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Abstract—The paper proposes and develops a new test case 
generation tool named Symbolic Execution & Taint Analysis 
(SYTA) that can capture implicit information flows by control 
dependence analysis. When running, SYTA traces execution 
paths to track constraints on symbolic variables. Some 
equivalence relationship asserts will be constructed to store 
the equivalence information among variables for control 
dependence analysis. If a security sink is reached, SYTA 
builds a constraint, path conditions and equivalence 
relationship asserts, which are to be sent to a constraints 
solver. The test cases will be generated from possible 
counterexamples in constraint solving. Compared with 
traditional static analysis tools, SYTA can track implicit 
information flows, and generate test cases by control 
dependences analysis effectively. 

Keywords-test case generation; control dependence; implicit 
information flow; symbolic execution 

I. INTRODUCTION 

Nowadays, test case generation has become the most 
important step of code testing, which is usually realized by 
the symbolic execution approach. If there exists a bug, the 
test cases can help programmers to find the spot that causes 
the error. 

A traditional Fuzzing approach is a form of blackbox 
testing which randomly mutates well-formed inputs and use 
these variants as test cases [1][2]. Although Fuzzing can be 
remarkably effective, the limitations of Fuzzing are that it 
usually provides low code coverage and cannot drive deeper 
into programs because blind modification destroys the 
structure of inputs [3]. In a security context, these limitations 
mean that potentially serious security bugs, such as buffer 
overflows, are possibly missed because the code containing 
the bugs is even not exercised. 

Combining general static analysis with taint analysis to 
test applications and draw test cases is presently the hottest 
research technique, such as TaintScope [6]. Taint analysis 
allows a user to define the taint source and propagate the 
taint following specific propagation policy during execution, 
and finally, trigger a particular operation if the 
predetermined security sink is hit. 

Unfortunately, this smart Fuzzing technique bears many 
pitfalls [4], among which missing the implicit information 
flows is the most critical one. Contrary to explicit 
information flows caused by direct assignment, implicit 
information flows are a kind of information flow consisting 

of information leakage through control dependence. The 
example shown in Figure 1 discloses the nature of implicit 
information flows. There is no direct assignment between 
variables h and l in the sample program, but l can be set to 
the value of h after the if-then-else block by control 
dependence. Even though the early attention and definition 
of the implicit flow problem dated back to 1970’s [5], no 
effective solution has been found. Some newly-developed 
tools, such as TaintScope [6], detour implicit information 
flows and limit their analysis only to explicit information 
flows, which incur the following three problems: 

 Missing implicit information flows may lead to a 
under-tainting problem and false negative. As a 
result, the security vulnerabilities caused by control 
dependence will not be detected. Especially, it is 
critical to capture implicit flows in privacy leak 
analysis. 

 Control dependence is also a common programming 
form in benign programs. For example, some 
routines may use a switch structure to convert 
internal codes to Unicode in a Windows program 
such as the following code segment. switch(x){ case 
a: y = a; break; case b: y = b; break; ……}. It 
indicates that it is necessary to analyze the implicit 
information flows for common software testing. 

 To counter the Anti-Taint-Analysis technique, 
implicit information flows must be analyzed 
effectively [7]. Malware can employ control 
dependence to propagate sensitive information so as 
to bypass traditional taint analysis. 

To address these limitations and generate test cases with 
tainting techniques, we propose and develop a new tool 
called Symbolic Execution & Taint Analysis (SYTA), which 
can generate test cases by considering implicit information 
flows. Compared with traditional static analysis tools, SYTA 
can track implicit information flows and generate test cases 

1:h := h mod 2; 

2:if h = 1 then 

3: l := 1; 

4:else 

5:l := 0; 

6:end if 

Figure 1. A sample program of implicit information flow 
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by control dependences analysis effectively. Though it is 
hard to say what percentage of a program can be classified 
as implicit information flow, it may reveal some 
vulnerabilities that explicit information flow is unable to. 

The rest of the paper is organized as follows. Section 2 
briefly analyzes the target problem. Section 3 discusses our 
methodology and design of SYTA. Section 4 evaluates our 
approach. Section 5 summarizes related work. Finally,  
Section 6 concludes the paper and discusses future-work 
directions. 

II. PROBLEM ANALYSIS  

This section describes the problem we encounter by 
walking the readers through the testing of a sample program 
shown in Figure 3 (a). Despite its small size, it illustrates the 
most common characteristics of implicit information flows. 
There exist three bugs related to control dependence in the 
sample program. 

