
Ghost Map: Proving Software Correctness using Games

Ronald Watro, Kerry Moffitt, Talib Hussain, Daniel Wyschogrod, John Ostwald and Derrick Kong
Raytheon BBN Technologies

Cambridge MA USA
{rwatro, kmoffitt, thussain, dwyschog, jostwald, dkong}@bbn.com

 Clint Bowers Eric Church Joshua Guttman Qinsi Wang
 Univ. Central Florida Breakaway Games Ltd Worchester Polytechnic Institute Carnegie Mellon Univ.
 Orlando FL USA Hunt Valley MD USA Worchester MA USA Pittsburg PA USA
 clint.bowers@ucf.edu echurch@breakawayltd.com guttman@wpi.edu qinsiw@cs.cmu.edu

Abstract—A large amount of intellectual effort is expended
every day in the play of on-line games. It would be extremely
valuable if one could create a system to harness this intellectual
effort for practical purposes. In this paper, we discuss a new
crowd-sourced, on-line game, called Ghost Map that presents
players with arcade-style puzzles to solve. The puzzles in
Ghost Map are generated from a formal analysis of the cor-
rectness of a software program. In our approach, a puzzle is
generated for each potential flaw in the software and the crowd
can produce a formal proof of the software’s correctness by
solving all the corresponding puzzles. Creating a crowd-
sourced game entails many challenges, and we introduce some
of the lessons we learned in designing and deploying our game,
with an emphasis on the challenges in producing real-time cli-
ent gameplay that interacts with a server-based verification
engine. Finally, we discuss our planned next steps, including
extending Ghost Map’s ability to handle more complex soft-
ware and improving the game mechanics to enable players to
bring additional skills and intuitions to bear on those more
complex problems.

Keywords-games; static analyses; formal verification; crowd

souring; games; model checking.

I. INTRODUCTION
Errors in computer software continue to cause serious

problems. It has long been a goal of formal verification to
use mathematical techniques to prove that software is free
from errors. Two common approaches to formal verifica-
tion are: (a) interactive theorem proving [1][2], where hu-
man experts attempt to create proofs with the assistance of
interactive proof tools. This is often a slow and laborious
process, with many man-years of effort needed from human
experts to prove the correctness of real-world software, and
(b) model checking [3][4][5], where proofs are created using
systematic techniques that verify specific properties by gen-
erating and validating simplified models of the software.
Model checking is a mostly automated process, but is sus-
ceptible to failure due to the size of the search space (“the
state space explosion problem”). Because of the issues with
both common approaches, formally verifying modern soft-
ware does not scale well – verifying software of moderate to
large size (e.g., hundreds of thousands of lines of code or
more) is rarely a practically viable option.

Recent research has demonstrated the benefits of using
games to enable non-experts to help solve large and/or com-

plex problems [6][7][8][9]. We propose to improve the suc-
cess of formal verification of software through the use of a
crowd-sourced game based on model checking. Our game,
called Ghost Map, is in active use at the Verigames web site
[10]. By breaking verification problems into smaller, sim-
pler problems, Ghost Map enables game players to create
proofs of correctness and help direct the model checking
processes down the most promising search paths for creat-
ing additional proofs. Ghost Map leverages the significant
intuitive and visual processing capabilities of human players
to tackle the state space explosion problem of a model
checking approach. The game engages the player’s motiva-
tion through a narrative that encourages them to solve a va-
riety of puzzles. In this case, a player is a recently emerged
sentient program, and the player’s goal is to remove (“dis-
connect”) as many limitations (“locks”) on that sentience as
possible in order to grow and remain free. Through the pro-
cess of disconnecting locks, the player is actually creating
proofs about the correctness of real-world software.

