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Abstract—This paper describes both the design decisions and 

implementation issues concerning the construction of a 

cryptographic library for Android Devices. Four aspects of the 

implementation were discussed in this paper: selection of 

cryptographic primitives, architecture of components, 

performance evaluation, and the implementation of non-

standard cryptographic algorithms. The motivation behind the 

special attention given to the selection of alternative 

cryptographic algorithms was the recently revealed weakness 

found in international encryption standards, which may be 

intentionally included by foreign intelligence agencies. 
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I.  INTRODUCTION 

Currently, the proliferation of smartphones and tablets 
and the advent of cloud computing are changing the way 
software is being developed and distributed. Additionally, 
the use in software systems of cryptographic techniques is 
increasing as well. 

This paper discusses the construction of a cryptographic 
library for Android devices. The paper focuses on design 
decisions as well as on implementation issues of both 
standard and non-standard algorithms. This work contributes 
to the state of the practice by discussing the technical aspects 
and challenges of cryptographic implementations. This work 
is part of an effort to build security technologies into an 
integrated framework for mobile device security [2]. The 
evaluation of several cryptographic libraries on Android 
devices was reported in a previous work [1], showing that 
there is a lack of sophisticated cryptographic primitives, such 
as elliptic curves and bilinear pairings. Moreover, the 
majority of assessed schemes implements only standard 
algorithms, and, as far as authors know, there is no practical 
design that concerns alternative, non-standard cryptography. 

The motivation behind the special attention given to the 
selection of alternative cryptographic algorithms was the 
recently revealed weakness, which may be intentionally 
included by foreign intelligence agencies in international 
encryption standards [16][26]. This fact alone raises doubt 
on all standardized algorithms, which are internationally 
adopted. In this context, a need arose to treat what has been 
called “alternative” or “non-standard” cryptography in 
opposition to standardized cryptographic schemes. The final 
intent was strengthening the implementation of advanced 
cryptography and fostering their use. Non-standard 
cryptography provides advanced mathematical concepts, 

such as bilinear pairings and elliptic curves, which are not 
fully standardized by foreign organizations, and suffer 
constant improvements. 

The remaining parts of the text are organized as follows. 
Section II offers background on the subject of cryptographic 
implementation on Java and Android. Section III details the 
implementation aspects. Section IV presents a performance 
evaluation and comparison with other libraries. Section V 
concludes this text. 

II. BACKGROUND AND RELATED WORK 

This section briefly describes topics of interest: the Java 

Cryptographic Architecture (JCA) as a framework for 

pluggable cryptography; the Java Virtual Machine (JVM) 

with its Garbage Collector (GC) and Just-in-Time (JiT) 

compilation; and The Dalvik Virtual Machine (DVM) for 

Android. 

A. JCA 

The JVM is the runtime software ultimately responsible 
for the execution of Java programs. In order to be interpreted 
by JVM, Java programs are translated to bytecodes, an 
intermediary representation that is neither source code nor 
executable. The JCA [17] is a software framework for use 
and development of cryptographic primitives in the Java 
platform. The JCA defines, among other facilities, 
Application Program Interfaces (APIs) for digital signatures 
and secure hash functions [17]. On the other hand, APIs for 
encryption, key establishment and message authentication 
codes (MACs) are defined in the Java Cryptography 
Extension (JCE) [19]. Since version 1.4, the JCE was 
incorporated by JCA, being treated in practice as a single 
framework, named JCA or JCE [20]. 

The benefit of using a software framework, such as JCA, 
is to take advantage of good design decisions, reusing the 
whole architecture. The API keeps the same general behavior 
regardless of specific implementations. The addition of new 
algorithms is facilitated by the use of a standard API [20]. 

B. GC on JVM 

An architectural feature of the JVM has great influence in 
the general performance of applications: the GC [35][37]. 
Applications have different requirements of GC. For some 
applications, pauses during garbage collection may be 
tolerable, or simply obscured by network latencies, in such a 
way that throughput is an important metric of performance. 
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However, in others, even short pauses may negatively affect 
the user experience. 

One of the most advertised advantages of JVM is that it 
shields the developer from the complexity of memory 
allocation and garbage collection. However, once garbage 
collection is a major bottleneck, it is worth understanding 
some aspects of its implementation. 

The JVM incorporates a number of different GC 
algorithms that are combined using generational collection. 
While simple GC examines every live object in the heap, 
generational collection explores other hypothesis in order to 
minimize the work required to reclaim unused objects. The 
hypothesis supporting generation GC is corroborated by 
observed behavior of applications, where most objects 
survive for only a short period of time. Some objects can be 
reclaimed soon by memory management, because they have 
died shortly after being allocated. For example, iterator 
objects are often alive for the duration of a single loop. 