1) Array bound overflow in line 29. The program 
implies that variable k will be equal to variable i under a 
specific condition. If 2 is assigned to i by users, k will be set 
to 2 through four control branches, including three ‘if’ and 
one loop statements. In line 28, the value to which pointer p 
points is 4. Eventually, an array bound overflow will be 
triggered when dereferencing p as the index of array a in 
line 29.  

2) Divide-by-zero in line 30. If 3 is assigned to variable 
i by users, through several control branches, *p will be set 
to 0 in line 28, then the divisor t becomes 0 in line 30. 

3) Denial of service in line 31. If 1 is assigned to 
variable i, the result of a DoS attack may occur in the 
program in line 31. 

In traditional analysis tools, the test cases cannot be 
generated for above bugs due to the absence of control 
dependence analysis. Take EXE [8] and KLEE [9] as 
examples, they are totally based on explicit information 
flows analysis. When being applied to the sample program, 
though variable i is symbolically executed and analyzed, 
those tools can not produce effective test cases, because 
there are not any direct assignment relationships among i 
and some other variables, such as k, t, and p etc. 

Our solution is to take implicit information flows into 
consideration, in which the flow of taint is propagated from 
variable i to variables j, tmp and k (in line 18, 25 and 30, 
respectively, in the source code). Variable p in line 33 is 
tainted because of the data flow and it is possible to identify 
the bugs and automatically obtain the test case to hit them. 

III. METHODOLOGY 

SYTA, as a test case generator, actually functions as a 
combination of an intermediate language interpreter, a 
symbolic execution engine and a taint analyzer. During each 
symbolic execution, some lists are built to store information 
for taint propagation. Test programs are firstly parsed by a 
compiler front-end and converted to an intermediate 
language. The corresponding Control Flow Graphs (CFGs) 
are constructed as the inputs of SYTA. SYTA will traverse 

each CFG and run symbolic execution. It will perform two 
kinds of taint propagations during symbolic execution, 
collect symbolic path conditions, record the equivalence 
information among variables and generate Satisfiability 
Modulo Theories (SMT) constraints eventually. An SMT 
solver will be employed to solve and check these constrains 
to detect potential bugs. If some bugs are found, test cases 
will be generated and reported. 

A. Overview 

The core of SYTA is an interpreter loop that selects a 
path, composed of basic blocks and directed by edges of 
CFG, to symbolically execute each statement of the basic 
blocks and perform two kinds of taint propagations (explicit 
and implicit). The loop continues until no basic blocks 
remain, and generates test cases if some bugs are hit. The 
architecture is illustrated in the Figure 2. 

For two kinds of taint analysis, we maintain the Explicit 
Information Flow Taint (EFT) lists and Implicit Information 
Flow Taint (IFT) lists. Besides, an Equivalence 
Relationships (ER) list is maintained to record equivalence 
information among variables in condition statements for 
control dependence analysis. 

At the very beginning of testing, users appoint some 
interested variables as the taint sources which are recorded 
into the EFT and IFT lists in proper forms. The two lists 
involve different taint propagation policies that we design 
for explicit and implicit information flows respectively. 

When a security sink is encountered, SYTA will invoke 
an SMT solver to carry out a query considering the 
operation related to current security sink. Current path 
conditions and expressions drawn from the ER list will act 
as the context of the query, namely, asserts of solving. By 
running the query, SYTA checks if any input value exists 
that may cause a bug. If a bug is detected, the SMT solver 
will produce a counterexample as a test case to trigger the 
bug.  

B. Implicit Information Flow Taint Propagation 

The intuition of taint propagation over implicit 
information flows can be illustrated using a sample program 
shown in Figure 4.  

In this sample program, a conditional branch statement 
br, namely if (i >= 4) in line 5, decides which statements st 
should be executed ( j = 5 in line 6 or j = 0 in line 9). The 

Figure 2. The architecture of SYTA 

Source 
code 

GCC

Taint 
source 

STP 

Test  
cases 

CFG 
SYTA 

User 

Note: STP is an SMT solver.
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value of i affect the value of j. Therefore, based on control 
dependence, the taint state should be propagated from the 
source operand of br, namely the variable i, to st’s 
destination operands, the variable j. To achieve this result, 
SYTA needs to compute and record post dominance 
relationships at the basic-block level before symbolic 
execution. 

