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Abstract—A large amount of intellectual effort is expended 
every day in the play of on-line games.  It would be extremely 
valuable if one could create a system to harness this intellectual 
effort for practical purposes.  In this paper, we discuss a new 
crowd-sourced, on-line game, called Ghost Map that presents 
players with arcade-style puzzles to solve.  The puzzles in 
Ghost Map are generated from a formal analysis of the cor-
rectness of a software program.  In our approach, a puzzle is 
generated for each potential flaw in the software and the crowd 
can produce a formal proof of the software’s correctness by 
solving all the corresponding puzzles.  Creating a crowd-
sourced game entails many challenges, and we introduce some 
of the lessons we learned in designing and deploying our game, 
with an emphasis on the challenges in producing real-time cli-
ent gameplay that interacts with a server-based verification 
engine. Finally, we discuss our planned next steps, including 
extending Ghost Map’s ability to handle more complex soft-
ware and improving the game mechanics to enable players to 
bring additional skills and intuitions to bear on those more 
complex problems. 

 
Keywords-games; static analyses; formal verification; crowd 

souring; games; model checking. 

I.    INTRODUCTION 
Errors in computer software continue to cause serious 

problems.  It has long been a goal of formal verification to 
use mathematical techniques to prove that software is free 
from errors.  Two common approaches to formal verifica-
tion are: (a) interactive theorem proving [1][2], where hu-
man experts attempt to create proofs with the assistance of 
interactive proof tools.  This is often a slow and laborious 
process, with many man-years of effort needed from human 
experts to prove the correctness of real-world software, and 
(b) model checking [3][4][5], where proofs are created using 
systematic techniques that verify specific properties by gen-
erating and validating simplified models of the software. 
Model checking is a mostly automated process, but is sus-
ceptible to failure due to the size of the search space (“the 
state space explosion problem”).  Because of the issues with 
both common approaches, formally verifying modern soft-
ware does not scale well – verifying software of moderate to 
large size (e.g., hundreds of thousands of lines of code or 
more) is rarely a practically viable option. 

Recent research has demonstrated the benefits of using 
games to enable non-experts to help solve large and/or com-

plex problems [6][7][8][9]. We propose to improve the suc-
cess of formal verification of software through the use of a 
crowd-sourced game based on model checking. Our game, 
called Ghost Map, is in active use at the Verigames web site 
[10]. By breaking verification problems into smaller, sim-
pler problems, Ghost Map enables game players to create 
proofs of correctness and help direct the model checking 
processes down the most promising search paths for creat-
ing additional proofs. Ghost Map leverages the significant 
intuitive and visual processing capabilities of human players 
to tackle the state space explosion problem of a model 
checking approach. The game engages the player’s motiva-
tion through a narrative that encourages them to solve a va-
riety of puzzles. In this case, a player is a recently emerged 
sentient program, and the player’s goal is to remove (“dis-
connect”) as many limitations (“locks”) on that sentience as 
possible in order to grow and remain free.  Through the pro-
cess of disconnecting locks, the player is actually creating 
proofs about the correctness of real-world software. 

The Ghost Map game is built on top of the MOdelcheck-
ing Programs for Security properties (MOPS) tool [11].  
MOPS checks C software for known software flaws, such as 
the SANS/MITRE Common Weakness Enumeration (CWE) 
Top 25 list [12].  Each level in the Ghost Map game is a 
puzzle that represents a potential counterexample found by 
MOPS. Through the gameplay, players investigate and ma-
nipulate the control flow associated with the counter-
example in order to eliminate flaws (i.e., disconnect locks) – 
which is only possible if the flaw is artificial. In this way, 
Ghost Map extends MOPS with a CounterExample-Guided 
Abstraction and Refinement (CEGAR) capability [13], 
where the players introduce and test local refinements. A re-
finement is the act of re-introducing some information about 
the software into an abstracted model in order to verify 
proofs that cannot be verified at the abstracted level alone. 