The Ghost Map game is built on top of the MOdelcheck-
ing Programs for Security properties (MOPS) tool [11].
MOPS checks C software for known software flaws, such as
the SANS/MITRE Common Weakness Enumeration (CWE)
Top 25 list [12]. Each level in the Ghost Map game is a
puzzle that represents a potential counterexample found by
MOPS. Through the gameplay, players investigate and ma-
nipulate the control flow associated with the counter-
example in order to eliminate flaws (i.e., disconnect locks) –
which is only possible if the flaw is artificial. In this way,
Ghost Map extends MOPS with a CounterExample-Guided
Abstraction and Refinement (CEGAR) capability [13],
where the players introduce and test local refinements. A re-
finement is the act of re-introducing some information about
the software into an abstracted model in order to verify
proofs that cannot be verified at the abstracted level alone.

The remainder of this paper is organized as follows.
Section 2 provides the needed background on the MOPS
tool and Section 3 describes how MOPS model checking is
built into a game. Section 4 covers the game play overview
and Section 5 discusses the system that was built to support
execution of the game on the Internet. Section 6 provides
more detail on some important game design decisions. Sec-
tion 7 discusses future plans and the paper concludes with a
summary and conclusions in Section 8.

212Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

II. BACKGROUND
We begin with some background on the methods used in

the MOPS tool. The goal of MOPS is to help identify in-
stances of common weaknesses (or vulnerabilities) in soft-
ware. To be analyzed by the MOPS approach, a software
weakness must be modeled by a Finite State Automaton
(FSA). For example, consider two commands, lock() and
unlock(), for locking or unlocking some fixed program re-
source. It is a potential weakness to call unlock() when the
resource is not locked, since the code that called unlock()
expected the resource to be locked. Similarly, two calls to
lock() without an intervening unlock() is also a weakness.
These errors can be represented as an FSA (see Figure 1),
where the nodes represent the three possible states (un-
locked, locked, error state), and the edges represent the dif-
ferent commands (lock(), unlock()) which can lead to
changes in state. The FSA captures the possible starting
state(s) of the software program as FSA starting node(s) (in
this case, all programs start in an unlocked state). The error
state(s) are captured as terminal state(s) in the FSA.

Given a C program and an FSA that represents a soft-
ware error, MOPS first parses the program and generates a
Control Flow Graph (CFG). In general, the CFG captures
every line of code in the original software as a node in a
graph and every transition from line to line as an edge in a
graph. As an example, consider a small C function involv-
ing software resource locks and unlocks (see Figure 2a) and
the FSA from Figure 1. Figure 2b shows the resulting CFG
produced by MOPS. The CFG abstracts out almost all de-
tailed content about the original software (e.g., specific
commands, specific variables, etc.). However, based on the
FSA, MOPS retains some information about any lines of
code that use commands reflected in the FSA. In Figure 2b,
the transitions associated with the lock() and unlock() com-
mands use the colors red and green, respectively. Because
information about variables values is abstracted out, MOPS
introduces some non-determinism into the CFG. For exam-
ple, when there is a branch statement (e.g., the line “if
(foo)”) in the software, the CFG will allow both possible
branches (e.g., 4  5 and 4  7) to occur, regardless of
state (i.e., whether the value of foo is true or false). Similar-

ly, loops can iterate an arbitrary number of times, since the
information about the ending criterion is abstracted out (e.g.,
7  1 can occur an unbounded number of times).

The CFG created by MOPS is actually abstracted in one
additional important way. Through a process known as
compaction, MOPS only represents the control flow of the
portions of the given program that are relevant to the FSA.
For our application, we modified MOPS compaction to re-
tain all edges that introduce branching, loops, and other de-
cision points.

