
A Backtracking Symbolic Execution Engine

with Sound Path Merging

Andreas Ibing

Chair for IT Security

TU München, Germany

Email: andreas.ibing@tum.de

Abstract—Software vulnerabilities are a major security threat and
can often be exploited by an attacker to intrude into systems.
One approach to mitigation is to automatically analyze software
source code in order to find and remove software bugs before
release. A method for context-sensitive static bug detection is
symbolic execution. If applied with approximate path coverage,
it faces the state explosion problem. The number of paths in
the program execution tree grows exponentially with the number
of decision nodes in the program for which both branches are
satisfiable. In combination with the standard approach using
the worklist algorithm with state cloning, this also leads to
exponential memory consumption during analysis. This paper
considers a source-level symbolic execution engine which uses
backtracking of symbolic states instead of state cloning, and
extends it with a sound method for merging redundant program
paths, based on live variable analysis. An implementation as plug-
in extension of the Eclipse C/C++ development tools (CDT) is
described. The resulting analysis speedup through path merging
is evaluated on the buffer overflow test cases from the Juliet test
suite for static analyzers on which the original engine had been
evaluated.

Keywords–Static analysis; Symbolic execution.

I. INTRODUCTION

Software vulnerabilities like, e.g., buffer overflows can in
many cases be exploited by an attacker for remote code exe-
cution. Automated bug detection during software development
and for releases are a main component of application security
assurance.

Symbolic execution [1] is a static program analysis method,
where software input is regarded as variables (symbolic val-
ues). It is used to automatically explore different paths through
software, and to compute path constraints as logical equations
(from the operations with the symbolic input). An automatic
theorem prover (constraint solver) is then used to check pro-
gram paths for satisfiability and to check error conditions for
satisfiability. The current state of automatic theorem provers
are Satisfiability Modulo Theories (SMT) solvers [2], the
standard interface is the SMTlib [3]. An example state-of-the
art solver is [4].

Automatic analysis tools which rely on symbolic execution
have been developed for the source-code level, intermediate
code and binaries (machine code). Available tools mostly
analyze intermediate code, which exploits a small instruction
set and certain independence of programming language and
target processor. Examples are [5] and [6], which analyzes
LLVM code [7]. An overview of available tools is given in
[8][9][10]. Symbolic execution on the source-code level is also

interesting for several reasons. An intermediate representation
loses source information by discarding high-level types and the
compiler lowers language constructs and makes assumptions
about the evaluation order. However, rich source and type
information is needed to explain discovered bugs to the user
[11] or to generate quick-fix proposals. An example of a
source-level symbolic execution engine for C/C++ is [12],
which uses the parser and control flow graph (CFG) builder
from Eclipse CDT [13].

During symbolic execution, the engine builds and analyzes
satisfiable paths through programs, where paths are lists of
CFG nodes. Always restarting symbolic execution from the
program entry point for different, partly overlapping program
paths (path replay) is obviously inefficient. The standard
approach is therefore the worklist algorithm [14]. Symbolic
program states of frontier nodes (unexplored nodes) of the
program execution tree are kept in memory, and at program
branches the respective states are cloned. The reuse of inter-
mediate analysis results with state cloning has the downside of
being memory-intensive. [5] uses state cloning with a recursive
data structure to store only state differences. Another approach
for engine implementation is symbolic state backtracking [12].
It keeps only the symbolic program states along the currently
analyzed program path in memory (stored incrementally with
single assignments) and avoids the inefficiency of path replay
as well as the exponential memory consumption of state
cloning.

The program execution tree grows exponentially with the
number of decisions in the program for which both branches
are satisfiable. Straight-forward application of symbolic exe-
cution with approximate path coverage (where the number of
unrolled loop iterations is bounded) is therefore not scalable.
This is often called the path explosion problem. In [15] it
is noted that program paths can be merged when the path
constraints differ only in dead variables, because further path
extension would have the same consequences for the paths.
It presents an implementation which extends [5]. This imple-
mentation uses a cache of observed symbolic program states
and introduces a type of live variables analysis which it calls
read-write-set (RWSet) analysis.