At first, a user appoints variables as taint sources and 
SYTA calculates the immediate post-dominant basic block 
of the corresponding basic block containing the taint 
sources. Insert the pair <i, ipdom_bb> into the IFT list, 
where i stands for the tainted variable, and ipdom_bb means 
the immediate post-dominate basic block of the current 
basic block. 

During path travelling, when a basic block is reached, 
SYTA compares it with all the ipdom_bbs in the control-
flow based taint pairs in the IFT list in an attempt to find 
matches and then remove the matching pairs. After 
removing, if the IFT list is not empty, the ipdom of the 
current basic block will be calculated and the taint pairs are 
formed together with every variable v referenced in the 
current basic block. These pairs are added to the IFT list 
one by one. In other words, if the target variable i is marked 
as tainted, the variables in the current basic block will also 
be marked as tainted according to the control dependence 
relationship. No further operations will be performed if the 

IFT list is NULL and only the explicit information flow 
taint propagation goes on. 

In a CFG, basic block m post-dominates (ipdom) n 
means all directed paths from m to the exit basic block 
contain n. If there is no node o such that n pdom o and o 
pdom m, we call m is immediate post-dominates n. Just like 
that in Figure 4, BB5ipdom BB2. 

Take the program in Figure 4 (a) as an example again, 
whose CFG and post-dominance tree are shown in Figure 4 
(b) and (c), respectively. We assume that variable i is chosen 
as a taint source. At first, the IFT list is initialized to be 
empty. When line 5 is executed, SYTA will identify the 
current statement as a condition statement. The 
corresponding ipdom is BB5, a pair <i, BB5> will be added 
into the IFT list. The symbolic execution forks here and 
finds both paths are feasible. The true branch would be 
executed first and line 6 is reached. At this time, the index of 
the current basic block is 3, and there are not matching pairs 
in the IFT list. The destination operand of the statement, the 
left-value j, would be added into IFT list together with its 
ipdom BB5 in the form of <j, BB5>. All these two pairs will 
be removed when line 11 is reached because BB5 matches 
either of them. 

C. Explicit Information Flow Taint Propagation 

Explicit information flow taint propagation is quite 
straightforward compared with the implicit one. Only direct 
data dependence, such as assignment operations, needs to be 

1:  void main(void) { 
2:  unsigned int i; 
3:  unsigned int t; 
4:  int a[4] = { 1, 3, 5, 1 }; 
5:  int *p; 
6:  int tmp; 
7:  int j; 
8: int k; 
9: int x = 100;  
10: scanf("%d",&i); 
11:    if(i >= 4){ 
12:  j = 5; 
13: } 
14: else{ 
15:  j = 0; 
16:    } 
17: for(j; j<4;j++) 
18: { 
19:  tmp = 1; 
20:  if( j != i){ 
21:   tmp = 0; 
22:  } 
23:  if (tmp == 1){ 
24:   k = j; 
25:  } 
26: } 
27: p = a+k; 
28: *p = *p - 1; 
29: t = a[*p]-1; 
30:    t = x / t;   
31 sleep (t*10000); 
32:  } 

BB12 
p = a+k; 

*p = *p – 1; 
t = a[*p]-1; 

t = x/t; 
sleep(t*10000);BB7

tmp = 0;

BB0

BB6
tmp = 1; 
if(j != i) 

BB3
j = 5;

BB5 

BB11
if( j <= 3 )

BB1
a[0] = 1;
a[1] = 3;
a[2] = 5;
a[3] = 2;

BB4 
j = 0; 

BB8
If(tmp == 1) 

BB9
k = j;

BB10 
j = j + 1; 

BB1 

(a) (b)

Figure 3. The source code and CFG of a sample program under testing

Note: BB5 is a dummy basic 
block, which does not 
perform any operation. It is 
introduced for the ease of 
analysis. 
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considered in taint propagation. 
When an assignment statement is encountered, SYTA 

will check whether the operands on the right side of the 
statement are included in the EFT list. If the answer is 
positive, SYTA will insert the left operand into the EFT list. 

In addition, when new pairs are added into the IFT list, 
the corresponding variables of the pairs should meanwhile 
be inserted into the EFT list too. This approach is adopted 
because the information flow among variables maybe 
proceeds alternately between the two forms. This is a 
generally ignored problem. Let’s still take the case in Figure 
4 as an example, in the program, there is no explicit 
information flow from variable i, exists only an implicit 
information flow from variable i to variable j caused by the 
if-then-else clause. But the information flow from j to 
variable z in line 11 is explicit. If the two kinds of 
information flows are processed separately, then in line 11, 
the variable z will not be tainted because the variable j is 
only tainted with implicit information flow. As a result, no 
taint markings will the variable z has, which leads to false 
negatives because the value of variable z is influenced by 
variable i. 