Once it has a (compacted) CFG, MOPS will use the FSA
to analyze the CFG and identify whether there are possible
paths through the CFG that would lead to a terminal state in
the FSA. For example, MOPS will detect that the path go-
ing through nodes 1 2  3  4  5 6 7 8 would
result in an error state (e.g., two unlocks/greens in a row
from 4  5 and then from 7  8 with no intervening
lock/red). However, MOPS is only interested in detecting
whether an error state could occur at a particular node (e.g.,
5), and not in detecting all possible error paths to that node
(e.g., the error state at node 5 could also be reached by go-
ing through the loop several times before going from 7 to 8).
Each such error state at a node found is referred to as a
“counter-example” that requires further analysis to deter-
mine whether it truly is an error. The CFG of Figure 3a also
has a second possible counter-example at node 2, with the
shortest path 1234712. MOPS identifies the
shortest possible path to each error node using an efficient
algorithm that forms the Cartesian product of the FSA and
the CFG (which is a pushdown automaton) and testing
whether the resulting pushdown automaton is non-empty.
Fortunately, there are fast algorithms for this computation
[14], and this enables MOPS to identify all such possible er-
rors very rapidly, even for programs with millions of lines
of code and many possible error nodes.

Figure 1. Finite State Automaton (FSA) for lock/unlock
software errors.

Example() {
1: do {
2: lock();
3: old=new;
4: if (foo) {
5: unlock();
6: new ++;
 }
7: while (new != old);
8: unlock();
9: return;
}

(b)

(a)

1

2

3

4

5

6

7

8

9

Figure 2. Test program (a) for lock-unlock analysis and
corresponding CFG (b).

213Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

A MOPS CFG is a conservative model of the C lan-
guage software that it is based upon. If no instances of the
FSA are found in the CFG, then the software is free of the
vulnerability in question. On the other hand, if an instance
of the FSA is located in the CFG, this does not necessarily
mean that the software has the vulnerability. Each instance
of an FSA match to the CFG must be further examined to
determine whether it is an actual instance of the vulnerabil-
ity or a spurious instance due to the abstraction and the fact
that the data-flow is not considered in the abstracted CFG.
(Note that the example program of Figure 3a is actually cor-
rect as written, and hence the two counter-examples are in
fact spurious).

III. MODEL CHECKING IN GHOST MAP
The core idea of the Ghost Map game is to use game

players to check all the counter-examples identified by
MOPS for a particular piece of software and a particular set
of FSAs (representing different security vulnerabilities).
Our goal is to use game play as an integral part of an auto-
mated proof system to eliminate as many counter-examples
as possible. The result is that the number of counter-
examples that need to be manually inspected by expert
software engineers is greatly reduced as compared to what
would have been produced using the original MOPS system.
If the number of FSA matches reaches zero, the system has
generated a proof of correctness, with respect to a given
vulnerability, of the software (i.e., a proof of the absence of
the targeted vulnerability).

To eliminate counter-examples, Ghost Map gameplay
uses a process known as refinement [13]. The game offers
the player the ability to perform operations that locally undo
some of the abstraction that occurred in building the CFG –
in particular by removing some of the non-determinism that
was introduced by MOPS. The goal of the gameplay is to
attempt to refine the CFG into an equivalent graph that has
no spurious abstract counterexamples. There are two opera-

tions that can be taken in Ghost Map to modify a given
graph: cleaving and edge removal.

A. Cleaving

Cleaving takes a node of in-degree n (where n ≥ 2) and
splits it into n nodes. Each in-bound edge into the original
node is allocated to a different new copy of the node and the
outbound edges are duplicated for each new node. In terms
of control flow, cleaving simply expands the call flow graph
so that the edges after the cleaved node are now separated
based on which inbound edge at the cleave point preceded
them. Multiple steps of cleaving can be conducted if needed.
Figure 3b illustrates the result of cleaving the CFG of Figure
3a at the node 7. The result is two new nodes (7a and 7b),
and two ways of getting to node 8 (one from 7a and one
from 7b). Essentially, this cleave now allows the CFG to
distinguish between a path through the CFG that goes
through the 45 branch (i.e., “foo” is true) and one that
goes through the 47b branch (i.e., “foo” is false). When a
player requests that a cleave be performed, this operation
can be easily performed by the Ghost Map game via a sim-
ple graphical manipulation of the CFG. No knowledge of
the original source code is needed.

