
Implementation Issues in the Construction of Standard and Non-Standard

Cryptography on Android Devices

Alexandre Melo Braga, Eduardo Moraes de Morais

Centro de Pesquisa e Desenvolvimento em Telecomunicações (Fundação CPqD)

Campinas, São Paulo, Brazil

{ambraga,emorais}@cpqd.com.br

Abstract—This paper describes both the design decisions and

implementation issues concerning the construction of a

cryptographic library for Android Devices. Four aspects of the

implementation were discussed in this paper: selection of

cryptographic primitives, architecture of components,

performance evaluation, and the implementation of non-

standard cryptographic algorithms. The motivation behind the

special attention given to the selection of alternative

cryptographic algorithms was the recently revealed weakness

found in international encryption standards, which may be

intentionally included by foreign intelligence agencies.

Keywords-Cryptography; Surveillance; Security; Android.

I. INTRODUCTION

Currently, the proliferation of smartphones and tablets
and the advent of cloud computing are changing the way
software is being developed and distributed. Additionally,
the use in software systems of cryptographic techniques is
increasing as well.

This paper discusses the construction of a cryptographic
library for Android devices. The paper focuses on design
decisions as well as on implementation issues of both
standard and non-standard algorithms. This work contributes
to the state of the practice by discussing the technical aspects
and challenges of cryptographic implementations. This work
is part of an effort to build security technologies into an
integrated framework for mobile device security [2]. The
evaluation of several cryptographic libraries on Android
devices was reported in a previous work [1], showing that
there is a lack of sophisticated cryptographic primitives, such
as elliptic curves and bilinear pairings. Moreover, the
majority of assessed schemes implements only standard
algorithms, and, as far as authors know, there is no practical
design that concerns alternative, non-standard cryptography.

The motivation behind the special attention given to the
selection of alternative cryptographic algorithms was the
recently revealed weakness, which may be intentionally
included by foreign intelligence agencies in international
encryption standards [16][26]. This fact alone raises doubt
on all standardized algorithms, which are internationally
adopted. In this context, a need arose to treat what has been
called “alternative” or “non-standard” cryptography in
opposition to standardized cryptographic schemes. The final
intent was strengthening the implementation of advanced
cryptography and fostering their use. Non-standard
cryptography provides advanced mathematical concepts,

such as bilinear pairings and elliptic curves, which are not
fully standardized by foreign organizations, and suffer
constant improvements.

The remaining parts of the text are organized as follows.
Section II offers background on the subject of cryptographic
implementation on Java and Android. Section III details the
implementation aspects. Section IV presents a performance
evaluation and comparison with other libraries. Section V
concludes this text.

II. BACKGROUND AND RELATED WORK

This section briefly describes topics of interest: the Java

Cryptographic Architecture (JCA) as a framework for

pluggable cryptography; the Java Virtual Machine (JVM)

with its Garbage Collector (GC) and Just-in-Time (JiT)

compilation; and The Dalvik Virtual Machine (DVM) for

Android.

A. JCA

The JVM is the runtime software ultimately responsible
for the execution of Java programs. In order to be interpreted
by JVM, Java programs are translated to bytecodes, an
intermediary representation that is neither source code nor
executable. The JCA [17] is a software framework for use
and development of cryptographic primitives in the Java
platform. The JCA defines, among other facilities,
Application Program Interfaces (APIs) for digital signatures
and secure hash functions [17]. On the other hand, APIs for
encryption, key establishment and message authentication
codes (MACs) are defined in the Java Cryptography
Extension (JCE) [19]. Since version 1.4, the JCE was
incorporated by JCA, being treated in practice as a single
framework, named JCA or JCE [20].

The benefit of using a software framework, such as JCA,
is to take advantage of good design decisions, reusing the
whole architecture. The API keeps the same general behavior
regardless of specific implementations. The addition of new
algorithms is facilitated by the use of a standard API [20].

B. GC on JVM

An architectural feature of the JVM has great influence in
the general performance of applications: the GC [35][37].
Applications have different requirements of GC. For some
applications, pauses during garbage collection may be
tolerable, or simply obscured by network latencies, in such a
way that throughput is an important metric of performance.

144Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

However, in others, even short pauses may negatively affect
the user experience.

One of the most advertised advantages of JVM is that it
shields the developer from the complexity of memory
allocation and garbage collection. However, once garbage
collection is a major bottleneck, it is worth understanding
some aspects of its implementation.

The JVM incorporates a number of different GC
algorithms that are combined using generational collection.
While simple GC examines every live object in the heap,
generational collection explores other hypothesis in order to
minimize the work required to reclaim unused objects. The
hypothesis supporting generation GC is corroborated by
observed behavior of applications, where most objects
survive for only a short period of time. Some objects can be
reclaimed soon by memory management, because they have
died shortly after being allocated. For example, iterator
objects are often alive for the duration of a single loop.

On the other hand, some objects do live longer. For
instance, there are typically some objects allocated at
initialization that live until the program terminates. Between
these two extremes are objects that live for the duration of
some intermediate computation. For example, external loop
variables live longer than inner loop variables. Efficient GC
is made possible by focusing on the fact that a majority of
objects die young.

Collections are clearly identified in diagrams, as shown
in Figure 1. The figure shows the time consumed by the first
500 of 10.000 executions of pure-Java implementation of the
AES encryption algorithm.

C. JiT Compilation

Other import consideration on performance of Java
programs is the JiT Compilation [10][35]. Historically, Java
bytecode used to be fully interpreted by the JVM and
presented serious performance issues. Now a days, the
technology known as HotSpot uses JiT Compilation not only
to compile Java programs, but also to optimize them, while
they execute. The result of JiTC is an application that has
portions of its bytecode compiled and optimized for the
targeted hardware, while other portions are still interpreted.

It is interesting to notice that JVM has to execute the
code before to learn how to optimize it. The very first
moments of an application show a relatively poor
performance, since the bytecode is been interpreted,
analyzed for optimizations, and compiled at the same time.

After this short period, the overall performance of the
application improves and the execution tends to stabilize at
an acceptable level of performance. Once again, the period
of optimization and compilation is clearly identified in
diagrams, as is shown in Figure 1.

A feature referred by Oracle as JVM Ergonomics was
introduced in Java 5.0 with the goal of providing good
performance with little or no tuning of configuration options
for JVM. Instead of using fixed defaults, JVM ergonomics
automatically selects GC, heap size, and runtime compiler at
JVM startup. The result of ergonomics is that the choice of a
GC does not matter to most applications. That is, most
applications can perform well under the choices made by

JVM, even in the presence of pauses of modest frequency
and duration.

Unfortunately, there is a potential negative side to
security in the massive use of JiT Compilation. Security
controls put in place into source code, in order to avoid side-
channels, can be cut off by JiT optimizations. JiTC is not
able to capture programmer's intent that is not explicitly
expressed by Java’s constructs. That is exactly the case of
constant time computations needed to avoid timing attacks.
Security-ware optimizations should be able to preserve
security decisions and not undo protections, when
transforming source code for cryptographic implementations
to machine code. Hence, to achieve higher security against
this kind of attacks, it is not recommended to use JiTC
technology, what constitutes a trade-off between security and
performance.

D. DVM

The DVM [7] is the virtual hardware that executes Java
bytecode in Android. DVM is quite different from the
traditional JVM, so that software developers have to be
aware of those differences, and performance measurements
over a platform independent implementation have to be
taken in both environments.

Compared to JVM, DVM is a relatively young
implementation and did not suffered extensive evaluation. In
fact, the first independent evaluation of DVM was just
recently published [13]. There are three major differences
between DVM and JVM. First of all, DVM is a register-
based machine, while JVM is stack-based. Second, DVM
applies trace-based JiTC, while JVM uses method-based
JiTC. Finally, former DVM implementations use mark-and-
sweep GC, while current JVM uses generation GC.

Also, results from that DVM evaluation [13] suggest that

current implementations of DVM are slower than current

implementations of JVM. Concerning cryptographic

requirements, a remarkable difference between these two

environments is that the source of entropy in DVM is

significantly different from the one found on JVM.

III. DESCRIPTION OF THE IMPLEMENTATION

In order to facilitate the portability of the cryptographic
library for mobile devices, in particular for the Android

Figure 1. JiT Optimization of an AES execution.

145Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

platform, the implementation was performed according to
standard cryptographic API for Java, the JCA, its name
conventions, and design principles [14][17]-[20].

Once JCA was defined as the architectural framework,
the next design decision was to choose the algorithms
minimally necessary to a workable cryptographic library.
The current version of this implementation is illustrated by
Figure 2 and presents the cryptographic algorithms and
protocols described in the following paragraphs. The figure
shows that frameworks, components, services and
applications are all on top of JCA API. The Cryptographic
Service Provider (CSP) is in the middle, along with
BouncyCastle and Oracle providers. Arithmetic libraries are
at the bottom.

Figure 2 shows the CSP divided in two distinct
cryptographic libraries. The left side shows only
standardized algorithms and comprises a conventional
cryptographic library. The right side features only non-
standard cryptography and is an alternative library. The
following subsections describe these two libraries.

A. Standard Cryptography

This subsection details the implementation choices for
the standard cryptographic library. The motivations behind
this implementation were all characteristics of standardized
algorithms: interoperability, documentation, and testability.
The standard cryptography is packaged as a pure-Java library
according to the JCA specifications.

The programming language chosen for implementation
of this cryptographic library was Java. The block cipher is
the AES algorithm, which was implemented along with thee
of operation: ECB, and CBC [27], as well as the GCM mode
for authenticated encryption [28]. PKCS#5 [3] is the simplest
padding mechanism and was chosen for compatibility with
other CSPs. As GCM mode for authenticated encryption
only uses AES encryption, the optimization of encryption
received more attention than AES decryption.
Implementation aspects of AES and other cryptographic
algorithms can be found on the literature [15][24][34], in
particular [29].

The asymmetric algorithm is the RSA-PSS that is a
Probabilistic Signature Scheme constructed over the RSA
signature algorithm. PSS is supposed to be more secure than
ordinary RSA [23][34]. Asymmetric encryption is provided
by the RSA-OAEP [23][34].

Two cryptographically secure hashes were implemented,
SHA-1 [22] and MD5. It is well known by now that MD5 is
considered broken and is not to be used in serious
applications, it is present for ease of implementation. In
current version, there is no intended use for these two hashes.
Their primary use will be as the underling hash function in
MACs, digital signatures and PRNGs. The Message
Authentication Codes chosen were the HMAC [25] with
SHA-1 as the underling hash function, and the GMAC [28],
which can be directly derived from GCM mode. SHA-2
family of secure hashes supplies the need for direct use of
single hashes.

The need for a key agreement was fulfilled by the
implementation of Station-to-Station (STS) protocol, which

is based upon Authenticated Diffie-Hellman [38], and
provides mutual key authentication and confirmation [4][39].

Finally, the mechanism for Password-based Encryption
(PBE) is based on the Password-Based Key Derivation
Function 2 (PBKDF2) [3], and provides a simple and secure
way to store keys in encrypted form. In PBE, a key-
encryption-key is derived from a password.

B. Non-standard Cryptography

This subsection details the implementation choices for
the alternative cryptographic library. The non-standard
cryptography is a dynamic library written in C and accessible
to Java programs through a Java Native Interface (JNI)
connector, which acts as a bridge to a JCA adapter.

By the time of writing, this alternative library was under
the final steps of its construction. The most advanced
cryptographic protocols currently implemented are based
upon a reference implementation [5] and are listed below.
a) ECDH [8]. The key agreement protocol ECDH is a

variation of the Diffie-Hellman protocol using elliptic
curves as the underlying algebraic structure;

b) ECDSA [21]. This is a DSA-based digital signature
using elliptic curves. ECSS [8] is a variation of ECDSA
that does not require the computation of inverses in the
underlying finite field, obtaining a signature algorithm
with better performance;

c) SOK [8]. This protocol is a key agreement for Identity-
Based Encryption (IBE). Sometimes, it is called
SOKAKA for SOK Authenticated Key Agreement;

d) BLS [6]. A short digital signature scheme in which
given a message m, it is computed S = H (m), where S is
a point on an elliptic curve and H() is a secure hash;

e) ZSS [11]. Similar to the previous case, it is a more
efficient short signature, because it utilizes fixed-point
multiplication on an elliptic curve rather arbitrary point;

f) Blake [32]. Cryptographic hash function submitted to
the worldwide contest for selecting the new SHA-3
standard and was ranked among the five finalists;

g) ECIES [8]. This is an asymmetric encryption algorithm
over elliptic curves. This algorithm is non-deterministic

Figure 2. Cryptographic Service Provider Architecture.

146Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

and can be used as a substitute of the RSA-OAEP, with
the benefit of shorter cryptographic keys;

h) ECSTS [8]. Variation of STS protocol using elliptic
curves and ECDH as a replacement for ADH;

i) Salsa20 [9]. This is a family of 256-bit stream ciphers
submitted to the ECRYPT Project (eSTREAM);

j) Serpent [31]. A 128-bit block cipher designed to be a
candidate to contest that chose the AES. Serpent did not
win, but it was the second finalist and enjoys good
reputation in the cryptographic community.

C. Security decisions for non-standard cryptography

Among the characteristics that were considered in the
choice of alternative cryptographic primitives, side channels
protection was a prevailing factor and had distinguished role
in the design of the library. For instance, schemes with
known issues were avoided, while primitives that were
constructed to resist against such attacks are currently being
regarded for inclusion in the architecture. Furthermore,
constant-time programming techniques, like for example in
table accessing operations for AES, are being surveyed in
order to became part of the implementation.

Concerning mathematical security of non-standard
cryptography, the implementation offers alternatives for 256-
bit security for both symmetric and asymmetric encryption.
For instance, Serpent-256 corresponds to AES-256 block
cipher, while the same security level is achieved in
asymmetric world using elliptic curves over 521-bit finite
fields, what can only be possible in standard cryptography
using 15360-bit RSA key size. Thus, in higher security
levels, non-standard primitives performance is significantly
improved in relation to standard algorithms, but an extensive
analysis of this scenario, with concrete timing comparisons,
is left as future work.

A final remark about the use of non-standard
cryptography is that working with advanced cryptographic
techniques that have not been sufficiently analyzed by the

scientific community has its own challenges and risks. There
are occasions when the design of a non-standard
cryptographic library has to be conservative in order to
preserve security.

For instance, a recent improvement in mathematics
[12][30] had eliminated an entire line of research in
theoretical cryptography. Such advancement affected elliptic
curve cryptography using a special kind of binary curves
called supersingular curves, but had no effect on the bilinear
pairings over primes fields or encryption on ordinary
(common) binary curves. Thus, these two technologies
remain cryptographically secure. Unfortunately, the
compromised curves were in use and had to be eliminated
from the cryptographic library.

As pairings on prime fields can still be securely used in
cryptographic applications, the implementation was adapted
to that new restricted context. Additionally, ordinary elliptic
curves may still be used for cryptographic purposes,
considering they are not supersingular curves, and the
implementation had to adapt to that fact too.

IV. PERFORMANCE EVALUATION

Performance evaluation of Java programs, either in
standard JVM or DVM/Android, is a stimulating task due to
many sources of interference that can affect measurements.
As discussed in previous sections, GC and JiTC have great
influence over the performance of Java programs. The intent
of performance evaluations presented in this section is to
provide and describe a realistic means to compare
cryptography implementations in Java.

Two approaches of measurement have been used for the
evaluation of cryptographic functions implemented in pure-
Java programs. The first one was the measurement of
elapsed time for single cryptographic functions processing a
single block of data. This approach suffers from the
interference of GC and JiTC. The JiTC interference can be
eliminated by discarding all the measurements collected
before code optimization. The GC interference cannot be
completely eliminated, though.

Figure 4. Performance of AES in pure-Java - average, 9th percentile, and

median of 10.000 iterations.

Figure 3. Throughput of implementations.

147Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

Figure 4 exemplifies the first approach and shows the
comparative performance of AES encryption, in ECB mode,
of a single block of data for two Java CSPs: This text CSP
and BouncyCastle (BC) [36]. The measurements were taken
on an LG Nexus 4 with 16GB of internal storage, 2 GB of
RAM, 1.5 GHz Quad-core processor, and Android 4.3. The
procedure consisted of processing a single block of data in a
loop of 10.000 iterations. AES were setup to three key sizes
(128, 192 and 256) in both encryption and decryption.