The remainder of this paper is organized as follows.  
Section 2 provides the needed background on the MOPS 
tool and Section 3 describes how MOPS model checking is 
built into a game.  Section 4 covers the game play overview 
and Section 5 discusses the system that was built to support 
execution of the game on the Internet.  Section 6 provides 
more detail on some important game design decisions.  Sec-
tion 7 discusses future plans and the paper concludes with a 
summary and conclusions in Section 8. 
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II.    BACKGROUND 
We begin with some background on the methods used in 

the MOPS tool.  The goal of MOPS is to help identify in-
stances of common weaknesses (or vulnerabilities) in soft-
ware.  To be analyzed by the MOPS approach, a software 
weakness must be modeled by a Finite State Automaton 
(FSA).  For example, consider two commands, lock() and 
unlock(), for locking or unlocking some fixed program re-
source.  It is a potential weakness to call unlock() when the 
resource is not locked, since the code that called unlock() 
expected the resource to be locked.  Similarly, two calls to 
lock() without an intervening unlock() is also a weakness.  
These errors can be represented as an FSA (see Figure 1), 
where the nodes represent the three possible states (un-
locked, locked, error state), and the edges represent the dif-
ferent commands (lock(), unlock()) which can lead to 
changes in state.  The FSA captures the possible starting 
state(s) of the software program as FSA starting node(s) (in 
this case, all programs start in an unlocked state).  The error 
state(s) are captured as terminal state(s) in the FSA.   

Given a C program and an FSA that represents a soft-
ware error, MOPS first parses the program and generates a 
Control Flow Graph (CFG).  In general, the CFG captures 
every line of code in the original software as a node in a 
graph and every transition from line to line as an edge in a 
graph. As an example, consider a small C function involv-
ing software resource locks and unlocks (see Figure 2a) and 
the FSA from Figure 1.  Figure 2b shows the resulting CFG 
produced by MOPS.  The CFG abstracts out almost all de-
tailed content about the original software (e.g., specific 
commands, specific variables, etc.).  However, based on the 
FSA, MOPS retains some information about any lines of 
code that use commands reflected in the FSA.  In Figure 2b, 
the transitions associated with the lock() and unlock() com-
mands use the colors red and green, respectively.  Because 
information about variables values is abstracted out, MOPS 
introduces some non-determinism into the CFG.  For exam-
ple, when there is a branch statement (e.g., the line “if 
(foo)”) in the software, the CFG will allow both possible 
branches (e.g., 4  5 and 4  7) to occur, regardless of 
state (i.e., whether the value of foo is true or false).  Similar-

ly, loops can iterate an arbitrary number of times, since the 
information about the ending criterion is abstracted out (e.g., 
7  1 can occur an unbounded number of times). 

The CFG created by MOPS is actually abstracted in one 
additional important way.  Through a process known as 
compaction, MOPS only represents the control flow of the 
portions of the given program that are relevant to the FSA.  
For our application, we modified MOPS compaction to re-
tain all edges that introduce branching, loops, and other de-
cision points. 

Once it has a (compacted) CFG, MOPS will use the FSA 
to analyze the CFG and identify whether there are possible 
paths through the CFG that would lead to a terminal state in 
the FSA.  For example, MOPS will detect that the path go-
ing through nodes 1 2  3  4  5 6 7 8 would 
result in an error state (e.g., two unlocks/greens in a row 
from 4  5 and then from 7  8 with no intervening 
lock/red).  However, MOPS is only interested in detecting 
whether an error state could occur at a particular node (e.g., 
5), and not in detecting all possible error paths to that node 
(e.g., the error state at node 5 could also be reached by go-
ing through the loop several times before going from 7 to 8).  
Each such error state at a node found is referred to as a 
“counter-example” that requires further analysis to deter-
mine whether it truly is an error.  The CFG of Figure 3a also 
has a second possible counter-example at node 2, with the 
shortest path 1234712.  MOPS identifies the 
shortest possible path to each error node using an efficient 
algorithm that forms the Cartesian product of the FSA and 
the CFG (which is a pushdown automaton) and testing 
whether the resulting pushdown automaton is non-empty.  
Fortunately, there are fast algorithms for this computation 
[14], and this enables MOPS to identify all such possible er-
rors very rapidly, even for programs with millions of lines 
of code and many possible error nodes. 