B. Edge Removal

Edge removal is an activity where the game player sug-
gests edges to be removed to eliminate abstract counterex-
amples. For example, the left hand edge 7a8 in the
cleaved graph is clearly a candidate for removal (see Figure
4a). Why? Because if it can be removed, then the counter-
example at node 8 (two unlocks/greens in a row) can never
occur. Once a player suggests an edge to be removed, the
Ghost Map system must then go back to the original source
code of the software in order to determine that the edge can

(b) (a)

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7b

8

9

7a

Figure 3. Illustration of cleaving operation.

(b) (a)) (c)

1

2

3

4

5

6

7b

8

9

7a ?

1

2

3

4

5

6

7b

8

9

7a

?

1

2

3

4

5

6

7b

8

9

7a

Figure 4. Illustration of edge removal to produce a CFG
containing no counter-examples.

214Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

be legally removed. An edge can be legally removed if it is
not reachable via any legal execution path through the
cleaved CFG. Determining removal is currently performed
using a test case generation tool called Cloud9 [15] to exam-
ine the data constraints in the software. For example, the
predicate “new != old” is the key value that helps prove that
node 8 is never reachable from node 7a by an actual execu-
tion of the function – and hence that the counter-example at
node 8 is false and can be eliminated. Within Ghost Map,
the player eliminates one counter-example at a time. For
example, the player may next seek to eliminate the edge
7b1 (see Figure 4b). Again, the predicate “new != old”
helps prove that this edge can be removed. Once all coun-
ter-examples have been eliminated (e.g., Figure 4c), the
CFG (at least the part showing in the current game level)
has been formally verified to be correct. One can view the
final graph in Figure 4c as an “optimization” of the original
code, akin to something that might be done by an optimiz-
ing compiler. The loop structure of the final graph is now
transparently correct for the lock/unlock rule.

IV. GAME PLAY OVERVIEW
Our game uses a puzzle-approach, where each game lev-

el is essentially an independent puzzle with respect to the
other game levels. The basic style of the gameplay is ar-
cade-like with all the information needed by the player pre-
sented on the screen at the same time, and the time needed
to play a level being relatively short. This approach was se-
lected to ensure that the game was accessible and appealing
to a broad range of game players.

Figure 5 illustrates the basic interface of the game.
• At the bottom right of the screen is a representation

of the FSA. This can be expanded or shrunk down
depending on the player’s preferences. Note that
the FSA in Figure 5 is essentially the same as the
one in our earlier lock/unlock example.

• The X-like figure in the middle of the screen is a
depiction of a very small CFG. Lines use arrows to
convey the direction of the edges. Colors are used
to distinguish the start node from the node at which
the counter-example occurs, as well as from
intervening nodes. A colored path is provided to
show the shortest path found by MOPS from the
start node to the counter-example node.

• Nodes that can be cleaved are indicated with a
large highlighted sphere, and a cleave cursor icon
can be clicked on the sphere to perform the cleave.

• Edges that can be disconnected (see Figure 6a) are
highlighted, and an edge disconnect cursor icon
can be clicked on the edge to initiate verification.

• Various helper functions for zooming in and out
and highlighting different parts of the graph are
provided at the bottom left of the screen.

• At the top of the screen is a summary of the
resources available to perform the expensive edge
disconnect operations (more details below in Game
economy).

The player is free to explore and manipulate the graph as
they wish. As they perform key actions, messages appear in
the center of the screen describing what is currently happen-
ing or what has happened (see Figure 6). Ultimately, the
player can win the level, fail the level, or simply switch over
to another level and return later.

Incorporating the ability to switch among levels at will
was a decision based on the fact that edge disconnection can
sometimes take a very long time. To prevent boredom,
players can initiate an edge disconnection operation, and
then switch to work on another level while the first one is
finishing the operation on the server. In future releases of
the game, we plan to include additional game play activities
to manage the delay generated by edge removal processing.