Interesting properties of bug detection algorithms are
soundness (no false negative detections) and completeness (no
false positives). Because a bug checker cannot be sound and
complete and have bounded runtime, in practice bug checkers
are evalutated with measurement of false positive and false
negative detections and corresponding runtimes on a suffi-
ciently large bug test suite. The currently most comprehensive

180Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

then

then

else

If

then

then

then

else

else

else

merge

merge

1 2

3

4

Figure 1. Sequence of three decisions and corresponding branches (left); the
execution tree under the assumption that all branches are satisfiable splits
into 2

3
= 8 leafs (middle); path merging folds the execution tree (right).

C/C++ bug test suite for static analyzers is the Juliet suite [16].
Among other common software weaknesses [17] it contains
buffer overflow test cases. In order to systematically measure
false positives and false negatives, it contains both ’good’ and
’bad’ functions, where ’bad’ functions contain a bug. It further
combines ’baseline’ bugs with different data and control flow
variants to cover the languages grammar constructs and to test
the context depth of the analysis. The maximum context depth
spanned by a flow variant is five functions in five different
source files.

This paper develops and evaluates a sound path merging
method in a source-level backtracking symbolic execution en-
gine. The implementation extends [12]. The remainder of this
paper is organized as follows. Section II describes the design
decisions. Section III gives an overview of the implementation
in Eclipse CDT. Section IV presents results of experiments
with buffer overflow test cases from the Juliet suite. Section
V discusses related work and section VI then discusses the
presented approach based on the results.

II. MERGE POINTS AND CONTEXT CACHE

A. Dead and live variables

Paths can be merged without any loss in bug detection
accuracy when the path constraints differ only in dead vari-
ables. The detection of such merge possibilities requires a
context cache at potential merge points. Also required is a
way to detect dead variables and to filter them from the path
constraint. Potentially interesting merge points are therefore
program locations where the sets of dead and live variables
change. Such points are function start and function exit and
after scope blocks like if / else or switch statements and
loops.

B. Design decisions

The idea of merging program paths during symbolic ex-
ecution is illustrated in Figure 1. The left of the figure
shows a control flow with a sequence of three decisions and
corresponding branches. For the assumption that all branches
are satisfiable, the middle of the figure shows the execution
tree which splits into 2

3
= 8 leafs. The right of the figure

illustrates how path merging potentially folds the execution
tree together again. In this work, path merges are performed
at function exit. Merges are possible because stack frame
variables die at function exit. A path constraint at function exit
is treated as concatenation of the function’s call context and the
local context. The approach misses possibilities to merge paths
earlier after scope blocks inside one function. On the other
hand it does not require more complex live variable analysis

:StartNode

:PlainNode

charvoid cv_struct;

:DecisionNode

global_returns_t_or_f()

:BranchNode

else

:BranchNode

then

:PlainNode

cv_struct.y = (void *)SRC_STR;

:PlainNode

memcpy(cv_struct.x, SRC_STR,

 sizeof(cv_struct));

:PlainNode

cv_struct.x[(sizeof(cv_struct.x)/sizeof(

 char))-1] = '\0';

:JumpNode

:ConnectorNode

:ExitNode

return; // fake

:PlainNode

charvoid cv_struct;

:PlainNode

cv_struct.y = (void *)SRC_STR;

:PlainNode

memcpy(cv_struct.x, SRC_STR,

 sizeof(cv_struct.x));

:PlainNode

cv_struct.x[(sizeof(cv_struct.x)/sizeof(

 char))-1] = '\0';

:JumpNode

Figure 2. Control flow graph for example function from Figure 3. with
buffer overflow in the then branch.