On the other hand, some objects do live longer. For 
instance, there are typically some objects allocated at 
initialization that live until the program terminates. Between 
these two extremes are objects that live for the duration of 
some intermediate computation. For example, external loop 
variables live longer than inner loop variables.  Efficient GC 
is made possible by focusing on the fact that a majority of 
objects die young. 

Collections are clearly identified in diagrams, as shown 
in Figure 1. The figure shows the time consumed by the first 
500 of 10.000 executions of pure-Java implementation of the 
AES encryption algorithm. 

C. JiT Compilation 

Other import consideration on performance of Java 
programs is the JiT Compilation [10][35]. Historically, Java 
bytecode used to be fully interpreted by the JVM and 
presented serious performance issues. Now a days, the 
technology known as HotSpot uses JiT Compilation not only 
to compile Java programs, but also to optimize them, while 
they execute. The result of JiTC is an application that has 
portions of its bytecode compiled and optimized for the 
targeted hardware, while other portions are still interpreted. 

It is interesting to notice that JVM has to execute the 
code before to learn how to optimize it. The very first 
moments of an application show a relatively poor 
performance, since the bytecode is been interpreted, 
analyzed for optimizations, and compiled at the same time. 

After this short period, the overall performance of the 
application improves and the execution tends to stabilize at 
an acceptable level of performance. Once again, the period 
of optimization and compilation is clearly identified in 
diagrams, as is shown in Figure 1. 

A feature referred by Oracle as JVM Ergonomics was 
introduced in Java 5.0 with the goal of providing good 
performance with little or no tuning of configuration options 
for JVM. Instead of using fixed defaults, JVM ergonomics 
automatically selects GC, heap size, and runtime compiler at 
JVM startup. The result of ergonomics is that the choice of a 
GC does not matter to most applications. That is, most 
applications can perform well under the choices made by 

JVM, even in the presence of pauses of modest frequency 
and duration. 

Unfortunately, there is a potential negative side to 
security in the massive use of JiT Compilation. Security 
controls put in place into source code, in order to avoid side-
channels, can be cut off by JiT optimizations. JiTC is not 
able to capture programmer's intent that is not explicitly 
expressed by Java’s constructs. That is exactly the case of 
constant time computations needed to avoid timing attacks. 
Security-ware optimizations should be able to preserve 
security decisions and not undo protections, when 
transforming source code for cryptographic implementations 
to machine code. Hence, to achieve higher security against 
this kind of attacks, it is not recommended to use JiTC 
technology, what constitutes a trade-off between security and 
performance. 

D. DVM 

The DVM [7] is the virtual hardware that executes Java 
bytecode in Android. DVM is quite different from the 
traditional JVM, so that software developers have to be 
aware of those differences, and performance measurements 
over a platform independent implementation have to be 
taken in both environments. 

Compared to JVM, DVM is a relatively young 
implementation and did not suffered extensive evaluation. In 
fact, the first independent evaluation of DVM was just 
recently published [13]. There are three major differences 
between DVM and JVM. First of all, DVM is a register-
based machine, while JVM is stack-based. Second, DVM 
applies trace-based JiTC, while JVM uses method-based 
JiTC. Finally, former DVM implementations use mark-and-
sweep GC, while current JVM uses generation GC. 

Also, results from that DVM evaluation [13] suggest that 

current implementations of DVM are slower than current 

implementations of JVM. Concerning cryptographic 

requirements, a remarkable difference between these two 

environments is that the source of entropy in DVM is 

significantly different from the one found on JVM. 

III. DESCRIPTION OF THE IMPLEMENTATION 

In order to facilitate the portability of the cryptographic 
library for mobile devices, in particular for the Android 

 
Figure 1. JiT Optimization of an AES execution. 
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platform, the implementation was performed according to 
standard cryptographic API for Java, the JCA, its name 
conventions, and design principles [14][17]-[20]. 

Once JCA was defined as the architectural framework, 
the next design decision was to choose the algorithms 
minimally necessary to a workable cryptographic library. 
The current version of this implementation is illustrated by 
Figure 2 and presents the cryptographic algorithms and 
protocols described in the following paragraphs. The figure 
shows that frameworks, components, services and 
applications are all on top of JCA API. The Cryptographic 
Service Provider (CSP) is in the middle, along with 
BouncyCastle and Oracle providers. Arithmetic libraries are 
at the bottom. 