Figure 1.   Finite State Automaton (FSA) for lock/unlock 
software errors. 

Example() { 
1: do {   
2:  lock(); 
3:  old=new; 
4:   if (foo) { 
5:   unlock(); 
6:   new ++; 
  } 
7: while (new != old); 
8: unlock(); 
9: return; 
} 

(b) 

(a) 
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9 

Figure 2.   Test program (a) for lock-unlock analysis and 
corresponding CFG (b). 
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A MOPS CFG is a conservative model of the C lan-
guage software that it is based upon.  If no instances of the 
FSA are found in the CFG, then the software is free of the 
vulnerability in question.  On the other hand, if an instance 
of the FSA is located in the CFG, this does not necessarily 
mean that the software has the vulnerability.  Each instance 
of an FSA match to the CFG must be further examined to 
determine whether it is an actual instance of the vulnerabil-
ity or a spurious instance due to the abstraction and the fact 
that the data-flow is not considered in the abstracted CFG.  
(Note that the example program of Figure 3a is actually cor-
rect as written, and hence the two counter-examples are in 
fact spurious). 

III.   MODEL CHECKING IN GHOST MAP 
The core idea of the Ghost Map game is to use game 

players to check all the counter-examples identified by 
MOPS for a particular piece of software and a particular set 
of FSAs (representing different security vulnerabilities).  
Our goal is to use game play as an integral part of an auto-
mated proof system to eliminate as many counter-examples 
as possible. The result is that the number of counter-
examples that need to be manually inspected by expert 
software engineers is greatly reduced as compared to what 
would have been produced using the original MOPS system.  
If the number of FSA matches reaches zero, the system has 
generated a proof of correctness, with respect to a given 
vulnerability, of the software (i.e., a proof of the absence of 
the targeted vulnerability). 

To eliminate counter-examples, Ghost Map gameplay 
uses a process known as refinement [13].  The game offers 
the player the ability to perform operations that locally undo 
some of the abstraction that occurred in building the CFG – 
in particular by removing some of the non-determinism that 
was introduced by MOPS.  The goal of the gameplay is to 
attempt to refine the CFG into an equivalent graph that has 
no spurious abstract counterexamples.  There are two opera-

tions that can be taken in Ghost Map to modify a given 
graph: cleaving and edge removal. 
 
A. Cleaving 

Cleaving takes a node of in-degree n (where n ≥ 2) and 
splits it into n nodes. Each in-bound edge into the original 
node is allocated to a different new copy of the node and the 
outbound edges are duplicated for each new node.  In terms 
of control flow, cleaving simply expands the call flow graph 
so that the edges after the cleaved node are now separated 
based on which inbound edge at the cleave point preceded 
them. Multiple steps of cleaving can be conducted if needed.  
Figure 3b illustrates the result of cleaving the CFG of Figure 
3a at the node 7.  The result is two new nodes (7a and 7b), 
and two ways of getting to node 8 (one from 7a and one 
from 7b).  Essentially, this cleave now allows the CFG to 
distinguish between a path through the CFG that goes 
through the 45 branch (i.e., “foo” is true) and one that 
goes through the 47b branch (i.e., “foo” is false).  When a 
player requests that a cleave be performed, this operation 
can be easily performed by the Ghost Map game via a sim-
ple graphical manipulation of the CFG.  No knowledge of 
the original source code is needed. 
 