at intermediate points. The approach merges paths which have
split inside the same function, possibly with other function
calls in between. It needs to know the set of variables which
have been written since the merge paths have split. This is
overapproximated by the set of variables written since entering
the function which is left at the program location in question.
A set of potentially read variables along path extensions is not
computed. From the set of variables which have been written
as local context (i.e., since function entry), global variables,
the return value and all variables which have been written
through pointers (pointer escape, potential write to other stack
frame etc.) are assumed as live. The remaining written local
variables are soundly assumed as dead. The local context is
then reduced by removing the dead variables. A context cache
is used to lookup observed reduced local contexts from pairs
of a function’s exit node (in the function’s control flow graph)
and call context. During symbolic execution, at each exit node
the context cache is queried for a merge possibility. Then, the
current path is pruned (merged) if possible, otherwise the local
reduced context is added as new entry to the context cache.

III. IMPLEMENTATION IN ECLIPSE CDT

A. Symbolic execution with symbolic state backtracking

This subsection shortly reviews [12] which is extended
by the paper at hand with path merging functionality. The
backtracking symbolic execution engine [12] uses Eclipse
CDT’s C/C++ parser to construct abstract syntax trees (AST)
from source code files. Control flow graphs (CFG) are then
constructed for function definitions rooted in AST subtrees.
CFG construction uses the ControlFlowGraphBuilder

class from CDT’s code analysis framework (Codan [13]). The
symbolic interpretation is implemented according to the tree-
based interpretation pattern from [18], the translator class
extends CDT’s ASTVisitor (visitor pattern [19]). The inter-
pretation is symbolic, i.e., variable values are logic formulas.
Satisfiability queries to the SMT solver use the SMTLIB

181Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

t y p e d e f s t r u c t c h a r v o i d
{

char x [1 6] ;
void ∗ y ;
void ∗ z ;

} c h a r v o i d ;

void CWE121 memcpy 12 bad simplif ied () {
i f (g l o b a l r e t u r n s t o r f ()) {

c h a r v o i d c v s t r u c t ;
c v s t r u c t . y = (void ∗)SRC STR ;
/∗ FLAW: Use t h e s i z e o f (c v s t r u c t) which

w i l l o v e r w r i t e t h e p o i n t e r y ∗ /
memcpy (c v s t r u c t . x , SRC STR ,

s i z e o f (c v s t r u c t)) ;
/∗ n u l l t e r m i n a t e t h e s t r i n g ∗ /
c v s t r u c t . x [(s i z e o f (c v s t r u c t . x) / s i z e o f (

char)) −1] = ’\0 ’ ;
}
e l s e {

c h a r v o i d c v s t r u c t ;
c v s t r u c t . y = (void ∗)SRC STR ;
/∗ FIX : Use s i z e o f (c v s t r u c t . x) t o a v o i d

o v e r w r i t i n g t h e p o i n t e r y ∗ /
memcpy (c v s t r u c t . x , SRC STR ,

s i z e o f (c v s t r u c t . x)) ;
/∗ n u l l t e r m i n a t e t h e s t r i n g ∗ /
c v s t r u c t . x [(s i z e o f (c v s t r u c t . x) / s i z e o f (

char)) −1] = ’\0 ’ ;
}

}

Figure 3. Simplified example function from [16], contains a buffer overflow
in the then branch. Corresponding CFG in Figure 2.

sublogic of arrays, uninterpreted functions and nonlinear inte-
ger and real arithmetic (AUFNIRA). Backtracking is enabled
by a class ActionLog which records certain semantic actions
performed for CFG nodes on the current path (e.g., variable
creation or hiding). If for example a function exit is back-
tracked, the function’s stack frame with contained variables
must be made visible again. Dead variables are therefore not
garbage-colled, because this would impede backtracking. The
engine further allows to record and visualize explored parts
of a program execution tree. The engine was evaluated in
[12] by measuring detection accuracy (false positives and false
negatives) and run-times for the detection of buffer overflows
in Juliet test programs.