Ghost Map includes a simple game economy that penal-

Figure 5. The primary game screen for Ghost Map.

215Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

izes expensive edge disconnect operations that do not suc-
ceed and rewards successful decisions. The player begins
with a certain amount of credit to solve the current level
(e.g., 1000 credits, shown in the top left of the screen, see
Figure 5). Every request for an edge disconnect costs a cer-
tain amount (e.g., 500 credits, see Figure 6b). If an edge re-
quest is unsuccessful, then the credits are consumed, the
players are notified of the failure and given chance to try
again. If the request is successful, however, then the player
receives the current value of the level, which will be 1000
minus the cost of any edge removal requests. MOPS is run
again on the updated CFG to determine if there are any re-
maining counter-examples. If there are, then gameplay con-
tinues immediately in a new level.

V. GAME SYSTEM ARCHITECTURE
The high-level architecture of the Ghost Map game sys-

tem is shown in Figure 7. The upper portion of the figure
shows the off-line processing of the CWE entry and the tar-

get software to generate game levels. The game level data
and modified C software is loaded into the cloud to be used
during game play. Ghost Map is a client-server game. The
game clients run the Unity game engine and communicate
with the Ghost Map Game Server to receive game levels
and to send edge removal requests for verification by the
math back end.

VI. GAME DESIGN ISSUES
The goal of our game is to allow players to perform re-

finements based on insights gleaned from a visual analysis
of the CFG and an understanding of the FSA. The intent is
that the actions performed by the players are, on the whole,
more efficient than the brute force search abilities of com-
puters. In the game play, one or more FSA to CFG matches
are identified and displayed to the player.

Within Ghost Map, we chose to use a visual representa-
tion that is directly tied to the graphical nature of an FSA
and CFG, and to use operations that are directly tied to the
acts of cleaving and refinement. During our early design
phase, we explored several alternative visualizations that
used analogies (e.g., building layouts, mazes, an “upper”
world/CFG linked to a “lower” world/FSA, a Tron-like in-
ner world/FSA linked to a “real” outer world/CFG) but pre-
liminary testing with game players revealed that the simpler
node-based CFG/FSA visualizations were easier to under-
stand. We instead focused our game design efforts on de-
veloping an appealing narrative basis for the game, using
visually appealing graphics to display the graphs and moti-
vating the player’s interest in performing the refinement op-
erations efficiently via a game economy. Efficient game-
play was a must. While cleaving is an inexpensive opera-
tion, verifying edge removal can be quite expensive to com-
pute.

A. Narrative Basis for Game

Creating an effective game is often an exercise in creat-
ing an effective narrative. However, in a crowd-sourced
game, there is an additional complication – the narrative ba-
sis of the game needs to encourage the player to want to
solve the specific problems with which they are presented.
Most successful crowd-sourced games to date have actually
used a minimal narrative approach. The “story” of the game
is the real-life story of the problem being solved (e.g., trying
to analyze proteins in FoldIt). In our case, we decided early
on that a story based on trying to formally verify software
would be too technical and unappealing to the masses. In

Figure 6. Action scenes from the Ghost Map game (figures 6a through 6d).

Figure 7. The Ghost Map game system architecture.

216Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

addition, due the vulnerability protection issue, there are
some limitations to the information that we can release
about the true story.

Hence, in our early design, we explored a variety of nar-
ratives that could be used to motivate the gameplay through
analogy. In particular, we wanted the analogy to motivate
the specific refinement operations of cleaving and edge re-
moval. We considered several basic approaches for the nar-
rative, each focused on a different type of game reason for
eliminating a counter-example from a graphical layout of
some sort:

• Having the player focus on circumventing
restrictions. For instance, finding out how to solve
traps and challenges within an ancient tomb in
order to reach the treasure inside.

• Having the player protect others. For instance,
having little lemmings moving along the graph and
needing to eliminate the counter-examples in order
to stop them from dying when they hit the counter-
examples.