Figure 2 shows the CSP divided in two distinct 
cryptographic libraries. The left side shows only 
standardized algorithms and comprises a conventional 
cryptographic library. The right side features only non-
standard cryptography and is an alternative library. The 
following subsections describe these two libraries. 

A. Standard Cryptography 

This subsection details the implementation choices for 
the standard cryptographic library. The motivations behind 
this implementation were all characteristics of standardized 
algorithms:  interoperability, documentation, and testability. 
The standard cryptography is packaged as a pure-Java library 
according to the JCA specifications.  

The programming language chosen for implementation 
of this cryptographic library was Java. The block cipher is 
the AES algorithm, which was implemented along with thee 
of operation: ECB, and CBC [27], as well as the GCM mode 
for authenticated encryption [28]. PKCS#5 [3] is the simplest 
padding mechanism and was chosen for compatibility with 
other CSPs. As GCM mode for authenticated encryption 
only uses AES encryption, the optimization of encryption 
received more attention than AES decryption. 
Implementation aspects of AES and other cryptographic 
algorithms can be found on the literature [15][24][34], in 
particular [29]. 

The asymmetric algorithm is the RSA-PSS that is a 
Probabilistic Signature Scheme constructed over the RSA 
signature algorithm. PSS is supposed to be more secure than 
ordinary RSA [23][34]. Asymmetric encryption is provided 
by the RSA-OAEP [23][34]. 

Two cryptographically secure hashes were implemented, 
SHA-1 [22] and MD5. It is well known by now that MD5 is 
considered broken and is not to be used in serious 
applications, it is present for ease of implementation. In 
current version, there is no intended use for these two hashes. 
Their primary use will be as the underling hash function in 
MACs, digital signatures and PRNGs. The Message 
Authentication Codes chosen were the HMAC [25] with 
SHA-1 as the underling hash function, and the GMAC [28], 
which can be directly derived from GCM mode. SHA-2 
family of secure hashes supplies the need for direct use of 
single hashes. 

The need for a key agreement was fulfilled by the 
implementation of Station-to-Station (STS) protocol, which 

is based upon Authenticated Diffie-Hellman [38], and 
provides mutual key authentication and confirmation [4][39]. 

Finally, the mechanism for Password-based Encryption 
(PBE) is based on the Password-Based Key Derivation 
Function 2 (PBKDF2) [3], and provides a simple and secure 
way to store keys in encrypted form. In PBE, a key-
encryption-key is derived from a password. 

B. Non-standard Cryptography 

This subsection details the implementation choices for 
the alternative cryptographic library. The non-standard 
cryptography is a dynamic library written in C and accessible 
to Java programs through a Java Native Interface (JNI) 
connector, which acts as a bridge to a JCA adapter. 

By the time of writing, this alternative library was under 
the final steps of its construction. The most advanced 
cryptographic protocols currently implemented are based 
upon a reference implementation [5] and are listed below. 
a) ECDH [8]. The key agreement protocol ECDH is a 

variation of the Diffie-Hellman protocol using elliptic 
curves as the underlying algebraic structure; 

b) ECDSA [21]. This is a DSA-based digital signature 
using elliptic curves. ECSS [8] is a variation of ECDSA 
that does not require the computation of inverses in the 
underlying finite field, obtaining a signature algorithm 
with better performance;  

c) SOK [8]. This protocol is a key agreement for Identity-
Based Encryption (IBE). Sometimes, it is called 
SOKAKA for SOK Authenticated Key Agreement; 

d) BLS [6]. A short digital signature scheme in which 
given a message m, it is computed S = H (m), where S is 
a point on an elliptic curve and H() is a secure hash; 

e) ZSS [11]. Similar to the previous case, it is a more 
efficient short signature, because it utilizes fixed-point 
multiplication on an elliptic curve rather arbitrary point; 

f) Blake [32]. Cryptographic hash function submitted to 
the worldwide contest for selecting the new SHA-3 
standard and was ranked among the five finalists; 

g) ECIES [8]. This is an asymmetric encryption algorithm 
over elliptic curves. This algorithm is non-deterministic 

 
Figure 2. Cryptographic Service Provider Architecture. 
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and can be used as a substitute of the RSA-OAEP, with 
the benefit of shorter cryptographic keys; 

h) ECSTS [8]. Variation of STS protocol using elliptic 
curves and ECDH as a replacement for ADH; 

i) Salsa20 [9]. This is a family of 256-bit stream ciphers 
submitted to the ECRYPT Project (eSTREAM); 

j) Serpent [31]. A 128-bit block cipher designed to be a 
candidate to contest that chose the AES. Serpent did not 
win, but it was the second finalist and enjoys good 
reputation in the cryptographic community. 