In order to inhibit the negative influence of GC and JiTC,
three metrics were taken: the average of all iterations, the 9

th

percentile and the median. None of them resulted in a perfect
metric. However, these measures do offer a realistic
comparison of CSP and BC. They show similar performance.

The second approach for performance evaluation has to
consider that final users of mobile devices will not tuning
their Java VMs with obscure configuration options in order
to achieve maximum performance. On the contrary, almost
certainly they will use default configurations, with minor
changes on device’s settings. Thus, the responsiveness of an
application tends to be more relevant to final users than the
performance of single operations.

The second approach of measurement takes into account
the responsiveness of cryptographic services and considers
the velocity with which a huge amount of data can be
processed, despite the interferences of GC and JiTC. The
amount of work performed per unit of time is called the
throughput of the cryptographic implementation.

Figure 3 shows the throughput of four cryptographic
services implemented by CSP compared to BC and JCE:
MD5, SHA-1, HMAC and SHA1PRGN. The measurements
were taken on a smartphone of type Samsung Galaxy S III
(Quad-core 1.4 GHz Cortex-A9 processor, 1GB of RAM,
and Android 4.1). The procedure consisted of processing an
input file of 20 MB, in a loop of 10 iterations. All
cryptographic algorithms were setup with a 128-bit key.
BouncyCastle has a deployment for Android, called
SpongeCastle (SC) [33]. It is interesting to observe that the
three CSPs are quite similar in performance.

The previous paragraphs suggest that the pure-Java
package of CSP, with standard cryptography only, is quite
competitive in performance when compared to other CSP
and its use might not be considered a bottleneck to
applications.

Figure 5. Performance evaluation of non-standard cryptography. Digital signatures: signature generation (top-left) and signature verification (top-

right). Key Agreement: key pair generation (bottom-left), secret-key generation (bottom-right).

148Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

Unfortunately, the case for non-standard cryptography is
not that simple, despite been implemented in C and not been
subjected to GC and JiTC influences. Non-standard
cryptography usually has no standard specifications or safe
reference implementations. Neither it is in broad use by other
cryptographic libraries. Because of that, comparisons among
implementations of the same algorithm are barely possible.
On the other hand, it is feasible to compare alternative and
standard cryptography, considering the same type of service.

For the non-standard cryptography implementations,
performance measurements were taken in three smartphones:
(i) Motorola Atrix with processor of 1 GHz, 1 GB of RAM
and 16GB of storage; (ii) Samsung Galaxy S II with
processor of 1.2 GHz dual-core ARM Cortex-A9, 1 GB of
RAM and 16GB of storage; and (iii) Samsung Galaxy S III
with processor of 1.4 GHz quad-core Cortex-A9, 1 GB of
RAM, and 16 GB of storage.

 Figure 5 shows two types of services: digital signatures
at the top and key agreement (KA) at the bottom. The bar
chart at top-left quadrant shows generation of digital
signatures for five algorithms: RSA, ECDSA, ECSS, BLS
and ZSS (BBS). Traditionally, RSA is the slowest one.
Elliptic curve cryptography, as in ECDSA and ECSS, is
faster. Short signatures, such as BLS and ZSS (BBS), are not
as fast as EC.

Bar chart at top-right quadrant shows verification of
digital signatures for five algorithms: RSA, ECDSA, ECSS,
BLS and ZSS (BBS). Traditionally, RSA verification is the
fastest one. Elliptic curve cryptography, as in ECDSA and
ECSS, is not that fast. Short signatures, such as BLS and
ZSS (BBS), are terribly slow, due to complex arithmetic
involved in bilinear pairings computations. The bottom-left
quadrant contains a bar chart showing key pair generation for
ECDSA, ECSS, BLS, and ZSS (BBS). Again, performance
is slow for BLS and ZSS (BBS) due to complex arithmetic
involved in bilinear pairings.

Bar chart in bottom-right quadrant shows operations for
two KA schemes: ECDH and SOK. ECDH is quite fast in
generating parameters (both public and private), as well as in
generating the shared secret. But, pairings based KA
schemes are relatively slow in both operations.

V. CONCLUDING REMARKS

This paper discussed implementation issues on the
construction of a cryptographic library for Android
smartphones. The library actually consists of both standard
and non-standard cryptographic algorithms. Performance
measurements were taken in order to compare CSP with
other cryptographic providers. Despite all difficulties for
obtain realistic data, experiments have shown that standard
CSP can be competitive to other implementations. On the
other hand, non-standard cryptography has shown low
performance that can possibly inhibit its use in real time
applications. However, their value consists in offering secure
alternatives to possibly compromised standards. Future work
will focus on correctness, security (particularly in the context
of side channel attacks) and performance optimization.
Correctness of implementation in the absence of formal

verification is a primary concern and should be taken
seriously, particularly for non-standard cryptography.

Finally, regarding recent global surveillance disclosures,
non-standard cryptographic primitives can be faced as part of
the usual trade-offs that directs the design of
cryptographically secure applications.

ACKNOWLEDGMENT

The authors acknowledge the financial support given to
this work, under the project "Security Technologies for
Mobile Environments – TSAM", granted by the Fund for
Technological Development of Telecommunications –
FUNTTEL – of the Brazilian Ministry of Communications,
through Agreement Nr. 01.11. 0028.00 with the Financier of
Studies and Projects - FINEP / MCTI.

REFERENCES

[1] A. Braga and E. Nascimento, Portability evaluation of cryptographic
libraries on android smartphones. In Proceedings of the 4th
international conference on Cyberspace Safety and Security (CSS'12),
Yang Xiang, Javier Lopez, C.-C. Jay Kuo, and Wanlei Zhou (Eds.).
Springer-Verlag, Berlin, Heidelberg, 2012, pp. 459-469.

[2] A. Braga, Integrated Technologies for Communication Security on
Mobile Devices. In MOBILITY, The Third International Conference
on Mobile Services, Resources, and Users, 2013, pp. 47-51.

[3] B. Kaliski, RFC 2898. PKCS #5: Password-Based Cryptography
Specification Version 2.0. Available in:
http://tools.ietf.org/html/rfc2898.

[4] B. O'Higgins and W. Diffie and L. Strawczynski, R. do Hoog,
Encryption and ISDN - A Natural Fit, 1987 International Switching
Symposium (ISS87), 1987.

[5] D. Aranha and C. Gouvêa, RELIC, RELIC is an Efficient LIbrary for
Cryptography, Available in: http://code.google.com/p/relic-toolkit.

[6] D. Boneh and B. Lynn and H. Shacham, Short signatures from the
Weil pairing. J. Cryptology, Extended abstract in Proceedings of
Asiacrypt 2001, Sept. 2004, 17(4): pp. 297–319.

[7] D. Bornstain, Dalvik, VM Internals. Available in:
http://sites.google.com/site/io/dalvik-vm-internals.

[8] D. Hankerson and S. Vanstone and A. Menezes, Guide to elliptic
curve cryptography, Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2003.

[9] D. J. Bernstein, The Salsa20 family of stream ciphers. Available in:
http://cr.yp.to/papers.html#salsafamily.

[10] Ergonomics in the 5.0 Java Virtual Machine. Available in:
http://www.oracle.com/technetwork/java/ergo5-140223.html

[11] F. Zhang and R. Safavi-Nainia and W. Susilo, An Efficient Signature
Scheme from Bilinear Pairings and Its Applications., in F. Bao and
R. H. Deng and J. Zhou, ed., Public Key Cryptography, Springer,
2004, pp. 277-290.

[12] G. Anthes, “French team invents faster code-breaking algorithm”,
Communications of the ACM, v. 57,n. 1, January 2014, pp. 21-23.

[13] H. Oh and B. Kim and H. Choi and S. Moon, Evaluation of Android
Dalvik virtual machine. In Proceedings of the 10th International
Workshop on Java Technologies for Real-time and Embedded
Systems (JTRES '12), ACM, New York, NY, USA, 2012, pp. 115-
124.

[14] How to Implement a Provider in the Java Cryptography Architecture.
Available in:
http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/
HowToImplAProvider.html.