• Having the player focus on protecting a system.
For instance, being a security officer and trying to
shut down doorways that are enabling entities from
an alternate universe from entering our own to
wreak destruction.

• Having the player try to outwit others to survive.
For instance, in a Pac-man style gameplay, solving
the counter-example provides you with immunity
from the enemy (e.g., ghosts) chasing you.

• Having the player trying to escape. For instance,
the player is stuck in a maze and the only way out
is to solve the counter-example.

• Having the player stop something from escaping.
For instance, a sentient program is trying to escape
and take over the world, and the player needs to
keep it from growing too strong by eliminating its
access points to the outside world.

These narrative motivations and ideas were tested with
game players to determine their appeal. The last two were
found to be the most appealing, and upon further thought,
we blended the two within the concept of a newly formed
sentient program trying to ensure their growth and survival
by eliminating restrictions on their capabilities. This final
narrative idea tested well, and added the motivation of an
implicit journey of self-realization. An additional benefit of
this final narrative idea was that the graph being analyzed
by the players could be clearly described as a program that
needed to be analyzed. Thus, in keeping with some of the
successful approaches mentioned above, we came almost
full circle to linking gameplay closely with the specific real-
world task

B. Software and Vulnerabilities

One of the design requirements of Ghost Map is the as-
sociation between a game level and the associated portion of
source code being proved correct cannot be known to the
crowd. This requirement relates to standard practices for
limiting the release of potential software vulnerability in-

formation. While Ghost Map is a tool for proving the cor-
rectness of software, it is of course true that when correct-
ness proofs fail, vulnerabilities may be present. Even partial
information about vulnerabilities in software should be
managed carefully, with release to the public to be consid-
ered only after the software authors or other authorized par-
ties have been informed. Ghost Map protects the software
to be verified by only showing the player a compacted con-
trol flow graph of the software and by similarly limiting
knowledge of the vulnerabilities in question.

Games like FoldIt [6] and Ghost Map draw players that
want their game efforts to be applied toward the common
good. Detailed information about the problem being solved
by the game can provide additional player motivation.
Ghost Map however cannot take full advantage of this addi-
tional motivation approach, due to the restrictions on the re-
lease of potential vulnerability information.

VII. FUTURE PLANS
Ghost Map is under active development, and at the time

of writing we have just commenced our second phase of de-
velopment. Our goal is to build upon the success of our ini-
tial version in six ways:

• Enhance the gameplay through the use of
refinement guidance, which we refer to as “clues”

• Add new game play activities that provide
additional fun for the player

• Develop a new space-travel narrative that provides
a more engaging story than the current narrative
and also provides a more comprehensive linkage to
the puzzle problem

• Improve the accuracy and performance of our edge
removal verification tool

• Extend the scope of the Ghost Map system to cover
additional C language constructs

• Improve our approach to FSAs to create a more
accurate representation of vulnerabilities

VIII. SUMMARY AND CONCLUSIONS
We have presented Ghost Map, a novel crowd-source

game that allows non-experts to help prove software cor-
rectness from common security vulnerabilities. Ghost Map
was released for open Internet play in December 2013. In
the months since release, over a thousand users have played
the game and similar numbers of small proofs have been
completed (representative data from January 2014 is shown
in Figure 8). Ghost Map demonstrates the basic feasibility
of using games to generate proofs and provides a new ap-
proach to performing refinement for model-checking ap-
proaches. In addition to the immediate benefits of verifying
software using games, we also anticipate that the Ghost Map
approach may enable new automated methods as well.
Through the intermediate representations we have devel-
oped and the proof tools we have created for validating edge
removals, we believe the possibility of creating novel intel-
ligent refinement algorithms is significant.

217Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

ACKNOWLEDGMENT
Many additional people beyond the named authors on

this paper contributed to Ghost Map, including Bob Emer-
son, David Diller, David Mandelberg, Daniel McCarthy,
John Orthofer, Paul Rubel, Michelle Spina and Ray Tomlin-
son at BBN, and additional individuals at the subcontractors
(Breakaway Games, Carnegie Mellon University and the
University of Central Florida). The DARPA leadership and

staff associated with the Crowd Sourced Formal Verifica-
tion (CSFV) Program were also very helpful. Dr. Drew
Dean developed the initial CSFV concept at DARPA and
Dr. Daniel Ragsdale is the current Program Manager. Mr.
Carl Thomas at AFRL is the project funding agent.

This material is based on research sponsored by DARPA
under contract number FA8750-12-C-0204. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright

Figure 8. Ghost Map player and proof data from January 2014.

218Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

notation thereon. The views and conclusions contained here-
in are those of the authors and should not be interpreted as
necessarily representing the official policies or endorse-
ments, either expressed or implied, of DARPA or the U.S.
Government.

REFERENCES
[1] Y. Bertot and P. Castéran, Interactive Theorem Proving and

Program Development: Coq Art: The Calculus of Inductive
Constructions, Springer, 2004, XXV, 469 p., ISBN 3-540-
20854-2

[2] S. Owre, J. Rushby, and N. Shankar, “PVS: A Prototype
Verification System,” in Lecture Notes in Artificial
Intelligence, Volume 607, 11th International Conference on
Automated Deduction (CADE), D. Kapur, Editor, Springer-
Verlag, Saratoga, NY, June, 1992, pp 748-752.

[3] E. M. Clarke Jr., Orna Grumberg, and Doron A. Peled,
Model Checking, The MIT Press, 1999.

[4] R. Alur, “Model Checking: From Tools to Theory, 25 Years
of Model Checking,” in Springer Lecture Notes in Computer
Science, Vol. 5000, 2008, pp 89-106.

[5] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Software
verification with BLAST,” Proceedings of the 10th SPIN
Workshop on Model Checking Software, May 2003, pp 235-
239.

[6] S. Cooper, et al., “Predicting protein structures with a
multiplayer online game,” Nature, Vol, 466, No. 7307,
August 2010, pp 756-760.

[7] W. Dietl, et al., “Verification Games: Making Verification
Fun,” Proceedings of the 14th Workshop on Formal
Techniques for Java-like Programs, Beijing, China, June
2012, pp 42-49.

[8] W. Li, S. A. Seshia, and S. Jha, CrowdMine: Towards
Crowdsourced Human-Assisted Verification, Technical
Report No. UCB/EECS-2012-121, EECS Department,
University of California, Berkeley, May 2012.

[9] Cancer Research UK, http://www.cancerresearchuk.org/-
support-us/play-to-cure-genes-in-space, retrieved: Oct, 2014.

[10] Verigames, www.verigames.com, retrieved: Oct, 2014.
[11] H. Chen and D. Wagner, “MOPS: an infrastructure for

examining security properties of software,” Proceedings of
the 9th ACM Conference on Computer and Communications
Security (CCS), Washington, DC, Nov. 2002, pp 235-244.

[12] The MITRE Corp., http://cwe.mitre.org/top25, retrieved: Oct,
2014.

[13] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement for symbolic
model checking,” Journal of the ACM, Volume 50, Issue 5,
Sept. 2003, pp 752-794.

[14] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon,
“Efficient Algorithms for Model Checking Pushdown
Systems,” in Springer Lecture Notes in Computer Science,
Vol. 1855, pp 232–247.

[15] S. Bucur, V. Ureche, C. Zamfir, and G. Candea, “Parallel
Symbolic Execution for Automated Real-World Software
Testing,” ACM SIGOPS/EuroSys European Conference on
Computer Systems (EuroSys 2011), Salzburg, Austria, April,
2011, pp 183-197.

219Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

	I. Introduction
	II. Background
	III. Model Checking in Ghost Map
	IV. Game Play Overview
	V. Game System Architecture
	VI. Game Design Issues
	VII. Future Plans
	VIII. Summary and Conclusions
	Acknowledgment
	References