C. Security decisions for non-standard cryptography 

Among the characteristics that were considered in the 
choice of alternative cryptographic primitives, side channels 
protection was a prevailing factor and had distinguished role 
in the design of the library. For instance, schemes with 
known issues were avoided, while primitives that were 
constructed to resist against such attacks are currently being 
regarded for inclusion in the architecture. Furthermore, 
constant-time programming  techniques, like for example in 
table accessing operations for AES, are being surveyed in 
order to became part of the implementation. 

Concerning mathematical security of non-standard 
cryptography, the implementation offers alternatives for 256-
bit security for both symmetric and asymmetric encryption. 
For instance, Serpent-256 corresponds to AES-256 block 
cipher, while the same security level is achieved in 
asymmetric world using elliptic curves over 521-bit finite 
fields, what can only be possible in standard cryptography 
using 15360-bit RSA key size. Thus, in higher security 
levels, non-standard primitives performance is significantly 
improved in relation to standard algorithms, but an extensive 
analysis of this scenario, with concrete timing comparisons, 
is left as future work. 

A final remark about the use of non-standard 
cryptography is that working with advanced cryptographic 
techniques that have not been sufficiently analyzed by the 

scientific community has its own challenges and risks. There 
are occasions when the design of a non-standard 
cryptographic library has to be conservative in order to 
preserve security.    

For instance, a recent improvement in mathematics 
[12][30] had eliminated an entire line of research in 
theoretical cryptography. Such advancement affected elliptic 
curve cryptography using a special kind of binary curves 
called supersingular curves, but had no effect on the bilinear 
pairings over primes fields or encryption on ordinary 
(common) binary curves. Thus, these two technologies 
remain cryptographically secure. Unfortunately, the 
compromised curves were in use and had to be eliminated 
from the cryptographic library. 

As pairings on prime fields can still be securely used in 
cryptographic applications, the implementation was adapted 
to that new restricted context. Additionally, ordinary elliptic 
curves may still be used for cryptographic purposes, 
considering they are not supersingular curves, and the 
implementation had to adapt to that fact too.  

IV. PERFORMANCE EVALUATION 

Performance evaluation of Java programs, either in 
standard JVM or DVM/Android, is a stimulating task due to 
many sources of interference that can affect measurements. 
As discussed in previous sections, GC and JiTC have great 
influence over the performance of Java programs. The intent 
of performance evaluations presented in this section is to 
provide and describe a realistic means to compare 
cryptography implementations in Java. 

Two approaches of measurement have been used for the 
evaluation of cryptographic functions implemented in pure-
Java programs. The first one was the measurement of 
elapsed time for single cryptographic functions processing a 
single block of data. This approach suffers from the 
interference of GC and JiTC. The JiTC interference can be 
eliminated by discarding all the measurements collected 
before code optimization. The GC interference cannot be 
completely eliminated, though. 

 
Figure 4. Performance of AES in pure-Java - average, 9th percentile, and 

median of 10.000 iterations. 

 

 
Figure 3. Throughput of implementations. 
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Figure 4 exemplifies the first approach and shows the 
comparative performance of AES encryption, in ECB mode, 
of a single block of data for two Java CSPs: This text CSP 
and BouncyCastle (BC) [36]. The measurements were taken 
on an LG Nexus 4 with 16GB of internal storage, 2 GB of 
RAM, 1.5 GHz Quad-core processor, and Android 4.3. The 
procedure consisted of processing a single block of data in a 
loop of 10.000 iterations. AES were setup to three key sizes 
(128, 192 and 256) in both encryption and decryption. 

In order to inhibit the negative influence of GC and JiTC, 
three metrics were taken: the average of all iterations, the 9

th
 

percentile and the median. None of them resulted in a perfect 
metric. However, these measures do offer a realistic 
comparison of CSP and BC. They show similar performance. 

The second approach for performance evaluation has to 
consider that final users of mobile devices will not tuning 
their Java VMs with obscure configuration options in order 
to achieve maximum performance. On the contrary, almost 
certainly they will use default configurations, with minor 
changes on device’s settings. Thus, the responsiveness of an 
application tends to be more relevant to final users than the 
performance of single operations. 

The second approach of measurement takes into account 
the responsiveness of cryptographic services and considers 
the velocity with which a huge amount of data can be 
processed, despite the interferences of GC and JiTC. The 
amount of work performed per unit of time is called the 
throughput of the cryptographic implementation. 

