tests for cryptographic software.
Test Vectors are good acceptance tests because they meet
halfway between cryptologists and developers. They are
User Stories from the problem domain, that don't look like
source code, providing an easy way to reach agreement. The
approach presented in this text increases confidence in
cryptographic software by maintaining a strong evidence of
correctness, even after many code transformations.

Future work includes the use of ATDD in other
cryptographic algorithms and protocols. Further research
includes the design of customized Test Vectors. In order to
be useful, metrics and statistics concerning the efficiency of
the approach still have to be collected in structured ways.
Finally, studies have to be done to combine the approach
with methods for secure software development.

ACKNOWLEDGMENT

The authors acknowledge the financial support given to
this work, under the project "Security Technologies for
Mobile Environments – TSAM", granted by the Fund for
Technological Development of Telecommunications –
FUNTTEL – of the Brazilian Ministry of Communications,
through Agreement Nr. 01.11.0028.00 with the Financier of
Studies and Projects - FINEP/MCTI.

REFERENCES

[1] A. Braga and E. Morais, “Implementation Issues in the
Construction of Standard and Non-Standard Cryptography on

Android Devices,” in proc. of the 8th International Conf. on
Emerging Security Information, Systems and Technologies
(SECURWARE), 2014, pp. 144–150.

[2] B. Schneier, Security in the Real World: How to Evaluate
Security Technology, Comp. Sec. Journal, 1999, vol.15, n. 4.

[3] B. Smith, L. Williams, and A. Austin, “Idea: using system
level testing for revealing SQL injection-related error
message information leaks,” in Proc. of the 2nd International
Conference on Engineering Secure Software and Systems
(ESSoS), 2010, pp. 192-200.

[4] Java Cryptography Architecture (JCA) Reference Guide. [retrieved:
July, 2015] docs.oracle.com/javase/7/docs/technotes/guides/security/
crypto/CryptoSpec.html.

[5] Java Cryptography Architecture, Providers Documentation for
JavaSE 7. [retrieved: July, 2015] docs.oracle.com/
javase/7/docs/technotes/guides/security/SunProviders.html.

[6] JUnit 4. [retrieved: July, 2015] http://junit.org.

[7] K. Beck, Test Driven Development By Example, Addison-
Wesley Longman, 2002.

[8] L. E. Bassham III. The Advanced Encryption Standard
Algorithm Validation Suite (AESAVS). National Institute of
Standards and Technology, 2002.

[9] L. Koskela, Test Driven: Practical TDD and Acceptance TDD
for Java Developers, 2007.

[10] M. Yoshizawa, T. Kobashi, H. Washizaki, Y. Fukazawa, T.
Okubo, H. Kaiya, and N. Yoshioka, “Verifying
Implementation of Security Design Patterns Using a Test
Template,” in proc. of the 9th Int. Conf. on Availability,
Reliability and Security (ARES), 2014, pp. 178–183.

[11] NESSIE Test Vectors. [retrieved: July, 2015]
www.cosic.esat.kuleuven.be/nessie/testvectors.

[12] NIST FIPS-PUB-197, Announcing the Advanced Encryption
Standard (AES), FIPS Publication 197, 2001.

[13] NIST. Cryptographic Algorithm Validation Program (CAVP).
[retrieved: July, 2015] csrc.nist.gov/groups/STM/cavp.

[14] OpenSSL Validation Suite. [retrieved: July, 2015]
opensslfoundation.com/testing/validation-2.0/testvectors.

[15] P. Bourque and R. Fairley, Eds., Guide to the Software
Engineering Body of Knowledge (SWEBOK), ver 3. IEEE
Comp. Society, 2014.

[16] P. Gutmann, “Lessons Learned in Implementing and
Deploying Crypto Software,” in Proc. of the 11th USENIX
Security Symposium, Dan Boneh (Ed.), 2002, pp. 315-325.

[17] R. J. Anderson, “Why cryptosystems fail,” Communications
of the ACM, vol. 37, n. 11, 1994, pp.32-40.

[18] S. Hammond and D. Umphress, “Test driven development:
the state of the practice,” in proc. of the 50th Annual Southeast
Regional Conf., 2012, pp. 158-163.

[19] Serpent - A New Block Cipher Proposal for AES. [retrieved:
July, 2015] www.cs.technion.ac.il/~biham/Reports/ Serpent.

[20] Snuffle 2005: the Salsa20 encryption function. [retrieved:
July, 2015] http://cr.yp.to/salsa20.html.

[21] T. Kobashi, M. Yoshizawa, H. Washizaki, Y. Fukazawa, N.
Yoshioka, T. Okubo, and H. Kaiya, “TESEM: A Tool for
Verifying Security Design Pattern Applications by Model
Testing,” in proc. of the IEEE 8th Int. Conf. on Software
Testing, Verification and Validation (ICST) , 2015, pp. 1–8.

[22] T. Kobashi, N. Yoshioka, T. Okubo, H. Kaiya, H. Washizaki,
and Y. Fukazawa, “Validating Security Design Patterns
Application Using Model Testing,” in proc. of 8th Int. Conf.
on Avail., Reliability and Security (ARES), 2013, pp. 62–71.

[23] The Legion of the Bouncy Castle. [retrieved: July, 2015]
www.bouncycastle.org/java.html.

60Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

http://csrc.nist.gov/groups/STM/
http://www.cs.technion.ac.il/~biham/Reports/%20Serpent
http://cr.yp.to/salsa20.html
http://www.bouncycastle.org/java.html