[15] J. Bos and D. Osvik and D. Stefan, Fast Implementations of AES on
Various Platforms, 2009. Available in
http://eprint.iacr.org/2009/501.pdf.

149Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

[16] J. Menn, Experts report potential software "back doors" in U.S.
standards. Available in: http://www.reuters.com/article
/2014/07/15/usa-nsa-software-idUSL2N0PP2BM20140715?irpc=932.

[17] Java Cryptography Architecture Oracle Providers Documentation for
Java Platform Standard Edition 7. Available in:
http://docs.oracle.com/javase/7/docs/technotes/guides/security/SunPr
oviders.html.

[18] Java Cryptography Architecture Standard Algorithm Name
Documentation for Java Platform Standard Edition 7. Available in:
http://docs.oracle.com/javase/7/docs/technotes/guides/security/Standa
rdNames.html.

[19] Java Cryptography Extension Unlimited Strength Jurisdiction Policy
Files 7 Download. Available in:
http://www.oracle.com/technetwork/pt/java/javase/downloads/jce-7-
download-432124.html.

[20] Java™ Cryptography Architecture (JCA) Reference Guide. Available
in: http://docs.oracle.com/javase/7/docs/technotes/guides/
security/crypto/CryptoSpec.html.

[21] NIST FIPS PUB 186-2, Digital Signature Standard (DSS). Available
in: http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-
2.pdf.

[22] NIST FIPS-PUB-180-4. Secure Hash Standard (SHS). Available in:
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf, March
2012.

[23] NIST FIPS-PUB-186. Digital Signature Standard (DSS). Available
in: http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-
2.pdf.

[24] NIST FIPS-PUB-197. Announcing the ADVANCED ENCRYPTION
STANDARD (AES). Federal Information Processing Standards
Publication 197 November 26, 2001.

[25] NIST FIPS-PUB-198. The Keyed-Hash Message Authentication
Code (HMAC). Available in:
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf.

[26] NIST Removes Cryptography Algorithm from Random Number
Generator Recommendations. Available in:
http://www.nist.gov/itl/csd/sp800-90-042114.cfm.

[27] NIST SP 800-38A. Recommendation for Block Cipher Modes of
Operation. 2001. Available in:
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf.

[28] NIST SP 800-38D. Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC. 2007.
Available in: http://csrc.nist.gov/publications/nistpubs/800-38D/SP-
800-38D.pdf.

[29] Paulo Barreto’s AES Public Domain Implementation in Java.
Available in: www.larc.usp.br/~pbarreto/JAES.zip.

[30] R. Barbulescu, P. Gaudrey, A. Joux,, and E. Thomé, “A quasi-
polynomial algorithm for discrete logarithm in finite fields of small
characteristic”, June 2013, preprint available at
http://eprint.iacr.org/2013/400.pdf.

[31] SERPENT, A Candidate Block Cipher for the Advanced Encryption
Standard. Available in: www.cl.cam.ac.uk/~rja14/serpent.html.

[32] SHA-3 proposal BLAKE. Available in: https://131002.net/blake.

[33] SpongyCastle, Spongy Castle: Repackage of Bouncy Castle for
Android, Bouncy Castle Project. Available in:
http://rtyley.github.com/spongycastle/, 2012.

[34] T. St. Denis and S. Johnson, Cryptography for Developers. Syngress,
2006.

[35] The Java HotSpot Performance Engine Architecture. Available in:
www.oracle.com/technetwork/java/whitepaper-135217.html.

[36] The Legion of the Bouncy Castle. Legion of the Bouncy Castle Java
cryptography APIs. Available in: www.bouncycastle.org/java.html.

[37] Tuning Garbage Collection with the 5.0 Java Virtual Machine.
Available in: http://www.oracle.com/technetwork/ java/gc-tuning-5-
138395.html.

[38] W. Diffie and M. Hellman, New Directions in Cryptography, IEEE
Trans. on Inf. Theory, vol. 22, no. 6, Nov. 1976, pp. 644-654.

[39] W. Diffie and P. C. van Oorschot, M. J. Wiener, Authentication and
Authenticated Key Exchanges, Designs, Codes and Cryptography
(Kluwer Academic Publishers) 1992, 2 (2): pp. 107–125.

150Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