Figure 3 shows the throughput of four cryptographic 
services implemented by CSP compared to BC and JCE: 
MD5, SHA-1, HMAC and SHA1PRGN. The measurements 
were taken on a smartphone of type Samsung Galaxy S III 
(Quad-core 1.4 GHz Cortex-A9 processor, 1GB of RAM, 
and Android 4.1). The procedure consisted of processing an 
input file of 20 MB, in a loop of 10 iterations. All 
cryptographic algorithms were setup with a 128-bit key. 
BouncyCastle has a deployment for Android, called 
SpongeCastle (SC) [33]. It is interesting to observe that the 
three CSPs are quite similar in performance. 

The previous paragraphs suggest that the pure-Java 
package of CSP, with standard cryptography only, is quite 
competitive in performance when compared to other CSP 
and its use might not be considered a bottleneck to 
applications. 

  

  

Figure 5. Performance evaluation of non-standard cryptography. Digital signatures: signature generation (top-left) and signature verification (top-

right). Key Agreement: key pair generation (bottom-left), secret-key generation (bottom-right). 
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Unfortunately, the case for non-standard cryptography is 
not that simple, despite been implemented in C and not been 
subjected to GC and JiTC influences. Non-standard 
cryptography usually has no standard specifications or safe 
reference implementations. Neither it is in broad use by other 
cryptographic libraries. Because of that, comparisons among 
implementations of the same algorithm are barely possible. 
On the other hand, it is feasible to compare alternative and 
standard cryptography, considering the same type of service.  

For the non-standard cryptography implementations, 
performance measurements were taken in three smartphones: 
(i) Motorola Atrix with processor of 1 GHz, 1 GB of RAM 
and 16GB of storage; (ii) Samsung Galaxy S II with 
processor of 1.2 GHz dual-core ARM Cortex-A9, 1 GB of 
RAM and 16GB of storage; and (iii) Samsung Galaxy S III 
with processor of 1.4 GHz quad-core Cortex-A9, 1 GB of 
RAM, and 16 GB of storage. 

 Figure 5 shows two types of services: digital signatures 
at the top and key agreement (KA) at the bottom. The bar 
chart at top-left quadrant shows generation of digital 
signatures for five algorithms: RSA, ECDSA, ECSS, BLS 
and ZSS (BBS). Traditionally, RSA is the slowest one. 
Elliptic curve cryptography, as in ECDSA and ECSS, is 
faster. Short signatures, such as BLS and ZSS (BBS), are not 
as fast as EC. 

Bar chart at top-right quadrant shows verification of 
digital signatures for five algorithms: RSA, ECDSA, ECSS, 
BLS and ZSS (BBS). Traditionally, RSA verification is the 
fastest one. Elliptic curve cryptography, as in ECDSA and 
ECSS, is not that fast. Short signatures, such as BLS and 
ZSS (BBS), are terribly slow, due to complex arithmetic 
involved in bilinear pairings computations. The bottom-left 
quadrant contains a bar chart showing key pair generation for 
ECDSA, ECSS, BLS, and ZSS (BBS). Again, performance 
is slow for BLS and ZSS (BBS) due to complex arithmetic 
involved in bilinear pairings. 

Bar chart in bottom-right quadrant shows operations for 
two KA schemes: ECDH and SOK. ECDH is quite fast in 
generating parameters (both public and private), as well as in 
generating the shared secret. But, pairings based KA 
schemes are relatively slow in both operations. 

V. CONCLUDING REMARKS 

This paper discussed implementation issues on the 
construction of a cryptographic library for Android 
smartphones. The library actually consists of both standard 
and non-standard cryptographic algorithms. Performance 
measurements were taken in order to compare CSP with 
other cryptographic providers. Despite all difficulties for 
obtain realistic data, experiments have shown that standard 
CSP can be competitive to other implementations. On the 
other hand, non-standard cryptography has shown low 
performance that can possibly inhibit its use in real time 
applications. However, their value consists in offering secure 
alternatives to possibly compromised standards. Future work 
will focus on correctness, security (particularly in the context 
of side channel attacks) and performance optimization. 
Correctness of implementation in the absence of formal 

verification is a primary concern and should be taken 
seriously, particularly for non-standard cryptography.  

Finally, regarding recent global surveillance disclosures, 
non-standard cryptographic primitives can be faced as part of 
the usual trade-offs that directs the design of 
cryptographically secure applications.  
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