B. Path merging

In this implementation, paths are merged at function exit.
The method can merge paths which have split since entering
the same function, with the possibility that several other
functions are called between entering and leaving the function.
Path merging needs knowledge about the sets of written
variables since path split. The implementation uses the class
ActionLog from [12] to derive this information. It contains
all writes to variables, including writes to globals and writes
through pointers (potentially to other stack frames). The action
log is looked through backwards up to the current function’s
CFG start node, and the reduced local context is built from
the variable declaration actions. The reduced local context is
yielded by removing all writes to variables if the variables

don’t have global scope, are not written through pointers and
are not the current function’s return value. This approach does
not necessitate a comparably more complex dead/live variable
analysis. Path merge possibilities are detected using a class
ContextCache, which is a HashSet. The keys are exit
nodes with function call context, the values are the observed
reduced local contexts. The context cache is queried at each
function exit (CFG exit node). Comparing the reduced local
contexts does not necessitate expensive calls to the SMT solver.

An example function is shown as listing in Figure 3. It is
a simplified version of a ’bad’ function from one of the buffer
overflow test cases of the Juliet suite. The control flow graph
of this function is shown in Figure 2. The function contains a
decision node corresponding to an if/else statement, for
which both branches are satisfiable. The error location is
marked by red underlining in the branch on the right of Figure
2. and by a comment in the listing. For both branches, the
function only writes to stack variables, and the reduced local
context at function exit is the empty set. Merging the two
paths at function exit which have split at the decision node is
therefore clearly possible without missing any bug.

Path merging applies in the same way to branches which
belong to loops, when the loop iteration number depends on
program input (otherwise there would be only one satisfiable
sub-path through the loop). Symbolic execution is currently
applied with loop unrolling up to a maximum loop depth
bound. A path through a loop can therefore split into a
maximum number of paths equal to the loop unrolling bound.
Branch nodes in the CFG belonging to loop statements are
treated by symbolic execution just as branch nodes belonging
to if/else statements. The branch nodes also have the same
labels, ’then’ for the loop body and ’else’ to skip the
loop. The only difference is that loops have a connector node
with two incoming branches, which closes the loop before the
decision node. This however has no influence on the merging
of unrolled paths.

IV. EXPERIMENTS

Path merging is evaluated on the same buffer overflow test
programs from the Juliet suite as [12]. These programs contain
buffer overflows with the memcpy (18 programs) and fgets
(36 programs) standard library functions, and cover the Juliet
control and data flow variants for C (e.g., multipath loops and
fuction pointers). A screenshot for error reporting with the
CDT GUI is shown in Figure 7. The tests are run as JUnit
plug-in tests with Eclipse 4.3 on 64bit Linux kernel 3.2.0 and
an i7-4770 CPU. The same bug detection accuracy with and
without path merging is validated, there are no false positive
or false negative bug detections on the test set.

Figures 4. and 5. illustrate the merging of paths, which
corresponds to folding the execution tree. Figure 4. shows
the execution tree for a memcpy buffer overflow with flow
variant 12. This test program contains a ’good’ and a ’bad’
function, where both functions contain a decision node with
two satisfiable branches. The bad function is given in a
simplified version in Figure 3. The tree shows only decision
nodes and branch nodes. Figure 5. shows the same tree when
path merging is applied. Paths are merged at two points which
are indicated in the tree (the two function exits), and the
traversal of two subtrees is skipped.

182Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

Figure 4. Execution tree for test program CWE121_Stack_Based_Buffer_Overflow__char_type_overrun_memcpy_12 from [16], showing only
decision and branch nodes.

Figure 5. Effect of path merging for the test program of Figure 4. The execution tree is folded at two locations. The number of traversed satisfiable paths is
reduced from four to one.

TABLE I. Analysis runtime sums for the two test sets, with and without path merging.