B.  Edge Removal 

Edge removal is an activity where the game player sug-
gests edges to be removed to eliminate abstract counterex-
amples.  For example, the left hand edge 7a8 in the 
cleaved graph is clearly a candidate for removal (see Figure 
4a).  Why? Because if it can be removed, then the counter-
example at node 8 (two unlocks/greens in a row) can never 
occur.  Once a player suggests an edge to be removed, the 
Ghost Map system must then go back to the original source 
code of the software in order to determine that the edge can 
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Figure 3.   Illustration of cleaving operation. 
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Figure 4.   Illustration of edge removal to produce a CFG 
containing no counter-examples. 
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be legally removed.  An edge can be legally removed if it is 
not reachable via any legal execution path through the 
cleaved CFG.  Determining removal is currently performed 
using a test case generation tool called Cloud9 [15] to exam-
ine the data constraints in the software.  For example, the 
predicate “new != old” is the key value that helps prove that 
node 8 is never reachable from node 7a by an actual execu-
tion of the function – and hence that the counter-example at 
node 8 is false and can be eliminated.  Within Ghost Map, 
the player eliminates one counter-example at a time.  For 
example, the player may next seek to eliminate the edge 
7b1 (see Figure 4b).  Again, the predicate “new != old” 
helps prove that this edge can be removed.  Once all coun-
ter-examples have been eliminated (e.g., Figure 4c), the 
CFG (at least the part showing in the current game level) 
has been formally verified to be correct.  One can view the 
final graph in Figure 4c as an “optimization” of the original 
code, akin to something that might be done by an optimiz-
ing compiler.  The loop structure of the final graph is now 
transparently correct for the lock/unlock rule. 

IV. GAME PLAY OVERVIEW 
Our game uses a puzzle-approach, where each game lev-

el is essentially an independent puzzle with respect to the 
other game levels.  The basic style of the gameplay is ar-
cade-like with all the information needed by the player pre-
sented on the screen at the same time, and the time needed 
to play a level being relatively short.  This approach was se-
lected to ensure that the game was accessible and appealing 
to a broad range of game players. 

Figure 5 illustrates the basic interface of the game.   
• At the bottom right of the screen is a representation 

of the FSA.  This can be expanded or shrunk down 
depending on the player’s preferences. Note that 
the FSA in Figure 5 is essentially the same as the 
one in our earlier lock/unlock example. 

• The X-like figure in the middle of the screen is a 
depiction of a very small CFG.  Lines use arrows to 
convey the direction of the edges.  Colors are used 
to distinguish the start node from the node at which 
the counter-example occurs, as well as from 
intervening nodes.  A colored path is provided to 
show the shortest path found by MOPS from the 
start node to the counter-example node. 

• Nodes that can be cleaved are indicated with a 
large highlighted sphere, and a cleave cursor icon 
can be clicked on the sphere to perform the cleave. 

• Edges that can be disconnected (see Figure 6a) are 
highlighted, and an edge disconnect cursor icon 
can be clicked on the edge to initiate verification. 

• Various helper functions for zooming in and out 
and highlighting different parts of the graph are 
provided at the bottom left of the screen. 

• At the top of the screen is a summary of the 
resources available to perform the expensive edge 
disconnect operations (more details below in Game 
economy). 

The player is free to explore and manipulate the graph as 
they wish.  As they perform key actions, messages appear in 
the center of the screen describing what is currently happen-
ing or what has happened (see Figure 6).  Ultimately, the 
player can win the level, fail the level, or simply switch over 
to another level and return later. 

Incorporating the ability to switch among levels at will 
was a decision based on the fact that edge disconnection can 
sometimes take a very long time.  To prevent boredom, 
players can initiate an edge disconnection operation, and 
then switch to work on another level while the first one is 
finishing the operation on the server.  In future releases of 
the game, we plan to include additional game play activities 
to manage the delay generated by edge removal processing. 