D. Test Case Generation 

In KLEE, the context of constraints solving only 
contains path conditions. In order to capture the implicit 
information flows, the indirect equivalence relationships 
between variables are also identified by SYTA and sent to 
the SMT solver as asserts. Take the program in Figure 3 as 
an example, there exists an implicit equivalence relationship 
between k and j (i.e., k == j) after executing line 24. When 
the branch condition is not satisfied in line 20, both the 
relationships j == i and k == j will hold after line 24. SYTA 
will record both equivalent variables pairs in the ER list 
rather than only one explicit pair (i.e., j == i). 

When a security sink is encountered, two kinds of asserts 
will be sent to the SMT solver as the context. One is the path 
condition of the current path, the other is a Conjunctive 
Normal Form (CNF) formed with pairs in the ER list. As 

illustrated in the CFG in Figure 3(b), which is expressed in 
the intermediate language, when the execution path is ( BB0 
 BB1  BB4  BB5  BB11  BB6  BB8  BB9 
 BB10  BB11  BB12), the current security sink is a 
reference to array a. At this time, the path condition is (i ≤ 
3 && j≤ 3 && j == i && tmp == 1 && j(1)≥ 3); the 
assert drawn from the ER list is ( k == i ),  j(1) is an alias of 
variable j.  All these expressions are set to be asserts of the 
SMT solver. The query submitted is (*p ≥ 0 &&*p ≤ 3). 
The counterexamples the SMT solver provides are (i = 2; j = 
2; *p = 4 ). The test case is ( i = 2 ). 

Three kinds of bugs are considered in SYTA: (1) array 
bound overflow, (2) divide-by-zero, and (3) denial-of-
service. 

(1) If the index variable is marked as tainted in a 
reference to an array, a query is constructed as ( index >= 0 
&& index <= upperbound – 1 ) and be sent to the SMT 
solver. Under certain contexts, there exists an array bound 
overflow if all the constraints are satisfied and the query is 
not. 

(2) If the operator is a divisor, and the divisor m is 
tainted. Then the sink query ( m != 0 ) is constructed and 
sent to the SMT solver together with all the asserts gathered 
till now. Divide-by-zero is found if all the constraints are 
satisfied and the query is not. 

(3) When the function sleep is called, and its parameter 
is marked as tainted, then the query ( sleep <= 10000 ) is 
constructed and sent to the SMT solver together with all the 
asserts. Then the DoS bug exists if all the constraints are 
satisfied and the query is not. 

In a word, when SYTA encounters a security sink, it will 
gather all the path conditions preceding the current statement 
and asserts from ER list, the query will be sent to the SMT 
solver. If the query is unsatisfied, a test case is generated and 
reported with the bug name.  

Based on the above discussion, as shown in Table I, 
three test cases are generated to detect bugs in the sample 
program in Figure 3. They can be used to trigger the array 
bound overflow, divide-by-zero and DoS bugs, respectively. 

(a) (b)

Figure 4. A fragment of the sample program in Figure 3 and its CFG, post-dominate tree 

1:  void foo (unsigned int i) 
2: { 
3: unsigned int j; 
4: long z; 
5: if(i>=4){ 
6:   j = 5; 
7: } 
8: else { 
9:   j = 0; 
10: } 
11: z = j; 
12:  } 
 

entry 

BB2
if(i >= 4)

BB3
j = 5; 

BB4
j = 0; 

BB5
z = j;

exit

exit 

BB5 

BB2 BB3 BB4 

entry 

(c) 
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E. Implementation 

As shown in Figure 2, we employ GCC 4.5.0 as the 
compiler front-end of SYTA. Source code will be parsed 
and convert to GIMPLE intermediate representation; its 
CFGs are also built by leveraging GCC. SYTA is 
implemented as a pass of GCC, analysis will be performed 
at the GIMPLE level. Finally, we choose the commonly 
used constraints solver STP [16] as the SMT solver in 
SYTA. 