CWE121 memcpy CWE121 CWE129 fgets Sum

(18 test programs) (36 test programs) (54 test programs)

backtracking according to [12] 14,7 s 80,7 s 95,4 s

backtracking and path merging 15,3 s 34,4 s 49,7 s

183Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

�

�

�

��

��

��

��

��

��

��

	�

��

�	

�
� � �� ���

������������������������� ����������
��������	
�

�
�

�
��

�
��
�
�
�

Figure 6. Analysis runtimes with and without path merging for 54 buffer
overflow test programs from [16], with corresponding control/data flow

variant numbers.

Figure 6. shows the analysis runtimes for the set of buffer
overflows with fgets, for the backtracking engine and for
backtracking with path merging. The figure uses a logarithmic
scale and contains values for 36 flow variants. Flow variants
in Juliet are not numbered consecutively, to leave room for
later insertions. Since path merging folds complete subtrees
of a program’s execution tree, it has an exponential effect
on runtimes. This is exemplified by flow variant 12. While
merging paths for the memcpy buffer overflow with variant
12 reduces the runtime from 1.1 s to 0.8 s, the runtime for
the fgets buffer overflow is reduced from 22.8 s (longest
analysis time for any tested program) to 1.7 s. This is because
the fgets program contains several other decision nodes with
two satisfiable branches.

The sum analysis runtimes for the two test sets are given
in table I. For the memcpy overflows path merging increases
the runtime a little bit due to the overhead of computing
and comparing reduced local contexts. Most of the memcpy

programs do not contain a single decision for which both
branches are satisfiable, and therefore no merge possibilities.
The fgets test programs all contain such decisions, and the
sum runtime is reduced by path merging from 80.7 s to 34.4
s. The sum runtime for the 54 programs without merging is 94
s, while path merging reduces it to 50s. The overall speedup
with path merging on the test set is therefore about two, which
is considerable for the tiny Juliet programs.

V. RELATED WORK

There is a large body of work on symbolic execution
available which spans over 30 years [10]. Dynamic symbolic
execution for test case generation for x86 binaries is presented
in [20]. To reduce complexity, only variables are modelled as
symbolic which directly depend on program input, in order
to find exploitable bugs. Most tools perform symbolic execu-
tion on an intermediate code representation. Apart from [6],
where LLVM intermediate code is analyzed using a worklist
algorithm, prominent symbolic execution engines are presented
in [21] and [22]. In [21], dynamic symbolic execution of
the Common Intermediate Language (MSIL/CIL) is performed
for test case generation. The engine described in [22] ana-
lyzes Java bytecode. Sound path merging based on dead path
differences is presented in [15], the implementation extends

[6]. Merging of paths with live differences is investigated in
[23]. Path disjunctions are used in the corresponding logic
formulation passed to the solver. Heuristics for path merging
are presented, which aim at balancing computational effort
between the symbolic execution frontend and the SMT solver
backend. The implementation extends [6].

VI. CONCLUSION

This paper described the extension of a source-level back-
tracking symbolic execution engine for C/C++ with path
merging functionality and its implementation in Eclipse CDT.
The evaluation with tiny test programs from the Juliet suite
already showed a significant speedup. For larger programs
path merging has an exponential effect on analysis runtimes
(exponential in the number of decision nodes with more than
one satisfiable branch). Future work might include extensions
in different directions. One is to investigate the effect of
additional merge points, for example at connector nodes after
if/else and switch statements and loops, A memory-
efficient implementation of the context cache might exploit
redundant information due to shared sub-paths. The very
simple live variable analysis implementation can be improved
to find more merge possibilities. Inter-procedural live variable
analysis could find merge possibilities, e.g., in certain flow
variants with dead global variables. Another direction is the
extension to support path merging in the analysis of multi-
threaded code, in a straight-forward combination with [24].
A way to make the analysis scalable in order to analyze
practical programs is to restrict the code coverage, for example,
to branch coverage. There are less merge possibilities when
coverage is restricted to fewer program paths, but path merging
remains applicable without changes.

ACKNOWLEDGEMENT

This work was funded by the German Ministry for Educa-
tion and Research (BMBF) under grant 01IS13020.

REFERENCES

[1] J. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, 1976, pp. 385–394.

[2] L. deMoura and N. Bjorner, “Satisfiability modulo theories: Introduction
and applications,” Communications of the ACM, vol. 54, no. 9, 2011,
pp. 69–77.

[3] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB standard version
2.0,” in Int. Workshop Satisfiability Modulo Theories, 2010.

[4] L. deMoura and N. Bjorner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
2008, pp. 337–340.

[5] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler, “EXE:
Automatically generating inputs of death,” in 13th ACM Conference on
Computer and Communications Security (CCS), 2006, pp. 322–335.

[6] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI), 2008, pp. 209–224.

[7] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis and transformation,” in Int. Symp. Code Generation
and Optimization (CGO), 2004, p. 75.

[8] C. Cadar et. al., “Symbolic execution for software testing in practice –
preliminary assessment,” in Int. Conf. Software Eng., 2011, pp. 1066–
1071.

[9] C. Pasareanu and W. Visser, “A survey of new trends in symbolic
execution for software testing and analysis,” Int. J. Software Tools
Technology Transfer, vol. 11, 2009, pp. 339–353.

184Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

Figure 7. Error reporting in the Eclipse GUI.

[10] C. Cadar and K. Sen, “Symbolic execution for software testing: Three
decades later,” Communications of the ACM, vol. 56, no. 2, 2013, pp.
82–90.

[11] T. Kremenek, “Finding software bugs with the Clang static analyzer,”
LLVM Developers’ Meeting, Aug. 2008, retrieved: 09/2014. [Online].
Available: http://llvm.org/devmtg/2008-08/Kremenek\ StaticAnalyzer.
pdf

[12] A. Ibing, “Parallel SMT-constrained symbolic execution for Eclipse
CDT/Codan,” in Int. Conf. Testing Software and Systems (ICTSS),
2013, pp. 196–206.

[13] A. Laskavaia, “Codan- C/C++ static analysis framework for CDT,”
in EclipseCon, 2011, retrieved: 09/2014. [Online]. Available: http:
//www.eclipsecon.org/2011/sessions/index0a55.html?id=2088

[14] F. Nielson, H. Nielson, and C. Hankin, Principles of Program Analysis.
Springer, 2010.

[15] P. Boonstoppel, C. Cadar, and D. Engler, “RWset: Attacking path
explosion in constraint-based test generation,” in Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), 2008, pp. 351–
366.

[16] T. Boland and P. Black, “Juliet 1.1 C/C++ and Java test suite,” IEEE
Computer, vol. 45, no. 10, 2012, pp. 88–90.

[17] R. Martin, S. Barnum, and S. Christey, “Being explicit about security
weaknesses,” CrossTalk The Journal of Defense Software Engineering,
vol. 20, 3 2007, pp. 4–8.

[18] T. Parr, Language Implementation Patterns. Pragmatic Bookshelf,
2010.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[20] P. Godefroid, M. Levin, and D. Molnar, “Automated whitebox fuzz
testing,” in Network and Distributed System Security Symp. (NDSS),
2008.

[21] N. Tillmann and J. Halleux, “Pex – white box test generation for .NET,”
in Int. Conf. Tests and Proofs (TAP), 2008, pp. 134–153.

[22] W. Visser, C. Pasareanu, and S. Khurshid, “Test input generation with

Java PathFinder,” in Int. Symp. Software Testing and Analysis (ISSTA),
2004, pp. 97–107.

[23] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state
merging in symbolic execution,” in Conf. Programming Language
Design and Implementation (PLDI), 2012, pp. 193–204.

[24] A. Ibing, “Path-sensitive race detection with partial order reduced sym-
bolic execution,” in Workshop on Formal Methods in the Development
of Software (WS-FMDS), 2014, in press.

185Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