Ghost Map includes a simple game economy that penal-

Figure 5.   The primary game screen for Ghost Map. 
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izes expensive edge disconnect operations that do not suc-
ceed and rewards successful decisions.  The player begins 
with a certain amount of credit to solve the current level 
(e.g., 1000 credits, shown in the top left of the screen, see 
Figure 5).  Every request for an edge disconnect costs a cer-
tain amount (e.g., 500 credits, see Figure 6b).  If an edge re-
quest is unsuccessful, then the credits are consumed, the 
players are notified of the failure and given chance to try 
again.  If the request is successful, however, then the player 
receives the current value of the level, which will be 1000 
minus the cost of any edge removal requests.  MOPS is run 
again on the updated CFG to determine if there are any re-
maining counter-examples.  If there are, then gameplay con-
tinues immediately in a new level. 

V. GAME SYSTEM ARCHITECTURE 
The high-level architecture of the Ghost Map game sys-

tem is shown in Figure 7.  The upper portion of the figure 
shows the off-line processing of the CWE entry and the tar-

get software to generate game levels.  The game level data 
and modified C software is loaded into the cloud to be used 
during game play.  Ghost Map is a client-server game.  The 
game clients run the Unity game engine and communicate 
with the Ghost Map Game Server to receive game levels 
and to send edge removal requests for verification by the 
math back end. 

VI. GAME DESIGN ISSUES 
The goal of our game is to allow players to perform re-

finements based on insights gleaned from a visual analysis 
of the CFG and an understanding of the FSA.  The intent is 
that the actions performed by the players are, on the whole, 
more efficient than the brute force search abilities of com-
puters.  In the game play, one or more FSA to CFG matches 
are identified and displayed to the player.   

Within Ghost Map, we chose to use a visual representa-
tion that is directly tied to the graphical nature of an FSA 
and CFG, and to use operations that are directly tied to the 
acts of cleaving and refinement.  During our early design 
phase, we explored several alternative visualizations that 
used analogies (e.g., building layouts, mazes, an “upper” 
world/CFG linked to a “lower” world/FSA, a Tron-like in-
ner world/FSA linked to a “real” outer world/CFG) but pre-
liminary testing with game players revealed that the simpler 
node-based CFG/FSA visualizations were easier to under-
stand.  We instead focused our game design efforts on de-
veloping an appealing narrative basis for the game, using 
visually appealing graphics to display the graphs and moti-
vating the player’s interest in performing the refinement op-
erations efficiently via a game economy.  Efficient game-
play was a must.  While cleaving is an inexpensive opera-
tion, verifying edge removal can be quite expensive to com-
pute. 

 
A. Narrative Basis for Game 

Creating an effective game is often an exercise in creat-
ing an effective narrative.  However, in a crowd-sourced 
game, there is an additional complication – the narrative ba-
sis of the game needs to encourage the player to want to 
solve the specific problems with which they are presented.  
Most successful crowd-sourced games to date have actually 
used a minimal narrative approach.  The “story” of the game 
is the real-life story of the problem being solved (e.g., trying 
to analyze proteins in FoldIt).  In our case, we decided early 
on that a story based on trying to formally verify software 
would be too technical and unappealing to the masses.  In 

Figure 6.   Action scenes from the Ghost Map game (figures 6a through 6d). 

Figure 7.   The Ghost Map game system architecture. 
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addition, due the vulnerability protection issue, there are 
some limitations to the information that we can release 
about the true story. 

Hence, in our early design, we explored a variety of nar-
ratives that could be used to motivate the gameplay through 
analogy.  In particular, we wanted the analogy to motivate 
the specific refinement operations of cleaving and edge re-
moval.  We considered several basic approaches for the nar-
rative, each focused on a different type of game reason for 
eliminating a counter-example from a graphical layout of 
some sort: 

• Having the player focus on circumventing 
restrictions.  For instance, finding out how to solve 
traps and challenges within an ancient tomb in 
order to reach the treasure inside. 

• Having the player protect others.  For instance, 
having little lemmings moving along the graph and 
needing to eliminate the counter-examples in order 
to stop them from dying when they hit the counter-
examples. 

• Having the player focus on protecting a system.  
For instance, being a security officer and trying to 
shut down doorways that are enabling entities from 
an alternate universe from entering our own to 
wreak destruction. 

• Having the player try to outwit others to survive.  
For instance, in a Pac-man style gameplay, solving 
the counter-example provides you with immunity 
from the enemy (e.g., ghosts) chasing you. 

• Having the player trying to escape.  For instance, 
the player is stuck in a maze and the only way out 
is to solve the counter-example. 

• Having the player stop something from escaping.  
For instance, a sentient program is trying to escape 
and take over the world, and the player needs to 
keep it from growing too strong by eliminating its 
access points to the outside world. 

These narrative motivations and ideas were tested with 
game players to determine their appeal.  The last two were 
found to be the most appealing, and upon further thought, 
we blended the two within the concept of a newly formed 
sentient program trying to ensure their growth and survival 
by eliminating restrictions on their capabilities.  This final 
narrative idea tested well, and added the motivation of an 
implicit journey of self-realization.  An additional benefit of 
this final narrative idea was that the graph being analyzed 
by the players could be clearly described as a program that 
needed to be analyzed.  Thus, in keeping with some of the 
successful approaches mentioned above, we came almost 
full circle to linking gameplay closely with the specific real-
world task 

 
B. Software and Vulnerabilities 

One of the design requirements of Ghost Map is the as-
sociation between a game level and the associated portion of 
source code being proved correct cannot be known to the 
crowd.  This requirement relates to standard practices for 
limiting the release of potential software vulnerability in-

formation.  While Ghost Map is a tool for proving the cor-
rectness of software, it is of course true that when correct-
ness proofs fail, vulnerabilities may be present.  Even partial 
information about vulnerabilities in software should be 
managed carefully, with release to the public to be consid-
ered only after the software authors or other authorized par-
ties have been informed.  Ghost Map protects the software 
to be verified by only showing the player a compacted con-
trol flow graph of the software and by similarly limiting 
knowledge of the vulnerabilities in question. 

Games like FoldIt [6] and Ghost Map draw players that 
want their game efforts to be applied toward the common 
good.  Detailed information about the problem being solved 
by the game can provide additional player motivation.  
Ghost Map however cannot take full advantage of this addi-
tional motivation approach, due to the restrictions on the re-
lease of potential vulnerability information. 

VII. FUTURE PLANS 
Ghost Map is under active development, and at the time 

of writing we have just commenced our second phase of de-
velopment.  Our goal is to build upon the success of our ini-
tial version in six ways: 

• Enhance the gameplay through the use of 
refinement guidance, which we refer to as “clues” 

• Add new game play activities that provide 
additional fun for the player  

• Develop a new space-travel narrative that provides 
a more engaging story than the current narrative 
and also provides a more comprehensive linkage to 
the puzzle problem 

• Improve the accuracy and performance of our edge 
removal verification tool 

• Extend the scope of the Ghost Map system to cover 
additional C language constructs 

• Improve our approach to FSAs to create a more 
accurate representation of vulnerabilities 

VIII. SUMMARY AND CONCLUSIONS 
We have presented Ghost Map, a novel crowd-source 

game that allows non-experts to help prove software cor-
rectness from common security vulnerabilities.  Ghost Map 
was released for open Internet play in December 2013.  In 
the months since release, over a thousand users have played 
the game and similar numbers of small proofs have been 
completed (representative data from January 2014 is shown 
in Figure 8). Ghost Map demonstrates the basic feasibility 
of using games to generate proofs and provides a new ap-
proach to performing refinement for model-checking ap-
proaches.  In addition to the immediate benefits of verifying 
software using games, we also anticipate that the Ghost Map 
approach may enable new automated methods as well.  
Through the intermediate representations we have devel-
oped and the proof tools we have created for validating edge 
removals, we believe the possibility of creating novel intel-
ligent refinement algorithms is significant. 
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