IV. EVALUATION 

We illustrate two cases that show how SYTA can detect 
errors. In the program shown in Figure 5, the control 
dependence relationships are based on the switch-case 
structure. During analysis, we leverage the GIMPLE 
intermediate representation of GCC to process the switch-
case structure. In GIMPLE, a switch-case will be regarded 
as a normal if-else structure. When the original taint source 
is variable n, a counterexample (n = 245) can be got and the 

assignment statement (n = y[n] / x[n-1]; ) may trigger a 
divide-by-zero bug. 

In the program shown in Figure 6, there is no explicit 
else branch in the if (h < 0) statement. In order to capture the 
taint propagation through the missing else branch, an 
assisting else branch is inserted into the intermediate 
representation, which includes a dummy statement (l = l). 
Using the dummy statement, a counterexample (h = 2) 
would be found as the test case for the array bound overflow 
bug at the last statement. 

In this paper, we try to extend the test case generation 
technique to cover implicit information flows rather than 
only explicit information flows. In theory, it is impossible to 
track and analyze all forms of implicit information flows. 
Our study shows that some typical forms of implicit 
information flows can be effectively tracked to support test 
case generation. In this section, we employ two proof-of-
principle samples to demonstrate the ability of SYTA to 
track typical forms of implicit information flows. We also 
use KLEE (with LLVM v2.7) to analyze the two samples 
and the program shown in Figure 3(a). Compared with 
SYTA, KLEE, as shown in Figure 7, only provides two test 
cases (i.e., i = 1 and i = 2147483648) for feasible execution 
paths of the program shown in Figure 3(a), but these cases 
can not trigger and report the array-bound-overflow and 
divide-by-zero vulnerabilities. Nevertheless, frankly 

TABLE I. TEST  CASES OF THE SAMPLE PROGRAM BY SYTA 

Taint Sources  Tainted 
Variables 

Vulnerability 
Type 

i = 2; j = 2; 
*p = 4; 

array bound 
overflow 

i = 3; j = 3; 
*p = 1; 
t = 0; 

divide-by-zero 

i = 1; j = 1; 
*p = 2; 
t = 25; 

dinal-of-service 

void foo(int n)  
   
{ 
Unsigned int y[256];  
Unsigned int x[256];  

 
for(int i=0; i<256; i++) 
{ 
y[i] = (char)i; 

} 
 
for(int j=0; j<n; j++) 
{ 
switch(y[j]) 
{ 
case 0: 

x[j] = 13; 
break; 

case 1: 
x[j] = 14; 
break; 

case 2: 
x[j] = 15; 
break; 

…… 
case 256: 

x[j] = 12; 
break; 

} 
} 
n = y[n]/x[n-1]; 

} 

Figure 5. The first case study 

void foo(int h) 
{ 

int a[5] = {1,2,3,4,5}; 
int l = 10; 
int k = 0; 
if(h < 0){ 

  l = 0; 
} 
while(l != 0){ 

if(l <= 5){ 
   k++; 

} 
l--; 

} 
l = a[k]; 

} 

Figure 6. The second case study 

Figure 7. The KLEE analysis result for the program in Figure 3(a)
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speaking, analyzing a large scale real-work system will 
require much more computing overhead. 

V. RELATED WORK  

Even though early attention and definition of implicit 
information flow dated back to 1970’s, no effective solution 
has been found. Lots of newly-developed tools, like 
TaintScope [6], detour the implicit information flow 
problem and limit their applications only to explicit 
information flows. Some other work limits the processing 
of control dependence to predetermined forms, for example, 
Heng Yin et al. deal with the API function containing 
control dependence specially in their tool Panorama [11]; 
The system designed by Wei Xu et al. [12] process only 
two specific kinds of control flow; Dongseok Jang et al. [13] 
only process the branching but not the whole program 
leading to low coverage and false negatives. 

Some dynamic analysis testing tools are more 
comprehensive, like Dytan [10] by James Clause, it can 
construct implicit information flow on the binary code but 
cannot get the control dependence information from indirect 
jump instructions. In DTA++ developed by Min Gyung 
Kang et al., information preserving implicit information 
flows are traced [14], but the simple dichotomy approach is 
too rough and  may cause under-tainting problem. 

VI. CONCLUSION AND FUTURE WORK 

We presented a static analysis tool, SYTA, capable of 
automatically generating test cases using symbolic execution 
and taint analysis techniques. Using the control flow graph 
of the target program and user-appointed taint sources as 
inputs, SYTA follows execution paths to track the 
constraints on symbolic variables, and maintains two taints 
lists for explicit and implicit information flows respectively. 
The test cases will be generated from possible 
counterexamples in a constraint solving process. Compared 
with traditional static analysis tools, SYTA can track 
implicit information flows, generates test cases by control 
dependence analysis effectively. 

At present, in tracking implicit information flows, SYTA 
cover only three kinds of sink points, concerning array 
bound overflow, divide-by-zero, and denial-of-service, 
respectively. By expending taint source points and sink 
points, it may cover other kinds of vulnerabilities related to 
taint data. For example, by regarding untrusted input 
interface functions as taint source points and function 
memcpy and the like as sink points, it can detect buffer 
overflow vulnerability led to by ineffective input validation. 

ACKNOWLEDGMENT 

The authors would like to thank the anonymous 
reviewers for their insightful comments that helped improve 
the presentation of this paper. The work has been supported 
in part by the National Natural Science Foundation of China 
(61070192, 61170240, 61272493, 61100047), the Natural 

Science Foundation of Beijing (4122041), the National 
Science and Technology Major Project of China 
(2012ZX01039-004), and the National High Technology 
Research and Development Program of China 
(2012AA012903). 

REFERENCES 
[1]   D. Bird and C. Munoz, “Automatic Generation of Random Self-

Checking Test Cases,” IBM Systems Journal, Vol. 22, No. 3, 1983, 
pp. 229-245. 

[2] Protos,   Web page:  http://www.ee.oulu.fi/research/ouspg/protos/, 
[retrieved: August, 2014]. 

[3]   J. Offutt and J. Hayes,   “A Semantic Model of Program Faults,” in 
Proceedings of ISSTA’96 (International Symposium on Software 
Testing and Analysis), San Diego, January 1996, pp. 195-200. 

[4]   E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever 
wanted to know about dynamic taint analysis and forward symbolic 
execution (but might have been afraid to ask),” in Proceedings of the 
IEEE Symposium on Security and Privacy, May 2010, pp. 317-331. 

[5]   D. E. Denning and P. J. Denning, “Certification of programs for 
secure information flow,” Comm. of the ACM, vol. 20, no. 7, July 
1977, pp. 504-513. 

[6]   T. Wang, T. Wei, G. Gu, and W. Zou, “TaintScope: A checksum-
aware directed fuzzing tool for automatic software vulnerability 
detection,” in Proceedings of the 31st IEEE Symposium on Security 
and Privacy, Oakland, California, USA, May 2010, pp. 497-512. 

[7]   L. Cavallaro, P. Saxena, and R. Sekar, Anti-taint-analysis: Practical 
evasion techniques against information flow based malware defense. 
Technical report, Stony Brook University, 2007. 

[8]   C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and 
automatic generation of high-coverage tests for complex systems 
programs,” in Proceedings of the USENIX Symposium on Operating 
System Design and Implementation, 2008, pp. 209-224. 

[9] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler, “EXE: A 
system for automatically generating inputs of death using symbolic 
execution,” in Proceedings of the ACM Conference on Computer and 
Communications Security, October 2006, pp.322-335. 

[10]   J. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic taint 
analysis framework,” in International Symposium on Software 
Testing and Analysis, 2007, pp. 196-206. 

[11] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama: 
Capturing system-wide information flow for malware detection and 
analysis,” in Proceedings of the ACM Conference on Computer and 
Communications Security, October 2007, pp. 116-127. 

[12]   W. Xu, E. Bhatkar, and R. Sekar, “Taint-enhanced policy 
enforcement: A practical approach to defeat a wide range of attacks,” 
in Proceedings of the USENIX Security Symposium, 2006, pp. 121-
136. 

[13]   D. Jang, R. Jhala, S. Lerner, and H. Shacham, “An empirical study 
of privacy-violating information flows in JavaScript web 
applications,” in Proceedings of the ACM Conference on Computer 
and Communications Security, 2010, pp. 270-283. 

[14]   J. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic taint 
analysis framework,” in International Symposium on Software 
Testing and Analysis, 2007, pp. 196-206. 

[15]   M. G. Kang, S. McCamant, P. Poosankam, and D. Song, “DTA++: 
Dynamic Taint Analysis with Targeted Control-Flow Propagation,” 
in Proceedings of the Network and Distributed System Security 
Symposium, February 2011, pp. 205-219. 

[16]  V. Ganesh and D. L. Dill, “A decision procedure for bit-vectors and 
arrays,” in Proceedings of the 19th International Conference on 
Computer Aided Verification, 2007, pp. 519-531.

 

143Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies


